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Abstract—During building model process, it is difficult to 

construct a multiple regression model (MRM) while the 

response variable(Y) is proposed as a vector of (r.v), 

(Y1,Y2,Y3,…..,Yn) in an experiment. So that a single response 

(MRM) is not able to perform multi-response data (MRD) 

separately (one for each response), this is because of the linear 

dependency(LD) among responses, then (MRRM) which was 

proposed by (Len Beirman, & Freidman 1997) has better 

performance to detect effects and patterns for the factors, 

(Explanatory)(X1 , X2, X3 ,…..Xk )that are introduced to the 

(MRRM) system on the (r.v) altogether. This Study was 

applied (MRRM) on an agricultural experiment through 

(450m2) in west Sulaimani- Kurdistan Region-Iraq. 

 

Keywords: Multiple regression model (MRM), Response 

Vector (r.v) Multi-response Data (MRD). Linear dependency 

(LD), Multi-response Regression Model (MRRM), Kronecker 

Product, Analysis of Variance (ANOVA), Coefficient of 

Determination (R2), Eigen Values (EV), Eigen Vector (EV). 

I. INTRODUCTION [2], [3], [7]
 

     The plot of land that was experienced upon owns specifics 

of agricultural land in general and the land area of experiment 

was (450m2). It is located in the west of Sulaimani, and area 

called Farmanday-Gshty. In order to apply the experiment, the 

area was divided into (36) equal blocks. The area of each 

block was (12m2), and a large area had been chosen to avoid 

the interaction between the pieces of the experiment units. The 

factors are (3) different levels of nitrogen (N), (4) different 

levels of phosphorus (P), and (3) different levels of potassium 

(K). We took all combinations of three outputs between them 

which are equal to (36) combinations, each combination 

consists of three levels of (N, P, and K) and was given to a 

piece of land. We had to measure the average number of 

leaves as (Y1), average height of plant as (Y2), average 

circumference as (Y3), and the average weight of sweet corn 

flower as (Y4), all per block of the plants. Each experimental 

block contained (30) plants, the response variables indicates 

the average of each experimental block, the circumference of 

each plant was taken from three different points which are 

bottom, middle and top , then taking average of them for each 

plant in the experimental block. The experience duration time 

was (60) days. The data that had been collected as described in 

previously are used to perform appropriate (MRRM), and 

analysis. (matlab v.7.0 and R v.3.2.4 were used).
 
 

 

 I-1 Hypotheses 

      (MRRM) is one of more sensitive type of regression 

because of the independency between the factors(Xi, 

i=1,2,…,k), also is a type of regression that deals with more 

than one response(r.v) as a dependent variable which are 

linearly dependents by the effect of factors affects these 

responses as a vector at once. Moreover in order to make sure 

that the (r.v’s) are linearly dependent, this hypothesis must be 

tested statistically.     

  

I-2 Objective of the study 

      The aim of this study is to diagnose and define the 

behaviors and patterns in data experiment by fitting them in a 

statistical model that is characterized by multi-response 

regression model. Also using the fitted model to determine the 

aggregate properties of the material experience (sweet corn) in 

terms of (Y1,Y2 ,Y3 ,Y4 ), and at the same time comparing the 

results of the experiment in both cases (single response, for 

each Y1,Y2 ,Y3 ,Y4 ) separately through the use of (MRM) and 

all responses together(MRRM).  

 

I-3 Statistical Technique for (MRRM) 

      When more than a response variable exists, it is not easy to 

estimate postulated models for all responses. (Leo. Breiman, 

and Jerom. H. Friedman, 1997) proposed a new technique for 

such studies that have more than one response variables 

depending on assumptions of linear modeling and its 
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hypotheses to predict multi-responses in a system of linear 

equation. 

Let (N) be the number of experimental trails and (R) be the 

number of response variables and (K) be the number of 

explanatory variables, and then assuming that the responses 

variables can be shown as polynomial regression model in the 

value of (Xj) within a certain regression 
[7], [8], [10], [13]

. 

II. THEORY: 

II-1: The response model Estimation formula:
[11], [12] 

Yi = Zi Bi + Ei                                            (1) 

Where: 

Yi is an (Nx1) vector of observation on (i
th

) response. 

Zi is an (NxPi) matrix of rank (Pi) with known function 

of standardized variables. 

