
JUHD / Vol. 3, No.1, March 2017: pp 274-281

DOI: 10.21928/juhd.20170315.13, e-ISSN: 2411-7757, p-ISSN 2411-7765

Abstract— We have proposed in this research the design of a

new protocol named VMSI coherence protocol in the cache in

order to solve the problem of coherence which is the

incompatibility of data between caches that appeared in recent

multiprocessors system through the operations of reading and

writing. The main purpose of this protocol is to increase

processor efficiency by reducing traffic between processor and

memory that have been achieved through the removal of the

write back to the main memory in the case of reading or writing

of shared caches because it depends on existing directory inside

that cache which contains all the data that represents a subset of

main memory.

Index Terms— Cache coherence problem, snooping protocol,

Directory-Based cache Protocols, VMSI, Cache Simulator,

Shared memory, Multi processor, Dev. C++.

I. INTRODUCTION

hared memory is the hardware part that supported by

many modern computer systems and multi core chips.

Each of the processor cores in a shared memory system may

read and write a single address space [1]. But in designing

shared system, one of the most important problems appears

which is called coherence problem. The coherence problem

results when the caches are laid in recent computers between

processor and main memory to solve the contention problem

as trying to access a shared memory at the same time which

then causes performance degradation[2].

Consistency and validation of the data value are maintained in

the caches of a multi core processor such that reading a

memory location through any caches will return the most

recent data written to that location via any caches through

cache coherence protocol that are classified to snoopy

protocols or directory based protocols. Coherence is typically

implemented within these protocols, but both methods have a

drawback: Snooping protocols are not scalable because of the

shared bus, while directory protocols incur directory storage

overhead, frequent indirections, and are more prone to design

bugs [3].

Asst. Proff. Dr. Luma Fayeq Jalil , Department of Information

Technology, university of human development, college of science and

technology /sulemani, luma.jalil@uhd.edu.iq ,

Asst. Proff. Dr. Maha Abdul kareem .H. Al-Rawi , Department of
Computer Sciences, University of Technology/Baghdad,

maha_alrawi@yahoo.com,

 Head of programmers oldest Abeer Diaa Al-Nakshabandi, Distribution
office At Ministry of Electricity/Baghdad, abeerdiaaphd@gmail.com

II. THE REQUIREMENTS OF MEMORY HIERARCHY

DESIGNE

The basic idea to overcome the problem of increasing the

gap between a fast CPU and a slow RAM is in using a

hierarchy of memories: each level speedier, more expensive

and smaller, the closer it is to CPU, to feed the CPU with the

required data. The following steps are needed in designing a

hierarchy of memory [4, 5]:-

A. CACHE ASSOCITIVITY

Where Can a Block Be Placed in a Cache?, Just as

bookshelves come in different shapes and sizes, caches can

also take on a variety of forms and capacities. But no matter

how large or small they are, caches fall into one of three

categories: direct mapped, n-way set associative, and fully

associative.

Direct mapped: A cache block can only go in one location

in the cache. It makes a cache block very easy to find, but it's

not very flexible about where to put the blocks. The mapping

equals to (Block address) MOD (Number of blocks in cache),

two types of association: the cache is a fully associative is if a

block can be placed anywhere in the cache. The cache is set

associative if a block can be placed in a restricted set of places

in the cache.

A set is a collection of blocks in the cache. A block is first

mapped onto a set, and then the block can be placed anywhere

within that set. The set is usually chosen by bit selection =

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the placement of the cache is

called n-way set associative.

Each of these methods depends on the facts:

2^nMemory locations are grouped into blocks where n is the

number of bits used to identify a word within a block and are

found at the least significant end of the physical address. The

cache is organized into:

1. Index: specifies the cache index (which “row” of the

cache we should look in)

2. Offset: specifies which byte within the block we want.

3. Tag: the remaining bits after offset and index are

determined; these are used to distinguish between all the

memory addresses that map to the same location

4. Block Address: Tag + Index

Figure 1 illustrates how mapping is done depending on tag,

index and offset that will be gained from a binary

Cache coherence protocol design using VMSI

(Valid Modified Shared Invalid) states

 Asst. Prof. Dr. Luma Fayeq Jalil , Asst. Prof. Dr. Maha Abdul kareem .H. Al-Rawi , Abeer Diaa

Al-Nakshabandi

S

472

mailto:luma.jalil@uhd.edu.iq
mailto:maha_alrawi@yahoo.com

Cache coherence protocol design using VMSI ... Dr. Luma Fayeq Jalil , Dr. Maha Abdul kareem …

representation of a memory address.

