
74	 UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2

1. INTRODUCTION

The research aims to investigate new metrics of aspect-
oriented programming (AOP) quality measurements.
It has been used open-source tools for collecting static
metrics. These static metrics will feed to external quality
characteristics. The combination of other dynamic metrics
will expand the quality measurement for the AOP system

based on specific quality International Organization for
Standardization standards. The theoretical contribution
of other software quality frameworks has been discussed.
This thesis proposed a unique software product quality for
hybrid software applications (object-oriented programming
[OOP] and AOP) to identify product quality metrics. Static
measurements are used to evaluate the quality of computer
code. Cohesion, for example, is the degree to which
components of a module work together with each other.
At present, there are not many measurements for aspect-
oriented (AO) frameworks [1], for example, cohesion, and
coupling, separation of concerns, size, and so forth. Cohesion
is one of the essential quality properties for AO frameworks.
Coupling measures the level of interaction between modules.
Low coupling and high cohesion are considered necessary

An Empirical Evaluation of Metrics on
Aspect-oriented Programs
Mazen Ismaeel Ghareb1, Gary Allen2

1Department of Computer Science, College of Science and Technology, University of Human Development,
Sulaymaniyah, Kurdistan Region of Iraq, 2Department of Informatics, School of Computing and Engineering, University of
Huddersfield, Huddersfield, England

A B S T R A C T
The quality evaluation of software metrics measurement is considered as the primary indicator of imperfection prediction
and software maintenance in various empirical studies of software products. However, there is no agreement on which
metrics are compelling quality pointers for new software development approaches such as aspect-oriented programming
(AOP) techniques. AOP intends to enhance programming quality by providing fundamentally different parts of the systems,
for example, pointcuts, advice, and intertype relationships. Hence, it is not evident if quality characteristics for AOP
could be extracted from direct expansions of traditional object-oriented programming (OOP) measurements. Then again,
investigations of AOP do regularly depend on established static and dynamic metrics measurement; notwithstanding the late
research of AOP in empirical studies, few analyses been adopted using the International Organization for Standardization
9126 quality model as useful markers of flaw inclination in this context. This paper examination we have considered
different programming quality models given by various authors every once in a while and distinguished that adaptability
was deficient in the current model. We have testing 10 projects developed by AOP. We have used many applications to
extract the metrics, but none of them could extract all AOP Metrics. It only can measure some of AOP Metrics, not all of
them. This study investigates the suitable framework for extract AOP Metrics, for instance, static and dynamic metrics
measurement for hybrid application systems (AOP and OOP) or only AOP application.

Index Terms: AspectJ, Aspect-oriented Development, Aspect-oriented Programming, Aspect-oriented Programming
Metrics, Hybrid Application System, Software Quality Metrics

Corresponding author’s e-mail: Mazen Ismaeel Ghareb, Department of Computer Science, College of Science and Technology, University of
Human Development, Sulaymaniyah, Kurdistan Region of Iraq. E-mail: mazen.ismaeel@uhd.edu.iq/mazen.ghareb@hud.ac.uk

Received: 05-08-2019	 Accepted: 21-10-2019	 Published: 23-10-2019

Access this article online

DOI: 10.21928/uhdjst.v3n2y2019.pp74-86 E-ISSN: 2521-4217

P-ISSN: 2521-4209

Copyright © 2019 Ghareb and Allen. This is an open access article
distributed under the Creative Commons Attribution Non-Commercial
No Derivatives License 4.0 (CC BY-NC-ND 4.0)

REVIEW ARTICLE UHD JOURNAL OF SCIENCE AND TECHNOLOGY

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2	 75

for good design. In Cazzola et al. [2], W. Cazzola inferred
one structure given dynamic element metrics and run
time execution of software reports from several research
papers [3]-[5] and concentrates on element estimations
dismissing static, traditional measurements. The importance
of software measurement has been increasingly recognized
object-oriented (OO) software engineers as the metrics have
been proven to be pointers of vital quality properties, for
example, the fault-proneness of the final system [4]. In this
manner, the quality pointers for AOP can be gotten from
direct expansions of traditional OO measurements. In any
case, observational investigations of AOP do frequently
depend on established coupling measurements.

2. STATE OF ART

In the past decades, many OO metrics have been proposed.
The most well-known metrics are the Chidamber and
Kemerer (C&K) metrics [6] and metrics for OO Design
(MOOD) [7], which are applied to the quality of OOP at
different stages. To be specified, C&K measurements are, for
the most part, used to assess single classes, while MOOD
measurements are used to survey entire frameworks. All the
metrics can be divided into seven categories [8].

1.	 Size and complexity: Number of methods (NOM) and
number of attributes (NOA) are used to measure the size
of the class in terms of method and attributes. Weight
method complexity (WMC) and class complexity are
connected to measure classes and are used to measure
total complexity by calculating the total number of
functions/methods in different ways. Since classes are
proposed to be designed as succinctly as possible, these
measurements are required to be low in their qualities.

2.	 Cohesion: Cohesion is measured with four class
level measurements, which are calculated in various
approaches to reflect the collaborations between part
function/methods. The four levels are Lack of Cohesion
in Methods (LCOM), Tight Class Cohesion, Loss
Class Cohesion, and information-based cohesion.

3.	 Reusability: Reuse ratio and specification ratio are both
framework level reusability measurements. They are
calculated as the ratios of subclasses to all classes and
superclasses, separately. Since classes are relied on to be
profoundly reused, extensive reusability metric qualities
are desired.

4.	 Polymorphism: NMO overridden (NMO) by the class
and polymorphism factor (PF) are polymorphism
measurements at various levels. To be particular, NMO

is a class level metric, which measures the NMO by a
single subclass, while PF is a framework level metric,
which measures the degree of method overriding in the
entire system.

5.	 Inheritance: Number of children (NOC) and depth of
inheritance tree (DIT) are class level measurements,
which express class inheritance through the number of
relatives and the depth of the inheritance, respectively.
By comparison, method inheritance factor and attribute
inheritance factor are framework level measurements,
which refer to method inheritance and attribute
inheritance.

