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Abstract— Biodata are rich of information. Knowing the 

properties of biological sequence can be valuable in analyzing 

data and making appropriate conclusions. This research applied 

naturalistic methodology to investigate the structural properties 

of biological sequences (i.e., DNA). The research implemented 

in the field of motif finding. Two new motifs properties were 

discovered named identical neighbors and adjacent neighbors.  

The analysis is done in different situations of background 

frequency and motif model, using distinctive real data set of 

varied data size. The analysis demonstrated the strong 

existence of the properties. Exploiting of these properties 

considers significant steps towards developing powerful 

algorithms in molecular biology. 

Index Terms—Motif model, mining, DNA, biodata, sequence, 

genome, k-mers, structure, Bioinformatics, monad, composite, 

Background Frequency 

 

I. INTRODUCTION   

Explosion and growth of biological data in exponential 
rate resulted in urgent collaborative work to enable 
understanding and analyzing such data to be utilized 
in a better form in daily life, although massive efforts 
have been done, Bioinformatics are still infancy. There 
are a lot of factors that make the challenges harder; 
including huge information carried by a genome, lack 
of techniques to reveal benefit knowledge from, and 
difficulty of the biology laboratory test to validate 
correct information [1]. Data mining comes as the first 
techniques to design new methods and algorithms for 
knowledge extraction by finding patterns, 
classification, clustering, etc [2], [3]. 

The objectives are finding characteristics and 
properties of biosequences that make genome [4]; 
therefore numerous data structure and mapping have 
been used. Recent research motivates investigating the 
structural properties of biological sequences to 
enhance algorithms in molecular biology [1], [5], [6]. 
Therefore, this paper focuses on the nature of 
biological data to make the design more efficient 
following the new trends in Bioinformatics. The field 
of search and extraction of biological patterns is 
considered an active and promising field of 
Bioinformatics. Therefore, it has been selected for this 
study.  

The rest of this paper is organized as follows: 
Biological motif model in section 2. Characteristics of 

biological motifs and sequences are exhibited in 
section 3. Section 4 & 5 concentrates on the discovery 
of two important properties in biodata: adjacent 
neighbours and identical neighbours. Finally, we 
ended with the research conclusions in section 6. 

II. BIOLOGICAL MOTIFS MODEL 

The motif is an abstract model for a set of sites 
positions with similar patterns. Motifs have multi 
forms of representation; this study employs string and 
PWM model. Motifs mining algorithms search for 
exact or approximate motifs utilizing motifs template, 
and biological motifs are generally sequence of 
symbols [7]. Motifs classified into monad and 
composite type. And composite motif has two types 
simple and structure motifs, simple motifs allow fixed 
gaps between symbols, structure motifs allows 
variable gaps between symbols or component [8]. 
Composite motifs template reveals: 
 Monad motifs alphabet either in DNA alphabet or in 

IUPAC format, 
 Motifs length, type and number of symbols in each 

monad motif, 
 Motifs components, number of monad motifs, 
 Gaps length, minimum and maximum gaps 

A composite motif represents formally M1 [l1, u1] 
M2 [l2, u2] M3…Mn [ln, un], for example, motifs 
template shown in figure 2 consists of two monad 
motifs in DNA alphabets, M1 [5,17] M2 such that M1 is 
GGGTGGGAAGGTCGT with length of 15 base and 
M2 is TTAGCGGGTAT with length of 11 base and 
variable gap between these two monad motifs as 
minimum gap of 5 base and maximum gap of 17 
accordingly after 5 of any base or don‘t care base of M1 
till 17 searcher has to look for M2, where found; it is 
considered an event and occurrence of the pattern, and 
when the number of occurrences is equal or greater 
than minimum threshold it is regarded as frequent 
pattern [9]. 