B. REPLACING POLOCIES [6]

Once the cache has been filled, when a new block is

brought into the cache, one of the existing blocks must be

replaced. The replacing policy depends upon the type of

cache.

For direct mapping there is only one possible line for any

particular block, and no need for replacement algorithm.

For fully associative and set-associative caches a

replacement algorithm is needed because the block may go in

several positions (at different indexes), and, as a result, there

are different possibilities to choose a block that will be

replaced. The most used policies for replacement are:

a) Random: this technique is very simple; one block is

selected at random and replaced.

b) LRU (Least Recently Used): in this approach accesses to

the cache are recorded; the block that will be replaced is the

one that has been unused (un accessed) for the longest

period of time.

c) Least Frequently Used - replace block which has had

fewest hits

d) FIFO (First In First Out): Replace that block in the set

that has been in the cache longest.

 FIFO is easily implemented as a round-robin or circular

buffer technique.

C. WRITE POLICIES5

The coherence is maintained among all the caches and

global memory through four groups that are [2]:

Write-update and write-through;

Write-update and write-back;

Write-invalidate and write-through; and

Write-invalidate and write-back.

Caching data which is only to be read is easy, since the

copy in the cache and memory will be equivalent. Writing in

cache is more difficult because the copy in the cache and

memory must be kept consistent. How ? There are two main

strategies.

Write through: ensuring that main memory is always valid

by do the following: all write operations are made to main

memory as well as to the cache, .

Write back: A cache memory write isn't directly written into

main memory unless another cache needs that cache line. The

most common write-back protocol is MESI, and will be

discussed next [7].

The Difference between Write Update and Write invalidate

is that when one processor issues write operation Invalidate

protocol modifies the copy of cache and invalidates all other

copies of that data block. In case of update protocol it will not

only write on that processor’s cache which is trying to update

but also will forward this change to other existing copies[6].

III. CLASSES OF CACHE COHERENCE PROTOCOL

Two cache coherence protocols hardware based are used,

snoopy protocols and directory based protocols [3, 8].

a) The technique of bus snooping relies on the property that

on such systems all memory accesses are performed via the

central bus, i.e., the bus is used as broadcast medium. Thus, all

memory accesses can be observed by the cache controllers of

all processors. When the cache controller observes a write into

a memory location that is currently held in the local cache, it

updates the value in the cache by copying the new value from

the bus into the cache. Thus, the local caches always contain

the most recently written values of memory locations [9].

b) Directory Based Protocols Here the locations of all

cached copies of every block of shared data must be taken into

account and store those copies carefully in these cache

locations, and those locations can be centralized or distributed

and are called a directories. There is a directory entry that

contains a number of pointers for each block of data. This

number is to mention the locations of block copies [10].

IV. MESI WRITE-BACK INVALIDATION PROTOCOL

MESI (Modified-Exclusive-Shared-Invalid) stands for the

state of each cache line at any time. It is based upon the data

ownership model, where only one cache can have dirty

(modify) data. When data is written, the cache of modifying

line informs other caches of the fact; the data is not

transmitted by itself. A cache line in each cache can be in one

of the following states as in figure (2): [7,11, 12, 13, 14, 15]:-

Modified: one processor (owner) has data, but it is dirty;

must respond to any read/write request

Exclusive: one processor has data and it is clean; no need to

inform others about further changes

Shared: cached in more than one processor and memory is

up-to-date

Invalid: The block has been invalidated (possibly on the

request of someone else).”

