
JUHD / Vol. 3, No.1, March 2017: pp 282- 287

DOI: 10.21928/juhd.20170315.14, e-ISSN: 2411-7757, p-ISSN 2411-7765



Abstract— SQL injection (SQLI) is a major type of attack that

threatens the integrity, confidentiality and authenticity or

functionality of any database driven web application. It allows the

attacker to gain unauthorized access to the back-end database by

exploiting the vulnerabilities within the system in order to commit

an attack and access resources. Database Intrusion Detection

System (DIDS) is the defense against SQLI that is used as a

detection and prevention technique to protect any database driven

web application. In this paper a proposed system is presented to

protect the web application from SQLI. This proposed system uses a

new technique of signature- based detection. It depends on secure

hash algorithm (SHA-1), which is used to check the signature for

the submitted queries and to decide whether these queries are valid,

or not. The proposed system can distinguish and prevent hacking

attempts by detecting the attacker, blocking his/her request, and

preventing him/her from accessing the web application again. The

proposed system was tested using Sqlmapproject attacking tool.

Sqlmapproject was used to attack the web application (built using

PHP and MySQL server) before and after protection. The results

show that the proposed system works correctly and it can protect

the web application system with good performance and high

efficiency.

Keywords— SQL injection, Web application, Database Intrusion

Detection System, Hash function, Sqlmapproject.

I. INTRODUCTION

NTERNET, an environment for the world that offer the

ability to communicate at an easy manner, with all of the

glory… the internet is bless and curse at the same time, two

faces of the same coin. Web applications are used as a

revolutionary solution for communication by any organization

or company that represents smooth accessibility to users and

clients over the world via the internet. Web applications

correspond to user's input by interacting with the database

behind it and output pertinent data for the user. Confidential

and critical information usually conserved in the back-end

database such as financial records or medical information

which are considered to be sensitive data that are desired by

attackers. [1].

The SQLIA (structured query language injection attack) can

be formed by inserting or "injection" a SQL query by

inputting data from the client to the web application at the

back-end database. It take advantages of the vulnerability

within the system‟s security policy to manage an effective

SQL injection attack that can gain unauthorized access by

granting administrative privileges and misleading the SQL

query logically to execute commands that deviate from the

programmer's original intent and serve the attacker‟s

objective to accessing and reading sensitive data from the

database, modify database data by inserting updating or

deleting table records, like having a chance to practice

administrative functionalities on the database such as locking

down the DBMS or claiming the right to see the content of a

given file existing on the DBMS file system or in extreme

cases commanding the operating system. In another situation

SQL injection can constitute and change the outcome of

predefined SQL commands execution. [2].

Many approaches exist for a user to input data into a web

application, so performing a poor input validation creates the

vulnerability that offers a chance for committing SQLI attack

and creating a passage to the back-end database without

proper authorization which defiantly leads to the loss of

secrecy (confidentiality) and integrity of the system and

finally negatively altering the market value of the organization

[3].

An SQL injection attack occurs when an attacker causes the

web application to generate SQL queries that are functionally

different from what the user interface programmer intended.

For example, from the following SQL statement

SELECT * FROM `users` WHERE username =

username and password = password

The user will input his/her legitimate login information to

both fields (username and password) and the input data will

go through authentication process to validate the login attempt

by fetching relative SQL query to a table called users.

 The query will be sent to the database to be executed.

The values of both username and password are provided from

input by the user. Suppose the valid input is:

User = admin

Online Database Intrusion Detection System

Based on Query Signatures

Alaa Khalil Jumaa
Technical College of

Informatics

Sulaimani Polytechnic

University

alaa.alhadithy@spu.edu.iq

 Awezan Aso Omar
College of Commerce

 University of Sulaimani

 Kurdistan Region of Iraq, Iraq

 Awezan_aso@yahoo.com

I

282

mailto:alaa.alhadithy@spu.edu.iq

Online Database Intrusion Detection System Based on Query Signatures Alaa K. Jumaa et al.

Password=123

The query will be translated as:

Query="SELECT * FROM `users` WHERE username

= ’admin’ and password = ’123’

If this couple of values are to be found in the table users the

query will be evaluated as true and the user will be

authenticated. But what an attacker would do is by using

SQLIA he/she will be able to trick the query logically to

execute a command that differ from what is originally

intended by the original programmer.