Bi is a (Pi x 1) vector of unknown constant parameters. 

Eiis a random error vector associated with the (i
th

) 

response. Also we assume that: 

E(ϵi) = 0 

Var (ϵi) = δiiIN,    i = 1,2,3,…..,r 

       Cov (ϵi, ϵj) = δijIN i,j = 1,2,3,…..,r, i≠j                    (2) 

Then the (rxr) matrix whose (i , and j)𝑡ℎelement is (δij) 

will be denoted by( ∑).   

Also we can rewrite the equation (2.1) as follow: 

Ỹ = Z B + ϵ                                      (3) 

Where: 

Ỹ = (Ý1 : Ý2 : ……. : Ýr )ˊ  

B = ( Bˊ1 : Bˊ2 : …… : Bˊr )ˊ 

ϵ = ( ϵˊ1 : ϵˊ2 : …… : ϵˊr )ˊ 

Z = diag( Z1 , Z2 , ……. , Zr) 

From equation (2) we can see that (ϵ) has the variance-

Covariance matrix: 

Var-Cov (ϵ) = ∑ ⨂ IN                                           (4) 

 

Where Kronecker product is denoted by ⊗, is an operation on 

two matrices of arbitrary size resulting in a block matrix. It is 

a generalization of the outer product (which is denoted by the 

same symbol) from vectors to matrices, and gives the matrix 

of the tensor product with respect to a standard choice 

of basis. In order to get best linear unbiased estimator (BLUE) 

we should apply the following formula: 

B̂=( Zˊ∆−1Z)−1Zˊ∆−1Ỹ                                          (5) 

Var-Cov (B̂) = ( Zˊ∆−1Z)−1                                   (6) 

But (∑) must be known in both eq. (5, 6) 

If (∑) is unknown as it is usual case then the an estimate of B 

can be obtained by replacing (∑) in eq.( 6)by estimating  ∑𝑒𝑠𝑡  

provided that this estimate is non-singular , this criteria was 

proposed by Zellner(1962), and is given by   ∑𝑒𝑠𝑡=δij
est 

Where:  

δij
est 

= 𝑌𝑖
ˊ[ IN –𝑍𝑖(𝑍𝑖

ˊ𝑍𝑖)
−1𝑍𝑖

ˊ] [ IN – 𝑍𝑗(𝑍𝑗
ˊ𝑍𝑗) −1𝑍𝑗

ˊ] Yj/N , 

 i,j = 1,2,…,r                                                                  (7) 

We note that (δij
est

) is computed from the residual vector 

which resulted from an ordinary least squares fit of the 

(𝑖𝑡ℎ) and (𝑗𝑡ℎ) single response model to their respective 

data sets, using this estimate of (∑)in eq(6) we get the 

estimate :  
 

∆= ∑ ⨂ IN                                                       (8) 

Hence 

                      ∆−1= ∑−1⨂ IN                                                 (9) 

  

  Where (∆) is a kronecker product matrix which 

diagonal contains (∑), and this matrix makes the multi-

response model studies the parallel effect of all 

explanatories or all response variables, then it can be 

said that the responses act under the explanatories at the 

same time.  

 

II-2 Linear Dependency among the Responses 
[1], [4], [6]

 

Suppose that we have (m) relationships among 

responses and they are represented as: 

 

B (Yu1: Yu2: …….: Yur)ˊ= C , : u=1,2,3,…,N            (10)      

 

B is an (mxr) matrix of rank (m<r) of constant 

coefficients (Yu1: Yu2: …….: Yur) is the (𝑢𝑡ℎ) row of the 

(Nxr) data matrix (Y). 

C is an (mx1) vector of constants. 

Then eq.(10)can be shown as : 

 

B Ý = 1𝑁
ˊ ⨂ C                                  (11) 

   We can detect linear dependencies by Eigen value 

analysis. Let's suppose that rounding errors in the 

response values exists and they are distributed 

independently and uniformly over interval (-δ, δ) the 

quantity (δ) is equal to one half of the last digit reported 

when all the multi-responses values are rounded to the 

same number of significant figures. 

Let (λ) denote a small Eigen value of (DDˊ) where 

(DDˊ) is a matrix of Eigen values which would be zero 

if it were not for the rounding error. 