Fig. 1: Cache Example with 1,024 blocks of 4 bytes

each, And 32-bit memory addresses

472

JUHD / Vol. 3, No.1, March 2017: pp 274-281

DOI: 10.21928/juhd.20170315.13, e-ISSN: 2411-7757, p-ISSN 2411-7765

V. METHODOLOGY, PREPROCESSING STEPS

In order to implement the proposed protocol there are

several steps that must be completed which are:

Initially the following parameters must be determined

before using the proposed protocol:-

size of a main memory, cache memory capacity, cache line

size, associativity, replacement policy, number of words per

memory access, number of cache levels, number of processors

in level1, location of a directory. After definition of these

parameters, the address of a main memory is converted to a

binary number by using conversion function, then other

function is used to gain tag, index and offset from a binary

addresses to be use in a simulation of caches generally. All

these steps are illustrated in figure 3.

VI. SIMULATION PROCESS

After preprocessing steps, a check functions are called to get

the location of an input address and the processor job and the

processor type and then tag, index and offset are obtained for

used in simulation each address of a specific input program

which has been clarified by Figure 4.

Fig.2: MESI cache coherence protocol

state diagram [16]

Start

1
Determine parameters such as the size of a main memory, i.e. ,

from 0 up to 127, cache capacity, …… etc

2Use function for convert decimal addresses to binary address

3 Use function to calculate tag & index& offset From binary number

4

 Simulate caches as a subset of a main memory to two level depending

 on index and tag and offset of all addresses probability using a direct mapped method

All levels of caches lie in a temporary position before beginning execution of a sample program

5
Simulate 4 caches in level1 that contain 4 tag (2-bit), 8 index (3-bit), 4 offset (2-bit)

From 7-bit of main memory address (128 byte)

*

7

Construct directory in cache Level2 without tag that contain

32 index (5-bit), 4 offset (2-bit) which will be shared among all

caches in L1 This directory used as a tracker of

Shared caches and contains

Fig. 3: preprocessing of the proposed protocol

Fig. 3: preprocessing of the proposed protocol

9
Use a function to calculate tag & index & offset from a binary

number to be used in a simulation process of the caches

*

If there exists Addresses

 that Have Same

 index of different tag

yes

1
2

Evict existance address to the main memory

No

1
1

Construct a cache line in level1 cache according to incoming address

Using a direct mapped function if that line is not found in all of the caches

Continue addresses

1
4

Update data and state of directory

Yes

1
6

Calculate final hit ratio & miss ratio

Hit all = Hit in Level1 + Hit in Level2

Hit ratio=(total hit/total address) * 100

Miss ratio = 100 – hit ratio

End

NO

9

Use a function for checking processor job (read or write) &

Processor type (p1 or p2 or p3 or p4)

& processor addresses of incoming instruction

9Use a function for converting a decimal address to binary address

1
4

Check state of incoming address according to proposed protocol

9
 check a sample program starting from The first

serial no of a program continue until The last serial number

Fig. 4: Simulation process using a direct mapped method

472

Cache coherence protocol design using VMSI ... Dr. Luma Fayeq Jalil , Dr. Maha Abdul kareem …

VII. VMSI CACHE COHERENCE PROTOCOL

1) VMSI levels: The proposed project deals with a multi core

processor that has two cache levels:

-The first level is private Level1 and supposes this level has

four cores.

-The second Level is shared global Level2 cache that contain a

directory as a central share point to the four core in cache

Level1

2) Cache Organization using a Direct Mapped method

At the beginning work in this research, the four caches in level

1 and the cache in level 2 are simulated by using a direct

mapped method take advantage of spatial locality as follow:-

Suppose memory address = 128[7-bit to represent main

memory address].

The cache in level1, 2-bit to represent tag [tag = 4], 3-bit to

represent index [cache = 8 block], 2-bit to represent offset

[block = 4 byte], The shared cache in level2 5-bit to represent

index [cache = 32 block], 2-bit to represent offset [block = 4

byte]. The shared cache in level2 has not a tag and all the

addresses of a main memory are subset to that cache in order

to reduce write back that present in MESI cache coherence

protocol.

VMSI state: In this protocol each cache line has one of the

four states as follow: Valid (Read at any time/Write at first

time that occur exclusively). The cache line is present only in

the current cache and appears at the first time of writhing,

when the writing repeated locally it goes to the modified

state. The cache line writes to the directory inside cache level

2 and writes through to the main memory only in the case of

replacement between different tags of the same index at level1

cache to prevent losing address. Also the read request enters

this state and become exclusively that will be isolated from

modified state.