If the attacker use the following user data as an input to the

web application:

Username= admin

Password= anything' OR '1' = '1

The query will be manipulated to

SELECT * FROM `users` WHERE username=’admin’

and password=’ anything' OR '1' = '1’

This is a tautology type of injection that will trick the

system by submitting a query that evaluates to true for every

row on the table (anything' OR '1' = '1) and the attacker will be

granted access rights as an authenticated user [4].

 Another sort of attack is piggy backed attack that injects a

second malicious query for execution, now assume an

unauthorized user will input (anything) as a username and (';

drop table xyz --) as password in the login form the output

query would be:

SELECT * FROM `users` WHERE username=’admin’

and password=’ '; drop table info --’

The first query will not return any rows and then the query

delimiter (";") will be recognized and executed by the

underlying database hence deleting the table info from the

system. Sometimes a malicious user go even further in his/her

attack for example shutting down the DBMS by inserting

';SHUTDOWN; -- into the Username or Password fields then

it will produce the following query that result in shutting

down the database[5] :

Query="SELECT * FROM `users` WHERE username

=’admin’ and password = ''; SHUTDOWN; --’

According to the open web application security project

(OWASP) ranked SQLI as first of top ten list at 2010,

regarding the ease of exploitability and severity of impact.

II. PROBLEM STATEMENT

Database security has been a dialectical issue for many

years; behind any web application there is a core database that

stores valuable and sensitive information that is presumed to

be potential targets for hackers that are trying to intrude their

way into gaining financial benefit or espionage or other

reasons.

 The most dangerous attack technique to be considered is

SQL injection. The protection of database from SQLIA may

seem like an easy treat, by simply using firewall and applying

some input sanitization and restriction techniques with the use

of static queries, SQLIA is avoidable. But this strategy fails to

accomplish security measures as hackers are always inventing

new attack methods that outsmart the system‟s security policy.

 DIDS are presented to protect database systems from

SQLIA. Though there are many types and methods which

have been presented by researchers but a perfect DIDS does

not exist yet. This paper offers a new proven technique to

apply database intrusion detection system by using signature

based method detection and secures hash algorithm SHA-1 to

protect databases from SQL injection attack.

III. RELATED WORK

In order to detect and prevent SQL injection attack many

researchers had developed a verity of methods over time,

since the first public discussions of SQL injection started

around 1998[6].

Chung et al. proposed a misuse detection system called

(DEMIDS) which was meant for relational database systems

[7].

Lee et al. took advantage of real time data to serve intrusion

detection. Data objects were flagged with time-stamps that

drew assumptions about update rates that are unknown to

intruders [8].

Low et al presented (DIDAFT) that can detect anomalous

accesses to the database. This approach distinguishes

legitimate access by finger printing their constituent SQL

statement [9].

Sharma et al. proposed DIDAR also signature based

detection but in real time along with damage control and an

auto recovery feature; they built a model for authorized quires

for every user derived from currently executing query

transactions and later use that model to detect the illegal

transactions [10].

 Kemalis et al endowed a prototype called (SQL-IDS). This

approach employs a specification that defines the intended

syntactic structure of SQL queries that are produced and

executed by the web application and at the same time observes

the applications for an execution of query that deviates from

the specifications [11].

Then, Randhe et al proposed that a reverse proxy is

deployed between the client and the server, it sanitizes

applications by using data cleaning algorithm and message

digest algorithm, using this method enables the detection of

both SQLI and CSS attacks [12].

Ali et al. built a prototype (SQLIPA) which is a simple

approach yet a strong one to block SQL injection attacks

concentrating on the authentication of web driven database.

They calculated a hash value of all username and passwords

of the system to improve the authentication process [13].

Hidhaya et al proposed a method using a Reverse proxy and

MD5 algorithm to search for SQL injection in URL‟s in user

input, by using grammar expression rules. The system showed

283

JUHD / Vol. 3, No.1, March 2017: pp 282- 287

DOI: 10.21928/juhd.20170315.14, e-ISSN: 2411-7757, p-ISSN 2411-7765

significant improvement in eliminating SQLIA on standard

tested applications [14].