Where: 

D= Ý[ IN – (1𝑁1𝑁
ˊ )/N]                         (12) 

 

II-3 Test of Lack of Fit in Multi-response Regression 
[5], [9], 

 

In regression model lack-of-fit will exist when it fails to fit the 

functional relationship between the explanatory variables and 

the response variable. 

Lack-of-fit may occur when two different values of response 

variable have the same quantity of treatment, for example if 

we have a sample of size (20) or any other size using 

headache’s drug for each person in the sample due to their 

age. It will be inadequate to give drug (500 mg) to a person 

whose (10) years old and to a person whose (30) years old, 

unusually large residuals result from fitting the model might 

be occurred. That is why lack-of-fit test is required in these 

cases; also every linear or nonlinear model requires lack of fit 

test to increase the accuracy of the model under study. In 

multi-response regression model the test is similar to the test 

in single response linear regression model in addition to some 

differences in this model application. 

Let we have a multi-response model as follow: 

Y=wΓ + δ                              (13) 

Where: 

Y = [Y1 : Y2 : . . . . : Yr ]   

w= [Z1: Z2: . . . . : Zr]   
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δ = [ϵ1: ϵ2: . . . . : ϵr]   

Γ = [B1, B2, . . .,  Br ] , and let ,C = (C1 , C2 , ……. , Cr )ˊbe an 

arbitrary non zero rx1 vector. 

From equation (10) we obtain the model: 

Yc = w Ωc +ϵ c                                  (14) 

Where: 

(Yc = Yc) is a vector of (N) observations on the single 

response. 

The multi-response model in (13) is an adequate if and 

only if the single models in (14) are adequate for all (c ≠ 

0). Equivalently, if some (c = 0) model (14) is 

inadequate, then the multi-response model (13) is also 

inadequate. Since (Yc) has the multivariate normal 

distribution N (0, δ
2

cIN). 

Yc = ∑ 𝐶𝑖𝑌𝑖𝑟
𝑖=0     ,    Ωc = Γ C    ,    ϵ c = δc ,Where [ϵ c ̴ N 

(0 , δc IN)]. 

 The test of lack of fit of eq(14) can be written as : 

F(c) = Vpϵ SSLof(c) / VLofSSpϵ (c) ,where c ≠ 0           (15) 
 

SSpϵ (c) and SSLof(c) are pure, and lack of fit error (Lof) sum 

squares respectively. (Vpϵ,VLof) are degrees of freedom for 

pure and lack of fit error respectively. 

 

                SSpϵ (c) = Ý K Y                                 (16) 

SSLof(c) = Ý [IN –𝑤𝑖(𝑤𝑖
ˊ𝑤𝑖)−1𝑤𝑖

ˊ-k] Y                (17) 

Where K = diag (k1 ,k2 , ……. , kn , 0) 

K = Ivi – (1/vi) Jvi   ,      i=1,2,……,n                    (18) 

 

Where (Jvi) is the matrix of one’s of order (vi x vi) and 

(vi) is the number of observations at the (i
th

) repeat run 

side (i=1, 2 ….… n). 

The matrix of (W) in eq(17) is not necessary to be a full 

column rank , then we denote the quadratic form in both 

eq(17, 18) by (G1 and G2) respectively. 

 

G1= Ý [IN –𝑤𝑖(𝑤𝑖
ˊ𝑤𝑖)−1𝑤𝑖

ˊ-k]Y                                     (19)    

                    G2 = Ý K Y                                                (20) 

Then the test statistics of eq(15) will be rewritten as : 

F(c) = (Vpe C`G1 C) / (VLof C`G2 C)                               (21) 
 

If the model (14) is correct then F(c) has the F-

distribution with (Vlof and Vpe) degrees of freedom. A 

large value of F(c), or equivalently, a large value of 

(C`G1 C / C`G2 C) leads us to believe that eq(14) is 

inadequate and eq(13) is considered inadequate if at 

least one of the models in eq(14) is inadequate for some 

(c≠0) ,then model(13) has a significant (LOF), if Max 

(C`G1C/C`G2 C) exceeds a certain critical value. 

III. APPLICATION 

Multi-response linear regression was used to study the 

effects of (Nitrogen, Phosphorus, Potassium) in 

different levels as explanatory variables on responses 

[average number of leaves as (Y1), average height as 

(Y2), average circumference as (Y3) and the average 

weight sweet corn flower as (Y4)] of the plants at the 

same time, multi-response linear regression is different 

from the other models in technique, it can handle more 

than a single response at the same time and its output is 

a system of linear models according to the numbers of 

the response variables in the study. The data that had 

been collected as described in previous sections are used 

to perform a multiple response regression model 

analysis. (matlab v.7.0 and R v.3.2.4) were used.  