Modified (Write only – previously write that occur

exclusively). It is similar to modified state in MESI protocol

but the different that the Processor Read - Read request from

processor does not occur in this state. When the processor

request read the state translate to the valid state. Also when

invalidate this state or shared this state in case of a remote

write or remote read, there is not needed to a write back to the

main memory.

Shared marks that this cache line may be stored in other

caches and is clean; it matches the directory in cache level2.

The line may be changed to the Invalid state at any time.

Invalid marks that this cache line is not valid (unused), i.e. no

processor has it.

3) VMSI Transition State Diagram

This protocol as shown in figure 5 has been use bus snooping

protocol that appear when each state translate to other state,

the abbreviation symbols of these buses are written as follow:

Bus transaction:

Invalidate = Broadcast Invalidate, Events:

RH = Read Hit, RMS = Read Miss, Shared , RME = Read

Miss, Exclusive, WH = Write Hit, WM = Write Miss,

WME = Write Miss, Exclusive, SHR = Snoop Hit on Read,

SHI = Snoop Hit on Invalidate. In VMSI protocol we put the

shared directory of the type full map in the cache level2 which

represent as dependent central point to caches at level 1 and

also put a simple directory in the memory that will be used

only in the case of eviction tag from cache level1 in order to

be as a tracker for eviction tag and prevent data of these tag to

become lost.

VIII. THE EXPERIMENT RESULT USING DEV C++

LANGUAG

A. BINARY REPRESENTATION

Binary representation is one of a necessary preprocessing

step that it is used to gain tag and index and offset of each

decimal input address so as to facilitate the work of a

mapping. Table (1), list 32 decimal addresses are entered in

order to simulate caches at level1 and level2..

B. Cache simulation

The caches are simulated by using a direct mapped method

to an input addresses that listed in Table (1) , and shown

through Tables (2–4). From table (2) that shown the

simulation of cache at level1: The hit and miss ratios at level1

of caches that are calculated on the previous set of addresses

entered are as follow:-

Total Hit in cache level1=15 Total Address=32

Hit Ratio of cache level1 (total Hit/total Address) * 100 =

46.875%. Table (3) contain the eviction of a cache line that

occur at simulation of cache in level1. From table (4)that

shown the simulation of cache at level2: The hit and miss

ratios at shared cache in level2 that are calculated on the

previous set of addresses entered are as follow:-

Total Hit in cache level2 =20 Total Address=32, Hit Ratio

of cache level2 (total Hit/total Address) * 100 = 62.5%

In simulation cache at level2 there is no need to for eviction

line of the cache.

We noted from previous results that whenever we increase

the size of cache memory, it is more likely the presence of

addresses and thus increasing the value of hit ratio.

477

JUHD / Vol. 3, No.1, March 2017: pp 274-281

DOI: 10.21928/juhd.20170315.13, e-ISSN: 2411-7757, p-ISSN 2411-7765

Fig. 5: VMSI cache coherence protocol state diagram.

472

Cache coherence protocol design using VMSI ... Dr. Luma Fayeq Jalil , Dr. Maha Abdul kareem …

TABLE 1

 Binary representation within tag and index and offset of an input

addresses.