 

Fig. 1. Composite motif 

III. CHARACTERISTICS OF BIOLOGICAL SEQUENCES 

Knowing the properties of biological sequence can be 
very valuable in analyzing data and making 
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 appropriate conclusions. In this context, appropriate 
characterization of the biological sequence structures 
and the exploitation properties of sequences are very 
important steps towards the development of powerful 
algorithms. Biological data, or more specifically 
molecular biological data DNA, RNA and protein, 
create organism body [10]. Biodata have many 
properties, they are rich of information. While a 
detailed discussion of biological properties is beyond 
the scope of this research, exploring properties that 
affect motif search algorithms are necessary. Some of 
these properties have been examined previously. Some 
of the related properties are briefly presented as 
follows: 

1. Small alphabet, biological sequence alphabet 
(DNA, RNA and protein) are generally 
regarded small when compared with 
transaction sequences (e.g. market-basket 
analysis).  Biological sequence mining typically 
requires an alphabet of size less than 21; DNA 
and RNA consist of four alphabets and protein 
consists of 20 alphabets; effects of alphabet size 
on sequential pattern data mining have been 
examined in [11]–[13]. 

2. Long sequences, biological sequences carry full 
details information about organism species in 
genes. Biosequences are long, for example 
chromosome 1 of the human sized 243 
megabytes and human genome sized more than 
3 gigabytes. Therefore, long sequences are 
considered an important property of biological 
sequence data set, this property and its impact 
on sequential pattern data mining are examined 
in [14]–[16]. 

3. Mutation, it is the most outstanding property 
that distinguishes between biological sequences 
and transactional sequences. Occurrences of 
patterns are not always identical; some copies 
may be approximated. The instances of the 
pattern usually differ from the model in a few 
positions. The biological sequence pattern 
usually allows nontrivial numbers of insertions, 
deletions, and mutations. Mutation represents a 
real challenge of sequential pattern data 
mining; this issue has been referred to in [7], 
[14], [17], [18]. 

4. Adjacent neighbours (AdjN): as shown in the 
previous chapter, one of the vivid fields of data 
mining in Bioinformatics is sequential pattern 
mining; these patterns consist of a number of 
characters or symbols that determine the 
pattern length. Pattern length may extend to 
several hundred. Monad motifs are made of 
consequent symbols; thus they are completely 
constructed from AdjN. And composite motifs 
consist of number of monad motifs where gaps 
or distances are permitted between them. 
Therefore, AdjN represent major parts of 
composite motifs. 

5. Identical neighbours (IdN): this research 
explores and exploits IdN‘s property as a new 
property; it will be explained later in details in 
section 3.3. IdN occurs frequently in biological 
sequences and patterns, using this property in 
designing of algorithms in molecular biology 
will be considered as a promising issue for 
better performance. 

In this research we followed Naturalistic 
methodology [1], which enable us to discover two new 
properties: IdN and AdjN; they are new properties 
discovered in this research. Therefore, the following 
sections 4 & 5 are dedicated to explore and examine 
those two properties in more details. 

IV. ADJACENT NEIGHBOURS PROPERTY IN MOTIFS 

MODEL 

Motifs are monad or composite, therefore exploring 
property of AdjN or contiguous bases is explained 
according to the type of motifs template as in the 
following: 

A. AdjN in Monad Motifs 

Two nucleotide TA called AdjN if TA denotes a pair 
(or subsequence) of nucleotides, where A appears 
immediately after T. Monad motifs templates consist 
of numerated contiguous characters, monad motifs 
described by the number and types of characters 
involved, for example AACTG is a monad motif 
lengthen five characters (i.e., k=5); also called 5-mer. 
Positional join algorithms based on the join between 
the positions of continuous neighbours, therefore the 
number of AdjN in each monad motif equals to the 
number of characters in a motif minus one, in other 
words, number of AdjN in monad motifs is: 
#AdjN= (k-mers) – 1           

(1) 

Figure 2 displays AdjN in monad motif AACTG, 
AdjN are four and length of pattern is five, i.e., 5-mer. 
Number of AdjN in monad motifs is always less than 
the length of the monad motifs by one digit because 
each symbol takes the role of the head once and next 
takes role as tail except first and last symbols (i.e., A 
and G). They participate only one time because 
positional join starts from right most (i.e., G takes only 
role of tail) and ends at left most (i.e., A takes only role 
of head). 