 

III-1 Multi-response linear regression algorithm: 

The procedure of Multi-response linear regression can be 

shown in following steps 

First step: standardize the explanatory and response variables. 

Second step: fitting models for each response separately. 

Third Step: calculating kronecker product (∆−𝟏) where its 

dimensions is (144x144) from eq (9). 

Fourth Step: calculating fisher matrix( Zˊ∆−1Z)−1using 

kronecker product and steps above respectively gets the 

following matrix. 
 

3.45E-05 1.67E-07 1.36E-03 3.17E-08 

( Zˊ∆−1Z)−1 

= 
1.67E-07 7.11E-09 9.48E-06 5.33E-10 

1.36E-03 9.48E-06 2.89E-01 5.65E-06 

 3.17E-08 5.33E-10 5.65E-06 7.63E-10 

 

Fifth Step: calculating (�̂�) by performing eq(13), where (�̂�)is 

the estimated parameters of the four models together. 

 

 
-0.36446 0.170529 -0.49591 1.008166 

�̂� = 
0.318848 0.613716 0.620585 0.281032 

-0.23337 0.273046 -0.80172 0.187157 

 
-0.0932 -0.06955 1.603784 -0.76545 

 

The first column of (�̂�) matrix is the estimated 

parameters of the average number of leaves in plant per 

block, the second, third and fourth columns are the 

estimated parameters of the average height plant per 

block, average circumference plant per block and 

average weight of sweet corn flower of plant per block 

respectively.   

Sixth step: Testing Significance of Explanatory 

variables by using the T-test, the (V-Cov of �̂�) is equal 

to( Zˊ∆−1Z)−1 , now it is easy to perform the test by 

dividing the (�̂�) matrix by the root square of [V-

Cov(�̂�)] as it is shown below:     

As it is obvious from the above table that the calculated 

values of (t-test) is greater than (-table) value which is 

equal to (1.36) and this leads to say there is no reason to 

accept he null hypotheses that says the parameters is 

equal to zero, all parameters (�̂�) are significant in the 

system. 

Seventh step: Identify Detection of System Models. 

This step needs to calculate Order condition, and rank 

condition which calculated as follow: 

 

 

 

 

Table (1) Summary of t-test for the significance of parameters 
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Order condition:  

Table (2): Shows the calculation of order condition of 

the system models 

 

  G K M G-1 K-M 

Model-1 4 7 4 3 3 

Model-2 4 7 4 3 3 

Model-3 4 7 4 3 3 

Model-4 4 7 4 3 3 

 

From Table (2) it is clear that the four models are identified, 

order condition is satisfied (K-M = G-1).  

 

 

 

Table (3):  The rank condition calculation of system models 

   Y1 Y2 Y3 Y4 Intercept X1 X2 X3 

Model-
1 

1 0 0 0 0.364 -3188 0.233 0.094 

Model-

2 
0 1 0 0 -0.171 

-

0.614 
-0.273 0.069 

Model-
3 

0 0 1 0 0.496 
-

0.621 
0.802 -1.60 

Model-

4 
0 0 0 1 -1.008 

-

0.281 
-0.187 0.765 

 

Since there exist at least, one sub non-singular matrix in 

the four postulated models, then the system of models is 

exactly identified. 

 

III-2 Multi-response Model Fitting, Results Summary: 

Applying the multi-response linear regression algorithm 

to carry out a system of models at the same time that is 

discussed previously after standardizing all variables 

under consideration, obtaining these estimated system 

models bellow: 

 

Ŷ1 = – 0.36446 + 0.318848 Z1 – 0.23337 Z2 – 0.0932 Z3 

Ŷ2 =0.170529+ 0.613716 Z1 +0.273046 Z2 – 0.06955 Z3    …… 

(22) 
Ŷ3= –0.4959127+0.620585Z1–0.80172Z2+ 1.603784 Z3 

Ŷ4 = 1.008166 + 0.281032 Z1 + 0.187157 Z2 – 0.76545 Z3  

 

The above models represent estimated models for 

average number of leaves per block, average height 

plant per block, average circumference plant per block 

and average yield plant per block respectively. After 

fitting the four models it is required to test each of them 

separately as comes from the estimation and testing of 

multi-response technique, for this purpose(ANOVA) 

table and coefficients of determination (R
2
) is calculated 

for each model. for the first model, testing the null 

hypothesis H0: the model is not significant. 