The representation of an

input addresses

cache at level1

Shared cache at

level2

Seq

Deci
mal

Num

ber

Binary

number

Tag

In

de

x

Of

fs

et

Ta

g

In

de

x

Offse

t

0 44 0101100 1 3 0 0 11 0

1 0 0000000 0 0 0 0 0 0

2 1 0000001 0 0 1 0 0 1

3 4 0000100 0 1 0 0 1 0

4 5 0000101 0 1 1 0 1 1

5 8 0001000 0 2 0 0 2 0

6 22 0010110 0 5 2 0 5 2

7 12 0001100 0 3 0 0 3 0

8 2 0000010 0 0 2 0 0 2

9 16 0010000 0 4 0 0 4 0

10 39 010011
1

1 1 3 0 9 3

11 18 001001

0

0 4 2 0 4 2

12 20 0010100 0 5 0 0 5 0

13 23 0010111 0 5 3 0 5 3

14 33 01000

01

1 0 1 0 8 1

15 25 001100
1

0 6 1 0 6 1

16 26 001101

0

0 6 2 0 6 2

17 27 001101
1

0 6 3 0 6 3

18 30 001111

0

0 7 2 0 7 2

19 31 001111
1

0 7 3 0 7 3

20 0 000000

0

0 0 0 0 0 0

21 1 000000
1

0 0 1 0 0 1

22 2 000001

0

0 0 2 0 0 2

23 45 010110
1

1 3 1 0 11 1

24 4 000010

0

0 1 0 0 1 0

25 5 000010
1

0 1 1 0 1 1

26 43 010101

1

1 2 3 0 10 3

27 7 000011
1

0 1 3 0 1 3

28 8 000100

0

0 2 0 0 2 0

29 9 000100
1

0 2 1 0 2 1

30 33 010000

1

1 0 1 0 8 1

31 11 000101
1

0 2 3 0 2 3

TABLE 2
Cache Simulation at level1 using direct mapping method

of an input addresses that listed in table (A.1)

Simulation of caches in level1

index

Offset

0 1 2 3

0 32 33 34 35

1 4 5 6 7

2 8 9 10 11

3 44 45 46 47

4 16 17 18 19

5 20 21 22 23

6 24 25 26 27

7 28 29 30 31

TABLE 3

The eviction of a cache lines from level1 cache

The evicted cache lines from level1

inde

x

Offset

0 1 2 3

0 0 1 2 3

1 36 3

7

3

8

39

2 40 4
1

4
2

43

3 12 1

3

1

4

15

TABLE 4

Cache Simulation at level2 using direct mapping method of
an input addresses that listed in table 1.

Simulation of shared caches in

level2

index

Offset

0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

3 12 13 14 15

4 16 17 18 19

5 20 21 22 23

6 24 25 26 27

7 28 29 30 31

8 32 33 34 35

9 36 37 38 39

10 40 41 42 43

11 44 45 46 47

472

JUHD / Vol. 3, No.1, March 2017: pp 274-281

DOI: 10.21928/juhd.20170315.13, e-ISSN: 2411-7757, p-ISSN 2411-7765

TABLE 5

 The results of the implementation of the proposed protocol on the sample program

Processor

Job

Mi

ss

Hi

t

Line value

Cache

State

Cache

Line

Program instructions

Seq

write miss 1 0 0 0 0 10 I II V 0 1 2 3 P1 writes 10 to B1 1

read miss 1 0 0 0 0 10 I II S 0 1 2 3 P2 reads B1 2

write hit 2 1 0 0 0 20 I II M 0 1 2 3 P2 writes 20 to B1 3

write miss 3 1 0 40 0 0 I V I I 44 45 46 47 P2 writes 40 to B2 4

read miss 4 1 0 0 0 20 I II S 0 1 2 3 P1 reads B1 5

write hit 4 2 0 0 0 30 I II M 0 1 2 3 P1 writes 30 to B1 6

write miss 5 2 0 0 0 77 I II V 0 1 2 3 P3 writes 77 to B1 7

write miss 6 2 0 0 0 50 I II V 0 1 2 3 P2 writes 50 to B1 8

read miss 7 2 0 0 0 50 I II S 0 1 2 3 P1 reads B1 9

read hit 7 3 0 40 0 0 I V I I 44 45 46 47 P2 reads B2 10

read miss 8 3 0 40 0 0 I S I I 44 45 46 47 P3 reads B2 11

write miss 9 3 0 70 0 0 I V I I 44 45 46 47 P1 writes 70 to B2 12

write miss 10 3 0 0 0 88 I II V 0 1 2 3 P3 writes 88 to B1 13

read miss 11 3 0 0 0 88 I II S 0 1 2 3 P2 reads B1 14

read miss 12 3 0 0 0 88 I II S 0 1 2 3 P4 reads B1 15

write miss 13 3 0 93 0 0 I V I I 44 45 46 47 P4 writes 93 to B2 16

read miss 14 3 0 93 0 0 I S I I 44 45 46 47 P3 reads B2 17

read miss 15 3 0 93 0 0 I S I I 44 45 46 47 P2 reads B2 18

read miss 16 3 0 93 0 0 I S I I 44 45 46 47 P1 reads B2 19

write hit 16 4 0 11 0 0 I M I I 44 45 46 47 P4 writes 11 to B2 20

422

Cache coherence protocol design using VMSI ... Dr. Luma Fayeq Jalil , Dr. Maha Abdul kareem …