Fig. 2. AdjN in monad motif 
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 B. AdjN in Composite Motifs 

A composite motif can be regarded as an ordered 
collection of monad motifs with gap constraints 
between each pair of adjacent monad motifs. For 
example, GCAT [0, 5] AACTG is a composite motif 
that consists of two monad motifs and separated 
distance ranges from 0 to 5. An AdjN is in pairs that do 
not contain gaps. One may call the pairs that include 
gaps a gap neighbours. Figure 3 demonstrates AdjN in 
composite motif, most neighbours of composite motifs 
are adjacent (i.e., 7 neighbours are adjacent out of 8) 
and gap neighbours (GN) are rare (i.e., numbers of gap 
neighbours are the same as number of gaps), so: 
The number of composite motifs components=n, 
 

 
 

The number of AdjN=∑number of AdjN in monad 

motifs= (k1-1) +(k2-1) +…+ (km-1)                           (3) 

 
Where m symbolizes the total number of monad 

motifs in the composite motif, and k symbolizes k-
mers; accordingly k1 represents the length of first 
monad motif and k2 denotes length of second monad 
motif, and so on. 

To improve the likelihood of ‗AdjN is greater than 
GN‘ one can imagine the lowest number of AdjN 
comparing with a number of the GN with small k-
mers and high number of composite motif components 
(monad motifs). By using ―Eq.2 and Eq.3‖ to calculate 
types of neighbours in the worst case where lengths of 
all monad motifs are equal and in lowest length 
(k1=k2=…km=2); let the monad motifs are composite 
of only two symbols and the number of composite 
motif components is high, i.e. n=9: 

# GN=9-1=8 
# AdjN= (2-1) + (2-1) + (2-1) + (2-1) + (2-1) + (2-1) + 

(2-1) + (2-1) + (2-1) =9 
The presented example is impractical but it shows 

‗AdjN is more than GN‘ even in the worst case. It is 
known that the real monad motif length is mostly 
more than two; a popular example of monad motif is 
TFBS that has a length of 5-30 bp. 

Fig. 3. AdjN in composite motif 
To know the amount of AdjN in real situation 

somehow, let recalculate previous example and 
minimize each monad motifs length to minimum 
length of TFBS i.e. k-mers=5, and the number of 
composite motif components is same. n=9 

# GN=9-1=8 
# AdjN= (5-1) + (5-1) + (5-1) + (5-1) + (5-1) + (5-1) + 

(5-1) + (5-1) + (5-1) =36 
This example shows superiority of AdjN (36) over 

GN (8). 
Table ‎1 displays the number of gaps and AdjN in 

some example of real composite motifs from species 
Saccharomyces cerevisiae yeast and Arabidopsis 
thaliana c, the last two columns show that number of 
AdjN are greater than the number of GN. Even the 
neighbour type of pairs in composite motif is generally 
adjacent. 

Therefore, AdjN property in composite motifs is 
regarded a significant property and it is better to take 
it into consideration in designing algorithms of 
molecular biology. 

V. IDN PROPERTY IN BIODATA 

Trends of this research examine and analyze biological 
sequence properties in order to exploit them for 
designing motif discovery algorithms. By collecting 
data of neighbours in a different situation, it is possible 
to obtain an empirical estimate of neighbour‘s type 
rates. It cannot be known in advance the types of 
neighbours in the motif model, or even knowing 
exactly what the probability of neighbours‘ types is. 
However, it can estimate the proportion of neighbour‘s 
types from data. Certainly, it cannot predict exactly 
what this will be — it will vary from one motif model 
to another. However, collecting data from different 
kinds of real motif model will give real notion of the 
distribution of neighbour‘s types across the population 
of motif models, which in turn will provide 
information about the likely cost of finding motifs. To 
be able to trace and measure the existence and overall 
concept of IdN property; it is better to determine that 
in background frequency, motif model, effect of identical 
neighbour’s k-mers, and influence of data size. Therefore, 
the property of IdN is explored in thees situations as in 
the following subsections: 
 