6.	 Encapsulation: Method hiding factor and attribute hiding
factor are indicators to show how well methods and
attributes are hidden inside classes. These measurements
are measured at the framework level.

7.	 Coupling: Five measurements are used to assess class
coupling from other points of view. The coupling
factor metric is used to determine the coupling of all
classes at the framework level. By examination, the
other four measurements measure coupling at the class
level. Among these measurements, response for the
class (RFC) and message passing coupling are utilized
to survey technique coupling, data abstract coupling
encapsulates information coupling among classes, and
coupling between objects (CBO) indicates a coupling
between class occurrences.

2.1. AO Metrics
Several reviews (Rønningen and Steinmoen, Zhang and
Jacobsen, Mickelsson, Coady and Kiczales, and Tsang
et al. [9]-[13]) have been conducted into the use of metrics
within AOP, more often by applying the measurements
characterized for OOP. Little work has been done to identify
measurements suitable specifically to AOP. In his research,
Mickelsson [11] concentrates on size measures such as
several classes, functions, and source explanations. Coady
and Kiczales [12] considered runtime costs and the position
of hidden concerns in working framework code. Zhang and
Jacobsen [10] utilized cyclomatic complexity, estimate, the
weight of class, coupling amongst articles, and reaction time
for their assessment. Tsang et al. [13] connected the C&K
measurement suite in their evaluation of AO systems. They
concentrated on the quality components understandability,
viability, reusability, and testability, and the C&K meanings
of measurements suited for measuring these elements. These
measurements are weighted technique calls, DIT, NOC, the
CBOs, the reaction for a class, and LCOMs. Zakaria and
Hosny [14] described the C&K measurements suite and the
impact of AO on these measurements. Burrows et al. [15]

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

76	 UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2

utilized 10 metrics for their analysis. These measurements
were characterized in Ceccato and Tonella’s measurements
suite and established OO measures proposed by C&K
measures. Adding to that, they offered a new metric that
evaluates coupling between the base and Aspect code, named
base-aspect coupling. Burrows et al. [16] utilized the C&K
metric for their review, and they concentrated on identifying
coupling in AO developed systems. Dhambri et al. [17]
proposed a complex AO software analysis using visualization
techniques. The initial phase defines the characteristics
and measurement for AOP programming, intended to
measure the general principle of quality. They used the app
metrics tool to extract many AOP Metrics based on OOP
metrics extend to AOP. They have been used visualization
techniques of the selected system for analysis of quality
for large-scale software systems [17]. Dhambri et al. [17]
suggested that metric definitions, as well as quality analysis,
should be adapted in an AO form, and they have recorded
some interesting open questions that are relevant to any
related methodologies. Specifically, they attempt to formally
characterize the advantages of AOP, such as the separation
of concerns and (Un)pluggability.

Proposed an AOP Metrics tool measures all code written
in the AspectJ language. The tool exploits a static analyzer
developed in the source transformation tool TXL. The main
module takes as inputs all the source classes, interfaces, and
aspects and performs standard OO reverse engineering.
The second module can then be run, performing further
propelled reverse engineering. The next module of the
tool identifies the method call relationship. Furthermore, it
finds the field-access relationships between operations and
fields. The fourth step is the most complex one. It finishes
weaving by settling all the pointcuts in the aspect code, in this
manner creating the comparable join points in the captured
code. The last step concerns the calculation of the metrics.
Their results show that essential properties, for example, the
proportion of the system affected by aspects and the amount
of knowledge an aspect has of the modules it crosscuts, are
captured by the proposed metrics (CDA and coupling on
intercepted modules [CIM], respectively).

2.2. Tools for AOP Metrics
The Ajatoo tool [18] has been evaluated for gathering the
aspect metrics based on C&K [14] metric measurements by
applying it to three different design patterns implemented in
OOP and AspectJ (Observer, Decorator, and Adapter). As
shown in Fig. 1, the software supports that various metrics
include sizes (vocabulary size, NOA, number of operations,
weight operator per component, lines of codes [LOC])

and coupling (DIT). No other metrics were supported or
implemented yet. What is needed is a tool to help all AspectJ
metrics and AOP Metrics generally.

It has been chosen projects developed by AOP, as shown
in Fig. 2.

The drawback of Ajato tool does not support all versions
of AO projects; it shows errors to extract and evaluate.aj
extension files, as shown in Fig. 3.

A second tool is called AOP Metrics. This tool is developed
in AspectJ. It measures many C&K measurements such as
lines of class code, weighted operations in module, DIT,

Fig. 2. Ajato tools read the projects.

Fig. 1. Using Ajato tool.

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2	 77

NOC, lack of cohesion in operations, CIM, and package
dependencies such as Abstractness (A) and number of
types [Ref]. The drawback of the tool is developed with old
versions for both AspectJ and Java and has not been updated
for 8 years.

Moreover, it will not support aspect metrics to measure
aspects independently [19]. Another tool Verifysoft’s
CMTJava [20] is a complexity measure apparatus expected
to be a guide in testing, quality assurance, and implementing
company standards for code complexity. CMTJava utilizations
McCabe’s cyclomatic number, lines of code measurements,
number of semicolons, and Halstead’s measurements in its
computations. Another tool JDepend [21] plans to break
down the design of the framework as far as extensibility,
reusability, and practicality and is an aid to oversee and
control the package dependencies. The tool proposed to
utilize is to automatically watch that the designs display
expected qualities while experiencing persistent refactoring
by the engineers. JDepend gives measurements to Number
of Classes and Interfaces, Afferent and Efferent Couplings,
Abstractness, Instability, Distance from the Main Sequence,
and Package Dependency Cycles. Adding more JMetric [22]
is a result of an exploration extends at Swinburne University
and expects to bring OO metrics and measurement research
to the practitioners. JMetric gathers data from Java source
documents and assembles a measurement display. The model
is then populated with measurement data, for example,
LOC, statement count, LCOM, and cyclomatic complexity.
Measurements 1.3.5 are an open-source module for the

Eclipse IDE [23]. It ascertains 17 unique measurements and
gives a package dependencies analyzer, and is accordingly an
overall apparatus.