Swamy et al presented an authentication technique for web

applications by encrypting the login data (username,

password) by using SHA-3 algorithm to abolish bypass login

attempts [15].

Mehta et al created a scheme, (SQLshield) that modifies

the user input data before the SQL query is executed in the

database server by deploying a randomization technique that

makes it impossible for the execution outcome of SQL query

to deflect from its programmer intended execution [16].

Latha et al presented an efficient method that the detection

of SQL injection is done by tampering with the input features

of query strings, analysis of query relating to the suitability for

both static and dynamic manipulation of user queries [17].

 Parchand et al. provided a database detection system and

gave preventive measures to avoid or reduce future attacks. A

data mining algorithm is used to detect abnormal transactions

by structuring a data dependency miner of a banking database

system. Their approach extracts read-write dependency rules

to be used later for identifying suspicious transactions and also

come to the conclusion whether the read-write transaction are

violations or done without permission [18].

Souissi et al introduce a categorization-based detection

system which supply a structured zone to evaluate, identify,

classify and present a defense mechanism against advanced

attacks. Their approach contributes in simplifying complicated

rule expressions and alert management using a modular design

and instinctive rules defined with with a strong expression

language. It has the ability to learn from previous attack

detecttions and it is not focused on the attack itself instead it is

concentrated on attack category; this property helps to sum up

defense mechanisms and automates response [19].

Kar et al presents an approach for real-time detection of

SQL injection attacks using transformation and resemblance

measures. Performing as a database firewall, they proposed a

system named (SQLiDDS). In a reference hash table the MD5

hash value of each structure is calculated and stored separately

which assist the avoidance of repeating the computation of

similar incoming query at run-time. They examined the

(WHERE) clause only and ignore the (INSERT) queries

which was based on two compelling observations made at the

time of research [20].

IV. PROPOSED DATABASE INTRUSION DETECTION SYSTEM

 The proposed system uses a new technique for a signature-

based method to detect intrusions, the detection takes place by

going through two stages. First stage (offline stage) is building

the SQL queries profile by extracting the SQL keywords for

each query in the system (eliminate all other words in the

query), and these extracted queries are encrypted using SHA-1

producing signatures of safe query. These signatures are saved

in the text file called QUERYPROFILE.

The second stage (online stage) is the detection stage, this

phase is done by taking query input from user (possible

attacker) , extract the SQL keywords, and produce an SHA-1

signature of this query (SQL Keywords) , then the product

signature is compared to the signatures in the

QUERYPROFILE audit file, if a match found then the

program lets the query pass and classify it as a valid query, if

not then it distinguish the query as an intrusion, stops the

query from executing, producing an alert and getting the IP

address of the attacker and prohibit that user from entering the

web-site again by blocking his IP.

(Figure 1) show the general architecture for the proposed

system.

Fig 1. General architecture of the proposed system

In the first stage (offline audit file), the program was

written in JAVA language which is used to create a signature

for all system queries. All the queries work in the website

must be entered into this program and all extracted signatures

will be saved in the offline audit file called

QUERYPROFILE.txt. Figure (2) shows the flowchart for this

program.

Fig 2. Flowchart for creating queries signature

Where n = maximum number of queries, and i= 1, 2, 3 … n.

284

Online Database Intrusion Detection System Based on Query Signatures Alaa K. Jumaa et al.

There are two program in the second stage (online

detection), these programs used to detect the intrusion (SQL

injection), prevent it from access the DB system and also from

connecting to the website again. Figure (3) show the flowchart

for the combined programs.

Fig 3. Flowchart for checking input queries

Fist program written in JAVA language and converted to

JAR file. This file are injected in the web pages and it will be

invoked directly before the input query tries to access the

database system. This program extracts the SQL keywords

from the input query, signs it using SHA-1 algorithm and

compares the result signature with the signatures in the

QUERYPROFILE,txt audit file. According to this comparison

the system can decide that this query is a SQL injection query

or a normal query.

The second program written in BASH-Shell language

from the Linux OS. This program is invoked after the system

classifies the input user as an intrusion, this program then

takes the IP address for the input user and prevents him from

accessing the website again by blocking this IP.