 

 

III-3 First model significant testing: 

 

From table (4) it is clear that the value of F-calculated is 

equal to (205.2217), this implies that there is no reason 

to accept the null hypothesis, also (R
2
) is equal to 

(0.951) which means that the average number of leaves 

in plant is changed by the amount (0.951) due to 

changing in composts (N,P, and K), so this model can 

depend on predicting the average number of leaves in 

plant. 

 

Table (4): ANOVA (first model) 

Source d.f SS M.S F-Test 

SSR 3 21098.38 7032.795 
205.2217 

SSE 32 1096.616 34.26925 

SST 35 22195  

 

 

Fig.1: Actual and estimated values of average number of leaves plant 

per block 

 

 

 

 

 

 

III-4 Second model significant testing:  
 

Table (5): ANOVA (second model) 

Source d.f SS M.S F-Test 

Models �̂� S.E of �̂� t-test value 

First 

model 

-0.36446 0.005312626 78.03 

0.318848 2.28E-05 26.29 

-0.23337 0.002505092 58.25 

-0.0932 9.95E-07 14.95 

Second 

model 

0.170529 2.28E-05 611.08 

0.613716 7.92E-05 7340.31 

0.273046 1.75E-05 3189.18 

-0.06955 3.12E-06 317.23 

Third 

model 

-0.49591 0.002505092 4.35 

0.620585 1.75E-05 3.59 

-0.80172 0.537581365 5.46 

1.603784 1.05E-05 3.63 

Fourth 

model 

1.008166 9.95E-07 39719.93 

0.281032 3.12E-06 10186.83 

0.187157 1.05E-05 6997.07 

-0.76545 2.53E-05 30251.73 

-4

-2

0

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Avrage number of leaves 

Y1 Y1 hat
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SSR 3 1241694 413898.1 
2927.936 

SSE 32 4523.575 141.3617 

SST 35 1246218  

   

From Table (5) it is clear that the value of F-calculated 

is equal to (2927.936) and F-table d.f (3,32), and level 

of sign. (0.95) is equal to (2.92) it is far smaller than F-

calculated, this implies that there is no reason to accept 

the null hypothesis that the model is not significant, also 

(R
2
)is equal to (0.9964) which means that the average 

height of plant is changed by the amount (%99.64) due 

to changes in composts. Therefore this model can 

depend on predicting the average height of plant. 

 

 
 

Fig.2:  Actual and estimated values of average height of plant per block 

 

 

 

III-5 Third model (Significant testing): 

From table (6) it is clear that the value of F-calculated is 

equal to (32563009.7), F-table (3,32,0.95) is equal to 

(2.92) is much smaller than F-calculated this implies 

that there is no reason to accept the null hypothesis, also 

(R
2
) is equal to(0.9999997) it means that the average 

circumference of plant is changed by the amount 

(%99.99997) due to changing in composts. Therefore 

this model can depended upon to predict the average 

circumference of plant. 

 

 
Table (6): ANOVA (third model) 

Source d.f SS M.S F-Test 

SSR 3 542.7598 180.9199 
32563009.7 

SSE 32 0.000178 5.56E-06 

SST 35 542.76  

  

 

 

 
 

Fig.3:Actual and estimated values of average circumference plant per block     
 

Figure (3) represents the actual and estimated values of 

average circumference plant per block, it is clear that 

from the first point to the last point the actual and the 

predicted values are rather matched approximately.  

 

III-5 Forth model (Significant testing): 

From table (7) it is clear that the value of F-calculated is 

equal to (285.9704) and F-table (3, 32, and0.95) is equal 

to (2.92) it is smaller than F-calculated, this implies that 

there is no reason to accept the null hypothesis, also 

(R
2
) is equal to(0.964) it means that the average crop of 

plant is changed by the amount (%96.4) due to changing 

in composts. Therefore this model can be depended 

upon to predict the average crop of plant. 