Rapid miner tool has been tested for creating a new model
design for process any rules design by the user. Our objective
is to have AOP Metrics and shows statistical and graphical
relationships between them. Unfortunately, it only takes text
and CSV files, and we manually need to customize the rules,
so it was not suitable for our experiments [24], as shown in
Fig. 4.

Adding more there are very powerful texts engineering
software called Gate has been tested for finding AOP source

Fig. 3. Errors in Ajato tool.

Fig. 4. Using rapid miner tool.

Fig. 5. Using gate text engineering tool.

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

78	 UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2

code patterns. This tool help to find AOP Metrics and give
statistical measures, after testing it shows some drawbacks,
which is not given statistical information about each text
pattern for each class and not read java file, as shown in Fig. 5.

3. AOP QUALITY METRICS

There are different models to evaluate the quality of OO
and module arranged approaches. Various quality models
for programming quality are given by Lincke et al., [22],
Yeresime and Pati [25], Eric and Bernstein [26], Lee [27].
However, less work is done to assess the quality attributes of
the AO system. Different quality characteristic is complexity,
coupling, reusability, changeability, maintainability, cohesion,
and so forth.

•	 Complexity is the technique to analyze the code,
endeavors required in change, and modification of
modules

•	 Coupling is the level of relatedness among the modules
that are an association between modules. Low coupling
is needed

•	 Reusability is utilizing the module again to decrease the
coding. There are different programming measurements
for these qualities for inheritance systems. However, not
very many measures are talked about for an AO system.
Programming measurements go about as pointer of
nature of a framework, i.e., give quantitative premise

•	 Maintainability is a change of programming item after
delivery

•	 Cohesion is the level of relatedness among components
of the modules. High cohesion is attractive.

There are numerous product quality models that propose
approaches to integrate distinctive quality attributes each
model aides in seeing how few quality components add to
the entire variety. To assess the whole nature of the product
item, we should see this large picture.

The objective of the AOP Metrics version 0.3 tool is to give
a typical measurement instrument to the article arranged
and the perspective situated programming. The task means
to provide the following highlights (not executed ones are
in italics):

The aspect arranged augmentations of the following
measurements suite:
•	 C&K measurements suite (CK measurements)
•	 Robert Martin’s measurements suite (package

dependencies measurements)
•	 Henry and Li measurements suite.

Measurements actualized by AOP Metrics tasks can be
connected to classes and aspects. Consequently, the module
will be used as a typical term for classes and Aspects. Also,
methods and advice will be demonstrated by the task term [28].

CK figures class level and metric level code measurements
in Java extend by methods for static investigation (for
example, no requirement for accumulated code). At present,
it contains a massive arrangement of measures, including the
celebrated CK.

This tool uses Overshadowing’s JDT Center Library in the
engine for AST development. At present, the consistency
rendition is set to Java 11.

This apparatus will separate these static measurements:
•	 CBO: It tallies the number of conditions a class has.

The device checks for any sort utilized in the whole
class (field revelation, technique return types, variable
statements, and so on). It overlooks conditions in Java
itself (for example, java.lang.String)

•	 DIT: It tallies the quantity of “fathers” a class has. All
classes have DIT at any rate 1 (everybody acquires java.
lang.Object). Classes must exist in the undertaking (for
example, if a class relies on X, which depends on a
container/reliance document, and X relies on different
classes, DIT is considered 2)

•	 Several fields: It checks the number of fields. Exact
figures for an absolute number of fields, static, open,
private, ensured, default, last, and synchronized fields

•	 Several methods: It checks the NOM. Explicit numbers
for all outnumber of techniques, static, open, theoretical,
private, secured, default, last, and synchronized methods

•	 Number of static summons: It checks the number of
calls to static methods. It can just tally the ones that can
be settled by the JDT

•	 Reaction for a Class (RFC): It checks the quantity of
special strategy summons in a class. As summons are
settled through static examination, these execution
methods when a technique has overloads with the same
number of parameters, however, various sorts

•	 Weight methods c lass (WMC) or McCabe’s
unpredictability: It checks the number of branch
directions in a class

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2	 79

•	 LOC: It tallies the lines of the check, disregarding void
lines

•	 LCOM: Figures LCOM metric. This is the absolute first
form of metric, which is not stable. LCOM-HS can be
better (ideally, you will send us a force demand)

•	 Amount of returns: The number of return instructions
•	 Amount of loops: The number of loops (i.e., for, while,

do-while upgraded for)
•	 Amount of correlations: The number of examinations

(i.e., ==)
•	 Amount of try/catch: The quantity of try/catch
•	 Amount of parenthesized expression: The amount of

expression inside the bracket
•	 String literals: The number of string literals (e.g., “Kurd

people”). Rehashed strings consider commonly as they
show up

•	 Amount of number: The number of numbers (i.e., int,
long, two-fold, skim) literals

•	 Amount of math tasks: The number of math activities
(times, separate, leftover portion, besides, short, left
poop, right move)

•	 Amount of variables: Number of announced variables
•	 Max settled blocks: The most astounding number of

blocks decided together.

Amount of anonymous classes, subclasses need to be
measure. It is important to check name of the class, count
of each keyword in the class and all the when you execute
the project. It recommended to Use of every factor, for
instance, how much every element was used inside every
method, adding more it recommended it need using of each
field, and calculated inside every method [29].

McCall et al. [30] proposed a product quality factor structure
and arranged the quality properties into three general classes:
i.	 Product task elements,
ii.	 Product amendment variables,
iii.	 Product change components.

•	 Item task factors: The variables which add to
item activity are rightness, unwavering quality,
productivity, honesty, and ease of use

•	 Item modification factors: The components which
add to item update are practicality, adaptability, and
testability

•	 Item change factors: The variables which add to item
progress are movability, reusability, and interoperability.