V. PROPOSED SYSTEM IMPLEMENTATION AND RESULTS

The experiments for the proposed system performed on a

notebook CPU core i7 2.4-GHz and 8 GB memory,

Apache_2.4.10 HTTP web server and MySQL-5.0.12 server

are installed under Linux-Debian-8.3 Operating System. The

Students Attendance Website was used in this experiment.

This website is used in two cases: the first case applies the

attack tools to the non-protected website (name of site is

AttSytem), and for the second case the attack tools are applied

to the proposed protection system (name of site is AttSytem1).

The first test for the proposed system is a traditional test, it

can be done by a malicious input for SQL injection like use “

OR „1‟ = „1‟ “. Figure (4) and (5) shows that the SQL

injection is working and the malicious user can access the

website (AttSytem) by using a fake username and password.

Figure (6) and (7) show that the malicious user cannot access

the protected website (AttSytem1) and the system detects

him/her and give the alert about this malicious attack.

Fig 4. Malicious try to access non- protect website

Fig 5. Malicious access the non- protect website

Fig 6. Malicious try to access protect website

Fig 7. Malicious failed for accessing protect website

The second test for the proposed system implemented by

Sqlmapproject package [21], this package was written by

Python language and it was used as an attached tool for the

website systems. At first this tool used to attack the website

before protection (“AttSytem”). Figure (8) show how the

Sqlmapproject tool try to attack the website.

285

JUHD / Vol. 3, No.1, March 2017: pp 282- 287

DOI: 10.21928/juhd.20170315.14, e-ISSN: 2411-7757, p-ISSN 2411-7765

 Fig 8. Sqlmapproject try to attack the non-protect website

 From figure (9) it can be seen that the Sqlmapproject

tool hacked the website system with the total 15366 HTTP

requests and it needed about 361.0 seconds. Also it can be

seen that the Operating System type, Webserver version

and MySQL Server version are extracted.

Fig 9. Sqlmapproject hacked non-protect website

From figures (10) and (11) it can be seen that the name of

database are extracted too.

Fig 10. Sqlmapproject try to extract Database name

Fig 11. Sqlmapproject gained the Database name

Figure (12) shows that the USER table for this database

(which includes username and the password) was hacked and

the table contents are extracted

Fig 12. Sqlmapproject gained the USER tables contents

Figure (13) shows how the Sqlmapproject tool tries to

access the website (“AttSytem1”) which is protected by the

proposed system, and Figure (14) shows that the attacking

tools failed to access the protect website. The proposed system

will check all the request queries used by attacking tools and

prevent them from accessing the database system. In this test

the Sqlmapproject tool used about 240000 HTTP requests

with total time 6137.0 seconds.
Fig 13. Sqlmapproject try to attack the protect website

Fig 14. Sqlmapproject attack failed to access protect website

Figures (15) and (16) shows the needed time and number of

HTTP requests used by Sqlmapproject for accessing the non-

protected and protected websites.

Fig 15. Sqlmapproject time used to attack non-protected and

protected site

Fig 16. Sqlmapproject request used to attack non-protected and

protected site

Figure (17) show the average access time which are needed

to access both non-protected and protected website. From this

figure it can be seen that the protected website was responding

a little slower than the non-protected website, this difference

is not effect for the system performance because it is so little

time (in Milliseconds).

Fig 17. Average access time for non-protected and protected

website

286

Online Database Intrusion Detection System Based on Query Signatures Alaa K. Jumaa et al.

 website.

From these implementations and tests the results show

that the proposed system was able to detect all the

intrusions injected by Sqlmapproject and it can protect the

website and the database system with a good performance

and high efficiency.

VI. CONCLUSION

In this paper a new technique was proposed for a

database intrusion detection system. The proposed system

works as an online detection system, it can detect all types

of SQL injection attacks and prevent them from accessing

the website again. Experimental results show that the

proposed system solution is feasible in terms of efficiency

and completeness. Furthermore, the website access time is

not affected too significantly when the proposed system is

used. In future work, this system needs to be developed to

protect the websites from internal attacks, this can be done

by extracting database-user behavior form the user log file

and builds the Intrusion Detection System by using Data

Mining or Neural Network techniques.