 

 
Table (7): ANOVA of fourth model 

Source d.f SS M.S F-Test 

SSR 3 1367497 455832.4 
285.9704 

SSE 32 51007.51 1593.985 

SST 35 1418505  

  

 

 
Figure (4): Actual and est. values of average crop weight of flower sweet corn 

/ block 

 

 III-6 Linear dependency Test among Responses: 

The value of (δre
2
 and µλ) is equal to (0.00083, 0.02905) 

respectively by using (δ=0.05), where (δre
2
)is a rounded 

error variance, (µλ)is the expected value of(µλ)is a small 

Eigen value of matrix (DD`). Then calculating the Eigen 

value and Eigen vectors of (DD`) matrix which has been 

calculated. 

-4

-2

0

2

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Average height plant 

Y2 Y2 hat

0

2

4

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Average circumference of plant  

Y3 hat Y3
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0
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Average crop weight of flower 
sweet corn 
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Table (8):  the Eigen values and Eigen vectors of (DD`) matrix 

Eigen value Eigen vectors 

1.4144 0.3752 -0.7746 -0.0710 0.5042 

2.4202 -0.8367 -0.0915 0.1834 0.5079 

5.0646 0.3895 0.4539 0.6293 0.4962 

131.1008 0.0865 0.4308 -0.7519 0.4916 

 

From the above table it is obvious there is no Eigen value of 

(DD`) matrix which falls within four to five values of (δλ) 

from (µλ), hence, no Eigen value of (DD`) may be regarded as 

zero. This indicates that no linear relationship exists among 

the four responses.  

 

III-7 Lack of Fit Test: Testing the multi-response regression 

in order to detect if the models suffer from lack of fit or not 

we should calculate lack of fit and pure error as (𝐺1,𝐺2) 

matrices respectively according to eq.( 19, 20) to test the 

hypophysis below: 

H0: The model doesn't suffer from lack of fit. 

H1: The model suffers from lack of fit. 

The matrices of ( 𝐺1),  ( 𝐺2) and (𝐺2
−1𝐺1) are showed below: 

 

 

-23.1149 -20.6098 -19.9665 -22.1829 

G1= 
-20.6098 -17.8999 -17.1215 -19.2101 

-19.9665 -17.1215 -15.2866 -18.5552 

 

-22.1829 -19.2101 -18.5552 -21.3507 

 

Where (𝐺1) is the lack of fit error which is calculated by 

performing the equation (20). 

Where (G2) is the lack of fit error which is calculated by 

performing the equations (19, 20). 

 

 

 

 

-0.36723 -0.57386 -0.74056 -0.52834 

𝐺2
−1𝐺1= 

0.026295 0.049945 -0.29956 0.201096 

-0.11951 0.056884 0.598074 -0.04324 

 

-0.50600 -0.35004 -0.30418 -0.52882 

 

Also the calculated Eigen values and Eigen vectors of (𝐺2
−1𝐺1) 

is shown in table (9) below. 

 

 
Table (9): Shows the Eigen values and eigenvectors of (𝐺2

−1𝐺1) 

Eig-values Eig-vectors 

-0.9324 0.64783828 -0.41684 0.141741 -0.60046 

0.6261 -0.1460923 -0.40645 0.686737 0.738479 

-0.1202 0.07702793 0.807697 -0.07349 -0.25327 

0.1784 0.7436594 0.093086 -0.70915 0.173044 

 
 
 

Table (10): Shows the combinations of the models test of lack of fit 

No Subset emax(𝐺2
−1𝐺1) F-Value P-Value 

1 Y1,Y2,Y3,Y4 0.6261 0.175308 0.854 

2 Y1,Y2,Y3 2.7302 0.764456 0.652 

3 Y2,Y3,Y4 1.5630 0.43764 0.423 

4 Y1,Y2,Y4 7.9853 2.235884 0.114 

5 Y1,Y3,Y4 0.6732 0.188496 0.823 

6 Y1,Y2 10.4033 2.912924 0.102 

7 Y1,Y3 4.5003 1.260084 0.22 

8 Y1,Y4 1.8600 0.5208 0.478 

9 Y2,Y3 6.3404 1.775312 0.1067 

10 Y2,Y4 9.9763 2.793364 0.1007 

11 Y3,Y4 2.4500 0.686 0.7604 

12 Y1 3.4000 0.952 0.248 

13 Y2 3.8600 1.0808 0.2835 

14 Y3 8.6523 2.422644 0.127 

15 Y4 2.4500 0.686 0.743 

 