Boehm model is like the McCall model. Boehm spoke to their
quality model as a various leveled tree and broken quality
attributes into subqualities, which is given in Fig. 6. Boehm

additionally incorporated the equipment yield attributes
which were not considered in the McCall model. Utilizing
this model, quality as a single parameter can be assessed due
to the progressive nature of the model. This model does not
give rules to quantify recorded attributes [31].

Dromey [32] proposed a quality model that gives a
straightforward procedure for building quality conveying
properties into programming. This model builds up the
connection between unmistakable item qualities and less
substantial traits. This model aids us where to search for
imperfections and shows the properties that should be
damaged to make abandons. This model tends to item
quality by characterizing all the related sub-attributes so
that they can be blended and amalgamated into higher-level
qualities. The model backings are incorporating variety with
programming, the meaning of language-specific coding
benchmarks, efficient arranging quality deformities, and the
advancement of mechanized code inspectors for identifying
quality imperfections in programming. Dromey included
reusability as a quality trademark in his model.

Deutsch and Wills [33] sorted programming quality as
programming methodology quality and programming item
quality. As a normal for programming item advancement
process, programming strategy quality comprises
programming designing related components such as
technology, tools, workforce, association, and equipment. As
a normal for programming item, programming item quality
incorporates record transparency, trustworthiness, follow
capacity, association, program rerisk, and test honesty. In
this model, the direction has been given on what venture to
follow to acquire the wanted item.

Word and Venkataraman [34] proposed that product quality
measures may incorporate at least one of the accompanying:
(i) Client based: As assessed by clients, programming quality
alludes to the level of fulfillment of client desires. (ii) Item
conveyance based: Determined by the item as evaluated
by the originator, the level of framework viability, and
program practicality; (iii) assembling based: The advancement
procedure, stressing quality control, and the board; and
(iv) authoritative control based: venture costs, generation
time, asset control, and hazard the board.

Sharma et al. [35] proposed a quality model in the setting of
Part Based Programming Improvement (CBSD) and have
gotten their model from ISO/IEC 9126. In their model, they
included reusability, intricacy, track capacity, and adaptability
as new subqualities in the six attributes of ISO/IEC 9126.

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

80	 UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2

To assess the absolute nature of a segment, they utilized a
systematic, progressive system process (analytic hierarchy
process [AHP]), and for the weight estimations of value
qualities and sub-attributes, an overview was led.

Chang et al. [36] gave rules to assess programming quality by
incorporating a fuzzy hypothesis and AHP. They connected
this new idea to the ISO/IEC 9126 quality model. Rather
than taking the mean of gathered example information,
they compared the fuzzy hypothesis to get relative loads of
qualities and sub-attributes. They have not proposed any new
quality model, yet have given rules to assess programming
quality utilizing existing models [37], [38].

ISO/IEC 9126 tends to three programming quality aspects:
(I) Process quality, (ii) item quality, and (iii) item being
used quality. ISO/IEC 9126 arrangement guidelines have
presented a various leveled model with six noteworthy quality
attributes. These quality attributes are isolated into 21 sub-
attributes, which add to the inner quality. ISO/IEC 9126 1

is concerned basically with the meaning of value qualities
and sub-attributes in the last items. ISO/IEC 9126 2 gives
external measurements to estimating traits of six external
quality attributes characterized in ISO/IEC 9126 1. ISO/
IEC 9126 2 distinguishes external measures; ISO/IEC 9126 3
describes internal sizes, and ISO/IEC 9126 4 characterizes
quality being used measurements for the estimation of value
attributes or the subqualities [39], [40]. Inward analyses
estimate programming itself; outside measurements estimate
conduct of the computer-based framework that includes the
product, and quality being used sizes measured the impacts
of utilizing the product in a particular set of utilization. ISO/
IEC 9126 2:2003 is proposed to be used together with ISO/
IEC 9126 1. ISO/IEC 9126 4 contains:
•	 A clarification of how to apply programming quality

measurements;
•	 A fundamental arrangement of measurements for every

trademark; and
•	 A case of how to apply measurements during the product

item life cycle.

Fig. 6. Boehm quality model.

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2	 81

Even though the ISO/IEC 9126 quality model is genuinely
detailed, it does not cover some significant quality attributes,
which add to the nature of the AOP [41], [42].

To characterize the programming quality model, which
should cover every one of the highlights of the AO
programming framework, we need to see what are the new
stresses and confinements of the latest technology as AO
innovation is an expansion of MO or OO innovation. AO
programming languages are additionally augmentations of
local programming language, for example, perspective C is
an expansion of C, Aspect C++ is an augmentation of C++,
AspectJ is an expansion of Java, CaesarJ is an expansion of
Java, Aspect XML is an expansion of XML, etc. Since AO
technology cannot exist without anyone else, it will have
every one of the highlights of the innovation from which
it is determined. For instance, AspectJ has every one of
the highlights of Java and extra highlights, which has been
included AspectJ. At the end of the day, if AO Technology is
gotten from OO Technology, at that point, it will have every
one of the highlights OO innovation and extra highlights
added to aspectual code. Other quality attributes/subqualities
are required to be included, which can cover new highlights of
crosscutting concerns (aspect(s)) and the combination of it
with essential concerns (classes). The redefinition of existing
attributes/subqualities, in the setting of AO innovation, is
likewise required [43], [44].

The vast majority of the product quality models, which are
proposed after the meaning of programming quality principles
ISO/IEC 9126, have been gotten from ISO/IEC 9126.
For instance, Rawashdeh and Matalkah [45] have included
similarity as a sub-trademark to usefulness, unpredictability
as a sub-trademark to ease of use and reasonability as a
sub-trademark to viability in their product quality model.
They evacuated subqualities strength and analyzability from
practicality. They likewise included another brand in their
quality model as partners, who are the individuals from the
group in charge of creating, keeping up, incorporating, and
utilizing the best framework. This model spotlights on the
estimation of the nature of part based framework. Bertoia and
Vallecillo [46] proposed a quality model, which characterizes
attributes and sub-attributes in segment-based frameworks.
In this model, sub-attributes have been partitioned into
runtime and lifecycle classifications dependent on their
inclination. They likewise included ability as a sub-trademark
to usefulness, which demonstrates whether the previous
variant of the part is perfect with its present form.