ACKNOWLEDGMENT

We would like to give thanks to M. Saad Muhammed

Abed for providing the website which is used in this work.

The authors also gratefully acknowledge the reviewers

whose help to improve the work by their comments and

suggestions was very helpful..

REFERENCES

[1] Khan, D.R.P.M.M.S., A Survey of Sql Injection Countermesures.

International Journal ofComputer Science & Engineering Survey (IJCSES)

Vol.3.No, June 2012.

[2]OWASP. SQL Injection. Available from:

https://www.owasp.org/index.php/SQL_Injection.

[3] Kumar, P. and R. Pateriya. A survey on SQL injection attacks,
detection and prevention techniques. in Computing Communication &

Networking Technologies (ICCCNT), Third International Conference on.

2012. IEEE.

[4] Kemalis, K. and T. Tzouramanis. SQL-IDS: a specification-based

approach for SQL-injection detection. in Proceedings of the 2008 ACM

symposium on Applied computing. 2008. ACM.

[5] w3resource. SQL Injection. 2016; Available from:

http://www.w3resource.com/sql/sql-injection/sql-injection.php.

[6] Kerner, S.M., How Was SQL Injection Discovered?, in
eSecurityPlanet. 2013

 [7] Chung, C.Y., M. Gertz, and K. Levitt, Demids: A misuse detection

system for database systems, in Integrity and Internal Control in

Information Systems. 2000, Springer. p. 159-178.

[8] Lee, V.C., J.A. Stankovic, and S.H. Son. Intrusion detection in real-

time database systems via time signatures. in Real-Time Technology and
Applications Symposium, 2000. RTAS 2000. Proceedings. Sixth IEEE.

2000.

[9] Low, W.L., J. Lee, and P. Teoh. DIDAFIT: Detecting Intrusions in
Databases Through Fingerprinting Transactions. in ICEIS. 2002..

[10] Sharma, A., DIDAR–Database Intrusion Detection with Automated

Recovery. National Institute of Technology, 2007.

[11] Kemalis, K. and T. Tzouramanis. SQL-IDS: a specification-based
approach for SQL-injection detection. in Proceedings of the 2008 ACM

symposium on Applied computing. 2008.

[12] Randhe, K. and V. Mogal, Defense against SQL Injection and Cross
Site Scripting Vulnerabilities, International Journal of Science and

Research (IJSR), Volume 3 Issue 11, November 2014.

[13] Ali, S., S. Shahzad, and H. Javed, Sqlipa: An authentication
mechanism against sql injection. European Journal of Scientific Research,

2009.

[14] Hidhaya, S.F. and A. Geetha, Intrusion Protection against SQL

Injection Attacks Using a Reverse Proxy. SIPM, FCST, ITCA, WSE,

ACSIT, CS & IT, 2012.

[15] Swamy, S., P. Kumar, and V. DEV, IMPR OVED
AUTHENTICATION TECHNIQUE TO PROTEC T WEB

APPLICATIONS. International Journal of Computer Science and

Engineering (IJCSE) ISSN (P): p. 2278-9960.

[16] Mehta, P., J. Sharda, and M.L. Das. SQLshield: Preventing SQL

Injection Attacks by Modifying User Input Data. in International

Conference on Information Systems Security, Springer 2015..

[17] Latha, R. and E. Ramaraj, SQL Injection Detection Based On

Replacing the SQL Query Parameter Values. International Journal of
Advanced Trends in Computer Science and Engineering · August 2015

[18] Parchand, D. and H. Khanuja, Framework to Detect Malicious

Transactions in Database System. International Journal of Computer

Applications, 2015..

[19] Souissi, S. Toward a novel classification-based attack detection and

response architecture. in Network of the Future (NOF), 2015 6th
International Conference on the. IEEE, 2015..

[20] Kar, D., S. Panigrahi, and S. Sundararajan. SQLiDDS: SQL injection

detection using query transformation and document similarity. in
International Conference on Distributed Computing and Internet

Technology. V, 2015..

 [21] Sqlmapproject package avilible from:
https://pypi.python.org/pypi/sqlmap

287