C. VMSI cache coherence protocol on a sample of a program

From Table (1), addresses are converted to binary addresses

by using binary conversion function and then hit and miss

ratio is calculated on them. But now it will be use VMSI cache

coherence Protocol that applies on a sample program example.

The sample program and results of a proposed protocol on this

example are listed in Table (5). In this table we suppose that

the address of B1=3 and the address of B2=45 and initially all

states of these addresses are Invalid and the initial value of

these addresses in main memory are zero. The names of sharer

cores from table(5) are:

At steps 2,5,9 the sharers are: P1 & P2and at steps 11,14 the

sharers are: P2 & P3, At step 15,18 the sharers are: P2& P3 &

P4and at step 17 the sharers are: P3 & P4

At step19 the sharers are: P1 & P2 & P3 & P4

The cache performance from table (5) is calculated by

evaluated:

Hit = 4, miss = 16Hit ratio = (Hit / total address) * 100 = (4

/ 20) * 100 = 20

Miss ratio = 100 – hit ratio = 100 – 20 = 80.

D. RESULT AND DISCUSSION

The main difference between MESI and a proposed

protocol is that the VMSI method enters main memory in only

one case; in the case when cache block replaced with other

block of different tag that will be lie in the same cache line in

order to maintain the data from losing. As a result the

efficiency is increased by reducing a gap between a fast CPU

and a slow main memory.

in MESI cache coherence Protocols the directory that keep

track of shared data is located in main memory but in a

proposed protocol two directory : one in cache level2 that will

be act as the directory in memory of MESI protocol and other

in memory of only an eviction action.

The data is saved in the directory of cache level 2 instead of

main memory in the case of write through and write back. So

the disadvantage of a write through and a write back have

been reduced, the main disadvantages of write through -every

write needs a main memory access as a result increasing

memory bandwidth, and the disadvantages of write back -

main memory isn't always proportionate with cache and reads

that result in replacement may lead writes of dirty blocks to

main memory. Only the write request enter modified state in a

proposed protocol that the addresses is found, when the write

request at a first time then it enters V state, also a read request

enter V state also.

In comparisons between MESI & VMSI cache coherence

protocol using a previous sample program in table3 is that by

applying MESI cache coherence protocol, the number of a

write back that will be occur is eight. Whereas when VMSI

method was used only directory in shared cache is reached and

the main memory has not been accessed. The advantage is to

reduce access to the main memory, thereby increasing the

efficiency of the processor.

IX CONCLUSION AND FUTURE WORK

In this paper we propose a new protocol called VMSI that it

is used to achieve cache coherency. The cache coherence

protocol is one of the major factors influencing the

performance of multi-core computer systems. The coherence

protocol must be selected based on the chip architecture and

the performance that the system wants to achieve. VMSI

protocol is an extension for MESI protocol, which minimizes

a write back to main memory by placing a write state that

initially write in a valid state.

In future work we tried to increase the level of caches such

that we are using three levels instead of two. Also we increase

the number of caches in level1 and increase associativity and

also we try to modify one of the states.

REFERENCES

[1] J. SORIN DANIEL & D. HILL MARK & A. WOOD DAVID, "A PRIMER ON

MEMORY CONSISTENCY AND CACHE COHERENCE", A PUBLICATION IN THE

MORGAN & CLAYPOOL PUBLISHERS SERIES, 2011, PAGE 1.
[2] EL-REWINI HESHAM & ABD-EL-BARR MOSTAFA, "ADVANCED

COMPUTER ARCHITECTURE AND PARALLEL PROCESSING ",

PUBLISHED BY JOHN WILEY & SONS, INC., HOBOKEN, NEW JERSEY.
PUBLISHED SIMULTANEOUSLY IN CANADA, 2005, PAGES 13, 92, 114, 98.