Fig. 7. Aspect-oriented software quality model.

Fig. 8. SQuaRE series of standards.

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

82	 UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2

TA
B

LE
 1

: T
he

 c
or

re
la

tio
n

of
 v

ar
io

us
 q

ua
lit

ie
s

at
tr

ib
ut

es
 in

 d
iff

er
en

t p
ro

gr
am

m
in

g
qu

al
ity

 m
od

el
s.

M
od

el
M

ca
ll

(1
97

7)
B

oe
hm

m

od
el

(1

97
8)

IS
O

91
26

(1

99
1)

FU
R

PS

m
od

el

(1
99

1)

G
he

zz
i

m
od

el

(1
99

1)

IS
O

91
26

V.

4
(1

99
2‑

20
01

)

D
ro

m
ey

 (1
99

5)
A

O
SQ

A
M

O

(2
00

9)
IS

O
/IE

C

25
01

0
(2

01
0)

R
EA

SQ

(2
01

0)
A

O
SQ

(2

01
2)

Fu
nc

tio
n

S
tru

ct
ur

e
H

ie
ra

rc
hi

ca
l

H
ie

ra
rc

hi
ca

l
H

ie
ra

rc
hi

ca
l

H
ie

ra
rc

hi
ca

l
H

ie
ra

rc
hi

ca
l

H
ie

ra
rc

hi
ca

l
H

ie
ra

rc
hi

ca
l

H
ie

ra
rc

hi
ca

l
H

ie
ra

rc
hi

ca
l

H
ie

ra
rc

hi
ca

l
H

ie
ra

rc
hi

ca
l

N
um

be
r o

f l
ev

el
s

2
3

2
2

2
3

2
2

3
2

3
A

dv
an

ta
ge

E
va

lu
at

io
n

cr
ite

ria
H

ar
dw

ar
e

fa
ct

or
s

in
cl

ud
ed

E
va

lu
at

io
n

cr
ite

ria
S

ep
ar

at
io

n
of

 F
R

 a
nd

N

FR

E
va

lu
at

io
n

cr
ite

ria
E

va
lu

at
io

n
cr

ite
ria

E
va

lu
at

io
n

cr
ite

ria
E

va
lu

at
io

n
cr

ite
ria

ev
al

ua
tio

n
cr

ite
ria

E
va

lu
at

io
n

cr
ite

ria
E

va
lu

at
io

n
cr

ite
ria

D
is

ad
va

nt
ag

e
C

om
po

ne
nt

s
ov

er
la

pp
in

g
La

ck
 O

f
cr

ite
ria

G
en

er
al

ity
P

or
ta

bi
lit

y
no

t
co

ns
id

er
ed

La
ck

 o
f

cr
ite

ria
La

ck
 o

f
cr

ite
ria

C
om

pr
eh

en
si

ve
ne

ss
La

ck
 o

f
cr

ite
ria

G
en

er
al

ity
S

eg
m

en
ts

ov

er
la

pp
in

g
G

en
er

al
ity

R
el

ia
bi

lit
y

*
*

*
*

*
*

_
*

*
*

*
E

ffi
ci

en
cy

*

*
*

_
_

*
_

*
*

*
_

In
te

gr
ity

*
_

_
_

_
_

_
_

_
_

_
U

sa
bi

lit
y

*
_

*
*

*
*

_
*

*
*

_
M

ai
nt

ai
na

bi
lit

y
*

*
*

_
_

*
_

*
*

*
_

Te
st

ab
ili

ty
*

*
_

_
_

_
_

_
_

_
_

Fl
ex

ib
ili

ty
*

_
_

_
_

_
_

_
_

_
_

P
or

ta
bi

lit
y

*
*

*
_

_
*

_
*

*
*

*
R

eu
sa

bi
lit

y
*

_
_

_
_

_
*

*
*

_
_

U
nd

er
st

an
da

bi
lit

y
_

*
_

_
_

_
_

_
_

_
_

M
od

ifi
ab

ili
ty

_
*

_
_

_
_

_
_

_
_

_
Fu

nc
tio

na
lit

y
_

_
_

*
_

*
_

*
*

*
*

S
up

po
rta

bi
lit

y
_

_
_

*
_

_
_

_
_

_
_

P
er

fo
rm

an
ce

_
_

_
*

_
_

_
_

_
_

_
E

vo
lv

ab
ili

ty
_

_
_

_
_

_
_

_
_

_
*

In
te

ro
pe

ra
bi

lit
y

*
_

_
_

_
_

_
_

_
_

_

Th
e

va
ria

bl
es

 w
hi

ch
 a

re
 a

va
ila

bl
e

in
 th

e
m

od
el

 a
re

 s
et

 a
pa

rt
 a

s
“*

,”
 w

hi
ch

 m
ea

ns
 th

at
 th

is
 fa

ct
or

 h
as

 b
ee

n
in

co
rp

or
at

ed
 in

to
 th

e
in

di
vi

du
al

 m
od

el
, a

nd
 th

e
va

ria
bl

es
 w

hi
ch

 a
re

 n
ot

 p
re

se
nt

 a
re

 s
et

 a
pa

rt
 a

s
“–

” s
ay

in
g

th
at

th

es
e

el
em

en
ts

 a
re

 n
ot

 in
co

rp
or

at
ed

 in
to

 th
e

m
od

el
. F

R:
 F

un
ct

io
na

l r
eq

ui
re

m
en

t,
 N

FR
: N

on
‑f

un
ct

io
na

l r
eq

ui
re

m
en

t

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2	 83

According to Kumar et al. [47] proposed augmentation of
the ISO/IEC 9126 quality model. In this quality model,
we have included particularity as a sub-trademark under
practicality, code reducibility as a sub- characteristic under
effectiveness, multifaceted nature as a subfeature under
ease of use, and reusability as a sub-characteristic under
usefulness. The new model is given in Fig. 7. In this table,
qualities and sub-attributes have likewise been allotted marks
such as C2 (specific number 2) and SC32 (specific number
2 of distinctive number 3), which will be alluded in the
following segments. It is important to show the significance
of (ISO/IEC 9126) regarding qualities and sub-attributes,
in the setting of AO technology.