Table 1 Number of GNs and AdjNs in a set of real composite 

motifs 
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 A. IdN Phenomenon in Background Frequency 

Background frequency is the number of occurrences of 
a biological character (i.e., ACGT) in the raw biological 
sequences [21], [22]. IdN means same character 
appears immediately again without any gap or any 
other character (i.e., in DNA alphabet AA, CC, GG or 
TT). Two nucleotides TT are called IdN if TT denotes a 
pair (or subsequence) of nucleotides, where T appears 
immediately after T. Generally XjYj+1 are IdN in 
sequence S if X=Y, X at position j and Y at position j+1. 
Biological sequences length may be exceed millions 
even billions of characters and their alphabet are small. 
Investigating those two primary characteristics, small 
alphabet and very long sequences, intuitively reveal 
another important characteristic that repeats the same 
character several times, furthermore the same 
character is repeated consequently (per-letter 
background frequencies). For example, if a segment of 
DNA sequence with 10000 bases long examined and if 
each element has the same probability, then this 
probability is p=1/N, where p- is the probability of 
each nucleotide and N- is DNA alphabet (i.e., 4). In 
general the elements are not likely equal; they have 
different probabilities pi but suppose that the previous 
sequence is nucleotide sequences (ACGT) and suppose 
each base has the same probability; thus probabilities 
of symbol frequency are 10000/4=2500. In other 
words, each symbol may occur 2500 times in just 10000 
positions that increase probabilities of IdN. 

Figure 4 shows a real sample of DNA sequence; 
starting part of chromosome number 1 of 
Saccharomyces cerevisiae yeast; the sample contains 
800 bases. Special format (i.e., CCTT) used to indicate 
IdN. Although the sequence is a tiny sequence but it 
reflects the concentration of similar successive 
characters and high score of IdN (i.e., IdN in the 
sample is 354) that make to see it as a fact that requires 
no proof [3]. 

 

 

 

 

The proportional relation between identical 
neighbour‘s bases and overall bases in the sample by 
using ―Eq.4‖ is found 0.4425; almost half of neighbours 
are identical!  

Characters frequencies have been used in molecular 
 algorithms, are referred to as Position Weight Matrix 
(PWM) or profile and Position Frequency Matrix 
(PFM) [23]. However, these representations fail to 
capture nucleotide interdependence and it was 
discovered by many researchers that the nucleotides of 
the DNA binding site cannot be treated independently. 

Basic component in molecular biology nucleotides 
and amino acids are arranged in sequences of DNA, 
RNA and proteins. These components construct 
structures of all organisms and perform related 
biological functions [10]. Therefore, the 
interdependencies, correlations and interrelated  

 

 

 

 

 

 

 

 

 

 

 

relations between the basic components are 
expected, and even certain [24], [25]. Other studies and 
research tried to find the interdependencies, and 
model them. But efforts based on assumptions and 
failed to capture the reality of the biosequences data. 
Thus the naturalistic methodology is the attempt to 
correct the direction. 

The string and the matrix representations share an 
important common weakness. They assume the 
occurrence of each nucleotide at a particular position 
of a binding site that is independent of the occurrence 
of nucleotides at other positions. This assumption does 
not represent the true picture as discussed in [24]. 
While PWM and PFM deal with single base frequency 
but here we revisit symbols frequency to consider 
frequency of IdN or the dependent occurrences of 
neighboring bases. Such direction promises to find 
new ways of data mining in Bioinformatics and 
understand genome coding better. Motif discovery is 
an example of role of IdN in Bioinformatics, and 
determine the role in genome coding is left as a 
suggestion for future work (State of art in genome 
en/coding based on single base A, C, G or T. What will 
be the effect of enlarging basis i.e., TT, TTT, TTTT?). 

Biological motif is a piece of biological sequence. 
Anyway due to the functional associations of 
biological motifs, they are embedded in background 
sequences. Therefore, a collection of k-mers is likely to 
be a true motif. This understanding motivated and 
forms the direction of this research. 