[3] RAUBER THOMAS &R¨UNGER GUDULA, "PARALLEL PROGRAMMING FOR

MULTI CORE AND CLUSTER SYSTEMS ", PUBLISHED IN THE SPRINGER

HEIDELBERG DORDRECHT LONDON NEW YORK, , 2007, PAGES 31, 91.

[4] A. PATTERSON DAVID& L. HENNESSY JOHN, "COMPUTER ARCHITECTURE

A QUANTITATIVE APPROACH ",MORGAN KAUFMANN IS AN IMPRINT OF

ELSEVIER, 2012.

[5] HWANG KAI & A. BRIGGS FAYE, "COMPUTER ARCHITECTURE AND

PARALLEL PROCESSING", COPYRIGHT BY MCGRAW-HILL, INC. IN NEW YORK

ST. LOUIS SAN FRANCISCO, LONDON, PARIS, 1985.

[6] STALLING WILLIAM, "COMPUTER ORGANIZATION AND ARCHITECTURE

DESIGNING FOR PERFORMANCE ", PRINTED IN THE UNITED STATES OF

AMERICA BY PEARSON EDUCATION, INC., UPPER SADDLE RIVER, NEW

JERSEY, 2010, 07458.

[7] MOYER BRYON, "REAL WORLD MULTI CORE EMBEDDED SYSTEMS",
NEWNES IS AN IMPRINT OF ELSEVIER, UNITED STATES OF AMERICA, 2013.

[8] TIWARI ANOOP, " PERFORMANCE COMPARISON OF CACHE COHERENCE

PROTOCOL ON MULTI-CORE ARCHITECTURE", DEPARTMENT OF COMPUTER

SCIENCE AND ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA ROURKELA, ODISHA, 769008, INDIA,2014.

[9]A. PATTERSON DAVID & L. HENNESSY JOHN, "COMPUTER ORGANIZATION

AND DESIGN THE HARDWARE / SOFTWARE INTERFACE ", ELSEVIER INC., 2005.

 [10]AL-HOTHALI SAMAHER, SOOMRO SAFEEULLAH, ET.AL.," SNOOPY AND

DIRECTORY BASED CACHE COHERENCE PROTOCOLS: A CRITICAL ANALYSIS"

,JOURNAL OF INFORMATION & COMMUNICATION TECHNOLOGY VOL. 4, NO. 1,

(SPRING 2010) 01-10.

[11]G. MAYER HERBERT," MESI PROTOCOL FOR MP CACHE COHERENCE",
PSU CS STATUS ,2012

[12] SAPARON AZILAH, AND BT RAZLAN FATIN NAJIHAH, " CACHE

COHERENCE PROTOCOLS IN MULTI-PROCESSOR", INTERNATIONAL

CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS DUBAI

(UAE), (ICSIS’2014) (ICSIS’2014),OCT 17-18, 2014
[13] HANDY JIM, "THE CACHE MEMORY BOOK – 2ND ED.", ACADEMIC PRESS

SAN DIEGO NEW YORK BOSTON LONDON SYDNEY TOKYO TORONTO, 1998.

 [14] JACOB BRUCE, W. NG SPENCER, T. WANG DAVID, "MEMORY SYSTEM

CACHE, DRAM, DISK ",MORGAN KAUFMAN PUBLISHERS IS AN IMPRINT OF

ELSEVIER, 2008.

[15] KUBIATOWICZ JOHN, "3+1 CS OF CACHING AND MANY WAYS CACHE

OPTIMIZATIONS" , CS252-S07, LECTURE 15 -ELECTRICAL ENGINEERING AND

COMPUTER SCIENCES UNIVERSITY OF CALIFORNIA, BERKELEY,2007.

 [16] MULLINS ROBERT," CHIP MULTIPROCESSORS (ACS MPHIL)",
UNIVERSITY OF CAMBRIDGE COMPUTER LABORATORY", 2011.

422