SQuaRE comprises a group of principles under the general
title of software product quality requirements and evaluation
(Fig. 8 represents the association of these families or
divisions [41], [48], [43]. The divisions inside the SQuaRE
Model are as follows: ISO/IEC 2500n – Quality Management
Division, ISO/IEC 2501n – Quality Model Division, ISO/
IEC 2502n – Quality Measurement Division, ISO/IEC
2503n – Quality Requirements Division, and ISO/IEC
2504n – Quality Evaluation Division. In standard, ISO/
IEC 25000-Guide to SQuaRE speaks to the umbrella archive
of the SQuaRE arrangement; it gives a general outline
and advisers for utilizing the SQuaRE series. This record
contains the SQuaRE engineering, wording, planned clients,
and associated parts of the arrangement. ISO/IEC 25000
presents the entire SQuaRE arrangement as an accumulation
of value designing instruments. We are keen on the ISO/
IEC 25030 (quality prerequisites) and the ISO/IEC 25010
(quality model, once in the past called ISO/IEC 9126-1),
which will be displayed in what follows. In Fig. 2 – explains
the architecture of the SQuaRE framework [41], [48], [43].
Adding more ISO/IEC 9126-1 and ISO/IEC 25010 it focus
on software components is built to be agreeable with specific
needs, required by its user. Their quality is resolved in the
measure that these necessities are accomplished.

ISO/IEC 25010 is an update of ISO/IEC 9126-1 [49],
with minor changes. According to the draft variant [41],
it essentially keeps up similar definitions and structure
of ISA/IEC (2001), anyway it offers eight attributes: A
similar six characteristics of ISO/IEC (2001) or more
interoperability and security, which were disposed of from the
usefulness sub-attributes, for a sum of eight abnormal state
characteristics. This decision reacts to the quality necessities
particular of current software applications, for instance,
web administration applications, where interoperability
and security are building primary concerns. This work will

consider ISO/IEC 9126-1 because it is formally received a
standard.

The requirements, aspects, and software quality (REASQ)
applied model, communicated in unified modeling language [50],
encourages thinking on the fundamental ideas innate to a
perspective situated quality prerequisites designing discipline. In
the model, the product necessity, concern, and quality trademark
components are the primary thoughts used to interrelate the
wording of three ambits: The prerequisites building discipline.

4. CONCLUSION AND FUTURE WORK

Software users consider programming to be an apparatus to
be utilized to help them in the manner they work together in
their particular Structure. Quality is a structure of numerous
attributes. Therefore, quality is usually caught in a model that
portrays the characteristics and their connections. The models
are helpful; they show what individuals believe is significant
when talking about quality. Extraordinary associations utilize
distinctive quality models dependent on the aspect-oriented
software development (AOSD) worldview, and the product
item quality detail. Using REASQ, a mapping is built up
between the ISO/IEC guidelines and the developing AOSD
discipline. Non-practical concerns and quality necessities
are connected with at least one quality attribute of the
standard quality model (potential cross-cutting concerns),
which is a principal objective of AOSD [6], [51]). There is
a general concurrence on the way that a perspective takes
care of the issue of the crosscutting concerns (gave these
are recognized), by typifying them in a particular structure,
through an arrangement component [51]-[53]. The technique
is possible from the get-go in the product improvement
process through a structure table [54], while demonstrating
the framework engineering, for example, to encourage the
plan and execution stages.

Ghezzi et al. expressed that interior characteristics manage
the structure of programming, which helps the product
engineers to accomplish the external features just as essential
attributes of programming, which are accuracy, flexibility,
integrity, practicality, portability, reliability, reusability, and
convenience [55], [43].

5. IDENTIFY TOOLS FOR QUALITY
MEASUREMENTS FOR AOP

In the previous section, we have discussed various software
quality models that support AOP. In Table 1, there is

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

84	 UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2

a detail of the criteria of comparison and advantages
and disadvantages of these software quality models the
prerequisites.

Various ideas of programming quality qualities are evaluated
and discussed in this paper. Too near investigation of
different programming quality models utilized by different
associations is being examined in this paper. A lot of effort
is invested in the procedure quality improvement. At the
point, when a task is embraced, the point is to convey the
correct item at the ideal time with the exact functionalities.
It is a typical situation that the one at the less than desirable
end consistently wants/anticipates that the best should
be conveyed to them. The onus lies on the engineers and
testers to guarantee that they can meet the expectations
for their customers. In this paper, we have examined
different programming quality models given by various
creators now and again and recognized that adaptability
was inadequate in the current model. It is essential for
the present framework to be able to oblige an expanding
number of components to process developing volumes of
work agilely, what is more, to be helpless for expansion.
Henceforth, another sub-trademark versatility has been
added under the viability of the AOSQ model. Each
proposed model needs evaluation. We have been analysis
most of the quality model for supporting measuring of
AOP, some of them argue the standard metrics of OOP.
We suggest proposing a framework for evaluating state
metrics for AOP then moving on dynamic metric for
a hybrid software application. In future, research will
recommend a quality measurement framework and applied
on static and dynamic parameters for AOP.

As it is described in Table 1, there is not software could give
a total number of AO quality metrics. Many software used
difference quality models to extract exact quality metrics.
However, they have been succeeding in obtaining standard
quality metrics but failed in hybrid application system or
AO software.

The future work will be proposing a unique software product
quality for hybrid software applications (OOP and AOP)
to identify product quality metrics. The framework will
help software engineering to measure AOP Metrics, which
adapted ISO 9126 software quality model; this means that
any hybrid system can measure with this new framework. The
unique quality measurement framework of this research is
the extension of quality model ISO 9126.

6. ACKNOWLEDGMENT

We would like to thank the University of Human Development
in Kurdistan of Iraq and the University of Huddersfield for
their usual support for our study.