B. IdN Score in Motif Model 

Scine the motif model is a sample of biological 
sequence; therefore all biological sequence properties 
must be reflected in motif model. Thus motif model 
includes IdN, similar adjacent bases or repeating same 
characters consequently. In order to find the rate of 
IdN in biological sequential patterns, set of real motifs 
have been investigated, for example, transcription 
factors, URS1H and UASH that are known to 
cooperatively regulate 10 genes of S. cerevisiae yeast. 
These 10 genes are listed in SCPD as the promoter DB 
of Saccharomyces cerevisiae yeast [24], as shown in 
Table 2. The first gene of them named ZIP1 which 
regulated by the TFBS shown in Figure 5. 

Fig. 5. IdN in TFBS 

Fig. 4 Random sample of DNA sequence 
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 TFBS shown in Figure 5 is a composite motif of gene 
ZIP1 in S. cerevisiae yeast, the figure displayed 
included IdN; it is an example of composite motif 
model, it consists of two monad motifs and distance 
allowed between them ranged from minimum bases of 
5 to maximum bases of 179. Composite motif 
GATTCGGAAGTAAAA [5, 179] 
GATTCGGAAGTAAAA is a combination of 28 
characters. 

Positional join based algorithms join contiguous 
bases [9], [26]. Contiguous bases either are identical or 
not. IdN denotes to contiguous bases that are identical 
(i.e., AA, CC, GG or TT) and total neighbours (TN) 
denote to all contiguous bases regardless of 
identicalness of them (i.e., TT or TC). The composite 
motif compounded of 10 IdN out of 27 TN. 

The following example shows the analysis of two 
sets of real composite motifs goals to evaluate the 
weight and attendances of IdN. The actual number of 
IdN in each motif is calculated to determine the 
average of IdN of the set, and then estimating the rate 
of IdN in each set: 

1- The first set consists of 10 composite motifs 
that have been shown in Table 2 and Table 3, 
the motif model consists of 28 nucleotides in 
two components of monad motifs. The 
number of TN in Table 3 is 27. 

 
TABLE 2 UASH AND URS1H BINDING SITES 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 3 AVIDN IN BINDING SITES OF 10 GENES 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2- Second set is found by searching first 
chromosome of A. thaliana for composite motif 
reported in [9], [27] as motif1, that is,  
HNGTNYDNHDNBTNNDNA [0, 3] 
YNHTNYRHGGNBTNAR [0, 2] ARDBNBH that 
results 8 occurrences as shown in Figure 3, each one 
consists of 41 nucleotides in 3 components of monad 
motifs. 

 
The mean is the sum of all values in a set, divided 

by the number of values. To find Estimate Identical 
Neighbours (EIdN), follow the following steps: 

1. Compute the average of actual IdN (AvIdN), 
i.e., AvIdN in the first data set is calculated by 
searching 10 composite motifs, those composite 
motifs known as binding sites regulated by 
transcription factors UASH and URSH1 in S.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
cerevisiae yeast genes, in this computation IdN 
between monad motifs had been excluded, because 
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 they are separated by variable gap and they were 
not contiguous. 

Where AvIdN is the average of actual identical 
neighbours and TN is total neighbours in the 
composite motifs. 

 For example; EIdN of the first data sets that is 
shown in Table 3 is calculated by using ―Eq.7‖ as 
follows: 

 AvIdN=8.4 

 TN =28-1=27 

 EIdN=8.4/27≈0.32 

And EIdN of the second data set that shown in Table 4 is 

calculated by using ―Eq.7‖ as follows: 

 AvIdN=9 

 TN =41-1=40 

 EIdN=9/40≈0.23 

Table 4 Motif1 occurrences in first chromosome of A. thaliana 
Composite motifs analyzed in Table 3 and Table 4 

proved high rate of IdN to total neighbours; they are 
32% and 23%; these rates reflect the richness of the 
property under investigation, while these rates is not 
constant for all motifs and may be increased or 
decreased, however it demonstrated new and 
promised property of motif that could be utilized in 
algorithms for molecular biology. The number of IdN 
varies from motifs model to another. Distribution of 
bases in real motifs models and background sequences 
is not uniform; nevertheless evidence provided by 
analyzed data sets of real motifs and sequences were 
presented abundantly of this property. 