From Table (10) it is obvious that none of the responses are 

contributing lack of fit then there is no reason to reject H0. The 

table (10) shows the lack of fit test according to the number of 

the responses in the procedure of multi response linear 

regression analysis, in the first step the four responses have 

been inputted and tested, and then the combinations of all 

three responses at once have been inputted and tested, then the 

combinations of all two responses at once have been inputted 

and tested. Finally the single response has been inputted one 

by one and tested, the matrix of (G1) and (G2) have been 

calculated in each of the fifteen steps and the results of the 

fifteen combinations model analysis tests were accepting the 

null hypothesis which means the model doesn't suffer from 

lack of significance. 

IV. RESULTS ANALYSIS 

After using multi-response regression in this study, the 

researcher introduced some conclusions due to the application 

part of the agricultural experiment. So later in the study the 

researcher added some important points as follow: 

1-Multi response regression is a pathological technique to 

carry out the production of more than one linearly dependent 

response (Multi-response) because it can produce more than 

one response parallel at the same time. 

2- The researcher concluded that from the first model which 

was for the average number of leaves in plant per block, the 

min. number of leaves in plant per block was 

approximately(17) at the time that the composts (N, P, K) 

equaled (30, 0, 0) grams respectively. The maximum is 

approximately (26) as an average per block for each plant 

corresponding to the composts skill (N, P, K) by (50, 0, 20) 

grams per plant. 

3-From the previous conclusion it is clear that nitrogen has a 

positive relationship with the average number of leaves in 

 26.41577 22.91441 22.22107 22.45285 

𝐺2 = 
22.91441 22.47612 21.29689 20.23854 

22.22107 21.29689 22.36547 19.15687 

 

22.45285 20.23854 19.15687 24.0715 
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plant per block by (0.318848). See first postulated system 

model equations (22). 

4-From the second model which was for the  average height of 

plant per block, minimum average is equal to (161.5815 cm) 

when the composts (N, P, K) equal (0, 0, 50) grams per plant 

respectively. The maximum average height is (215.624 cm) 

when (N, P, K) equal (50, 50, 0) grams. 

5-After predicting (Ŷ2 (average height of plant per block), (N, 

P, and K) and were being sorted, we found out that (N and P) 

have a positive relationship with the average height of plants 

by (0.613716, 0.273046).See the second postulated model. 

6-From the third model which is the average circumference 

plant per block, the minimum average of circumference plant 

per block is equal to (2.502 cm) when composts (N, P, K) 

equal (0, 0, 0) grams for per plant respectively. The maximum 

is (5.6123 cm) when (N, P, K) equal (50, 50, 50) grams. 

7-The composts (N, P and K) also have a positive relationship 

with the average circumference plant per block. 

8-The researcher concluded from the forth model which was 

for the average crop weight of sweet corn flower, the 

minimum weight is (183.27) grams per flower when the 

composts (N, P, K) equal (0, 0, 50) grams per plant 

respectively and the maximum is (258.8443) grams when (N, 

P, K) equal (50, 50, 0). 

9-After sorting (Ŷ4, N, P, and K) we found out that the 

composts (N and P) have a positive relationship with the 

average weight crop by (0.281032, 0.187157).See the forth 

postulated model. 

10-Both of Y2 and Y4after being compared with each other 

were minimum (N, P, K) equal (0, 0, 0) grams per plant 

respectively and maximum when (N, P, K) equal (50, 50, 0) 

grams for both. 

11-Since (∆−𝟏) is a function of (V-COV) matrix of residuals 

then one can say that (∆−𝟏) is a solution to remove auto-

correlation problem if it exists in the system or in other word 

(∆−𝟏) is similar to (GLS) method. 

12-Multi-response regression have the best performance when 

it is compared with a single response multiple regression 

model because the single model is unable to study the parallel 

multi-response in the model so it is not able to study the side-

effects of the reflections for explanatory. At the same time the 

multi-response regression model is able to detect all patterns 

(good or bad), (positive or negative) effects after the 

experimental data under consideration.  

13- As the researcher’s suggestion, the results of this study can 

be tried to expand into another (system of linear 

programming), and optimizing these products, by solving the 

linear system using simplex method of solution.  
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