REFERENCES

[1].	 M. Ceccato and P. Tonella. “Measuring the effects of software
aspectization”. Vol. 12. In 1st Workshop on Aspect Reverse
Engineering, 2004.

[2].	 W. Cazzola, A. Marchetto and F. B. Kessler. “AOP-hiddenmetrics:
Separation, extensibility, and adaptability in SW measurement”.
Journal of Object Technology, vol. 7, no. 2, pp. 53-68, 2008.

[3].	 E. Arisholm, L. C. Briand and A. Foyen. “Dynamic coupling
measurement for object-oriented software”. IEEE Transactions on
Software Engineering, vol. 30, no. 8, pp. 491-506, 2004.

[4].	 A. Mitchell and J. F. Power. “Using object-level run-time metrics to
study coupling between objects”. In Proceedings of the 2005 ACM
Symposium on Applied Computing, pp. 1456-1462, 2005.

[5].	 D. Ng, D. R. Kaeli, S. Kojarski and D. H. Lorenz. “Program
comprehension using aspects”. In ICSE 2004 Workshop
WoDiSEE’2004, 2004.

[6].	 L. Cheikhi, R. E. Al-Quraish, A. Idri and A. Sellami. “Chidamber
and Kemerer object-oriented measures: Analysis of their
design from the metrology perspective”. International Journal of
Software Engineering and Its Applications, vol. 8, no. 2, pp. 359-
374, 2014.

[7].	 A. Kaur, S. Singh, K. Kahlon and P. S. Sandhu. “Empirical analysis
of CK and MOOD metric suit”. International Journal of Innovation,
Management, and Technology, vol. 1, no. 5, p. 447, 2010.

[8].	 N. Fenton and J. Bieman. “Software Metrics: A Rigorous and
Practical Approach’. CRC Press, Boca Raton, FL, 2014.

[9].	 E. Rønningen and T. Steinmoen. “Increasing Readability with
Aspect-Oriented Programming”. Department of Computer and
Information Science (IDI), 2003.

[10].	C. Zhang and H. A. Jacobsen. “Quantifying aspects in middleware
platforms”. In Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development, pp. 130-139, 2003.

[11].	M. Mickelsson. “Aspect-Oriented Programming Compared to
Object-Oriented Programming when Implementing a Distributed,
Web Based Application”. Department of Information Technology,
Uppsala University, 2002.

[12].	Y. Coady and G. Kiczales. “Back to the future: A retroactive study
of aspect evolution in operating system code”. In Proceedings
of the 2nd International Conference on Aspect-Oriented Software
Development, pp. 50-59, 2003.

[13].	S. L. Tsang, S. Clarke and E. Baniassad. “Object Metrics for Aspect
Systems: Limiting Empirical Inference Based on Modularity”.
Submitted to ECOOP, 2004.

[14].	A. A. Zakaria and H. Hosny. “Metrics for aspect-oriented software
design”. Vol. 3. In Proc. Third International Workshop on Aspect-
Oriented Modeling, AOSD, 2003.

[15].	R. Burrows, F. C. Ferrari, A. Garcia and F. Taiani. “An empirical
evaluation of coupling metrics on aspect-oriented programs”. In
Proceedings of the 2010 ICSE Workshop on Emerging Trends in
Software Metrics, pp. 53-58, 2010.

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2	 85

[16].	R. Burrows, A. Garcia and F. Taiani. “Coupling metrics for aspect-
oriented programming: A systematic review of maintainability
studies”. In International Conference on Evaluation of Novel
Approaches to Software Engineering, pp. 277-290, 2008.

[17].	K. Dhambri, J. F. Gélinas, S. Hassaine and G. Langelier.
“Visualization-based Analysis of Quality for Aspect-Oriented
Systems”. ACM international Conference, Long Beach, CA, 2005.

[18].	E. Figueiredo, A. Garcia and C. Lucena. “AJATO: An AspectJ
Assessment Tool”. In European Conference on Object-Oriented
Programming (ECOOP Demo), France, 2006.

[19].	K. Sirbi and P. J. Kulkarni. “AOP and its impact on software quality”.
Elixir Computer Science and Engineering, vol. 54, pp. 12606-
12610, 2013.

[20].	H. R. Bhatti. “Automatic Measurement of Source Code Complexity”.
Tore Cane, Italy, 2011.

[21].	M. Wilhelm and S. Diehl. “Dependency viewer-a tool for visualizing
package design quality metrics”. In Visualizing Software for
Understanding and Analysis, 2005. VISSOFT 2005. 3rd IEEE
International Workshop on IEEE, pp. 1-2, 2005.

[22].	R. Lincke, J. Lundberg and W. Löwe. “July. Comparing software
metrics tools”. In Proceedings of the 2008 International Symposium
On Software Testing and Analysis. ACM, pp. 131-142, 2008.

[23].	V. Yadav and R. Singh. “February. Predicting design quality
of object-oriented software using UML diagrams”. In Advance
Computing Conference (IACC), 2013 IEEE 3rd International IEEE.,
pp. 1462-1467, 2013.

[24].	Y. U. Mshelia and S. T. Apeh. “Can software metrics be unified”?
In International Conference on Computational Science and Its
Applications. Springer, Cham, pp. 329-339, 2019.

[25].	S. Yeresime, J. Pati and S. K. Rath. “Review of software quality
metrics for object-oriented methodology”. In Proceedings of
International Conference on Internet Computing and Information
Communications. Springer, India, pp. 267-278, 2014.

[26].	B. J. Eric and M. E. Bernstein. “Software Engineering: Modern
Approaches”. Waveland Press, Long Grove, Illinois, USA, 2016.

[27].	M. C. Lee. “Software quality factors and software quality metrics
to enhance software quality assurance”. British Journal of Applied
Science and Technology, vol. 4, no. 21, pp. 3069-3095, 2014.

[28].	M. I. Ghareb and G. Allen. April. “State of the art metrics for aspect
oriented programming”. In AIP Conference Proceedings. Vol. 1952.
AIP Publishing, p. 020107, 2018.

[29].	M. Aniche. Static Metrics Measurments, Jul. 2019. Avaialble
from: https://www.github.com/mauricioaniche/ck. [Accessed:
31-July-2019].

[30].	J. A. McCall, P. K. Richards and G. F. Walters. “Factors in Software
Quality, Griffiths Air”. Force Base, N.Y. Rome Air Development
Center Air Force Systems Command, 1977.

[31].	B. W. Boehm, J. R. Brown and M. L. Lipow. “Quantit ative
Evaluation of Software Quality”. Proceedings of the 2nd International
Conference on Software Engineering, IEEE Computer Society
Press, San Francisco, California, United States, pp. 592 605, 1976.

[32].	R. G. Dromey. “A model for software product qual ity”. IEEE
Transactions on Software Engineering, vol. 21, no.2, pp.146-
162, 1995.

[33].	M. S. Deutsch and R. R. Wills. “Software Quality Engineering; A
Total Technical and Management Ap-proach”. Prentic-Hall, Inc.,
Upper Saddle River, NJ, 1998.

[34].	W. A. Word and B. Venkataraman. “Some Observations on
Software Quality”. In Proc. of the 37th Annual Southeast Regional

Conference, Mobile, AL, 1999.
[35].	S. Arun, R. Kumar and P. S. Grover. “Estimation of quality for

software components: An empirical approach”. ACM SIGSOFT
Software Engineering Notes, vol. 33, no. 6, pp. 1-10, 2008.

[36].	C. Chang, C. Wu and H. Lin. “Integrating fuzzy theory and hierarchy
concepts to evaluate software quality”. Software Quality Control,
vol. 16, no. 2, pp. 263-276, 2008.

[37].	A. Kaur, P. S. Grover and A. Dixit. “Performance Efficiency
Assessment for Software Systems. In Software Engineering”.
Springer, Singapore, pp. 83-92, 2019.

[38].	P. Nistala, K. V. Nori and R. Reddy. “Software quality models:
A systematic mapping study”. In Proceedings of the International
Conference on Software and System Processes. IEEE Press,
New York, pp. 125-134, 2019.

[39].	H. Noviyarto and Y. S. Sari. “Testing and implementation outpatient
information system using ISO 9126”. International Educational
Journal of Science and Engineering, vol. 2, no. 3, p. 11, 2019.

[40].	Y. S. Sari. “Testing and implementation ISO 9126 for evaluation of
prototype knowledge management system (KMS) e-procurement”.
International Educational Journal of Science and Engineering,
vol. 2, no. 3, p. 1, 2019.

[41].	ISO/IEC 9126 1, 2001, ISO/IEC 9126 2, 2003, ISO/IEC 9126 3,
2003 and ISO/IEC 9126 4. “Information Technology Product Quality
Part1: Quality Model, Part 2: External Metrics, Part3:Internal
Metrics, Part4: Quality in use Metrics”. International Standard ISO/
IEC 9126, International Standard Organization, 2004.

[42].	M. Yan, X. Xia, X. Zhang, L. Xu, D. Yang and S. Li. “Software
quality assessment model: A systematic mapping study”. Science
China Information Sciences, vol. 62, no. 9, p.191101, 2019.

[43].	H. Kuwajima and F. Ishikawa. “Adapting SQuaRE for Quality
Assessment of Artificial Intelligence Systems”. Machine Learning,
arXiv preprint arXiv:1908.02134, 2019.

[44].	G. O’Regan. “Fundamentals of Software Quality. In Concise Guide
to Software Testing. Springer, Cham, pp. 1-31, 2019.

[45].	R. Adnan and B. Matalkah. “A new soft-ware quality model for
evaluating COTS components”. Journal of Computer Science,
vol. 2, no. 4, pp. 373-381, 2006.

[46].	M. Bertoa and A. Vallecillo. “Quality Attributes for COTS
Components”. In the Proceedings of the 6th International ECOOP
Workshop on Quantitative Approaches in Object-Oriented Software
Engineering (QAOOSE), Spain, 2002.

[47].	A. Kumar, P.S. Grover and R. Kumar. “A quantitative evaluation
of aspect-oriented software quality model (AOSQUAMO)”. ACM
SIGSOFT Software Engineering Notes, vol. 34, no. 5, pp. 1-9,
2009.

[48].	H. Rashidi and M. S. Hemayati. “Software quality models:
A comprehensive review and analysis”. Journal of Electrical and
Computer Engineering Innovations, vol. 6, no. 1, pp. 59-76, 2019.

[49].	N.R. Mead and T. Stehney. “Security Quality Requirements
Engineering (SQUARE) Methodology”. Vol. 30. Technical Report,
ACM, pp. 1-7, 2005.

[50].	J. Rumbaugh, G. Booch and I. Jacobson. El Lenguaje Unificado de
Modelado: Manual de Referencia”. Addison Wesley, Madrid, 2000.

[51].	S. Clarke and R. J. Walker. Generic Aspect-Oriented Design with
Theme/UML. “Aspect-Oriented Software Development”. In: R. E.
Filman, T. Elrad, S. Clarke, and M. Aksit, editors. Addison-Wesley,
Boston, 2005.

[52].	M. Ghareb and G. Allen. “Improving the Design and Implementation
of Software Systems uses Aspect-Oriented Programming”.

Ghareb and Allen: An Empirical Evaluation of Metrics on Aspect-oriented Programs

86	 UHD Journal of Science and Technology | Jul 2019 | Vol 3 | Issue 2

University of Human Development Suilamanay, Iraq, 2015.
[53].	G. Allen and M. Ghareb. Identifying similar pattern of potential

aspect-oriented functionalities in software development life cycle”.
Journal of Theoretical and Applied Information Technology, vol. 80,
no. 3, pp. 491-499, 2015.

[54].	I. S. Brito and A. M. Moreira. “Advanced Separation of Concerns
for Requirements Engineering”. In JISBD, Spain, pp. 47-56, 2003.

[55].	M. W. Suman and M. D. U. Rohtak. “A comparative study of software
quality models”. International Journal of Computer Science and
Information Technologies, vol. 5, no. 4, pp. 5634-5638, 2014.