C. Frequency and k-mers of IdN [18] 

The sample distribution of IdN is approximately 
normal due to the smallness alphabet and non-uniform 
distribution of biological bases in real biological 
sequences. Table 5 shows lengths or k-mers of IdN in 
upstream of S. cerevisiae yeast, for example for 5-mer, 
there are more than 30,000 of TTTTT and AAAAA. 
Consider the high frequency of long patterns of IdN 
making a heuristic approach to estimate the IdN 
slightly raises and overestimates, the table shows 
occurrences of a long pattern of IdN reaching up to 30 
in relatively small data set under test, viz. 2.8 
megabytes. For example, where pattern length is 30, 
IdN of nucleotide T occur 30 times and for nucleotide 
A occurs 13 times. 

Moreover, the data in Table 6 and Table 7 

demonstrated that the frequency of C and G is less 
than the frequency of A and T in upstream sequences 
of S. cerevisiae yeast. The C in a CG pair is often 
modified by a process known as methylation (where 
the C is replaced by methyl-C, which tends to mutate 
to T) [28]. As a result, CG pairs occur infrequently; 
therefore it is referred in literature CG Island [29]–[34]. 
And k-mers of nucleotide T is greater than others, e.g., 
in the sample data upstream of S. cerevisiae yeast it 
exceeds 40-mer. 

Generally, in biological sequence data sequential 
pattern usually allows a nontrivial number of 
insertions, deletions, and mutations. Thus some bases 
(i.e., A and T) occur more frequently than others. 
However, experimental results data in the table 
indicate IdN of all nucleotides from 2-mer to 30-mer.  

A shorter minimum motif length may yield many 
motifs, some of which might be sub-sequences of other 
longer motifs. Data from Table 5 also demonstrate that 
when k-mers increased the number of occurrences 
reduced; however, there exists identical neighbour‘s 
pattern of lengths more than 30-mer of A and T. 
Therefore, IdN could be considered a potential 
property. 

D. Correlation between DB Size and IdN Property [3] 

To find the influence of DB size on IdN, k-mers of 
IdN‘s patterns must be specified, thus 8-mer and 20-
mer have been selected. 8-mer IdN pattern of T means 
TTTTTTTT. Table 6 shows an IdN pattern for A. 
thaliana genome (five chromosomes) and some 
chromosomes of Homo sapience (human) [35], [36]. To 
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 examine IdN patters in more length and larger data set 
Table 7 demonstrated IdN patterns of 20-mer in Homo 
sapience (human) genome. Investigated IdN patterns 
were basic nucleotides of DNA (A, C, G, and T).  

Table 5 k-mers of IdN in S. cerevisiae yeast 

Evidence from observed data demonstrates two 
important features; the first is that high concentration 
of IdN, and the second is that the number of IdN 
linearly increases with data set size. This increase 
presents another side of potentiality of IdN‘s property. 
As can be seen in the Figure 6, number of IdN grows 
faster with data set size. 

Table 6 IdN of 8-mers in A. thaliana and human genome 

Table 7 demonstrated human genomes and contains 
IdN of length 20 characters of all DNA symbols. The 
table also supports previous conclusions regarding the 
relation between data set size and IdN. 

E. Concluding Remarks 

Estimation obtained from alternative models and their 
competing assumptions are often believable. Rather 
than making an estimate based on a single model, 
several models can be considered and make the results 
more confident. 

FIG. 6. OCCURRENCES OF IDN WITH DATA SET SIZE. NOTE: 
IDN OCCURRENCES ARE PLOTTED AGAINST THE DATA SET 

SIZES ON A LOGARITHMIC SCALE  

For these reasons, previous subsections analyzed 
IdN‘s property in different models. To empower the 
analysis results, the following cases are tried: 

- The analysis is accomplished at different 
situations of background frequency and motif 
model. 

-The analysis is done using a distinctive real data 
set of S. cerevisiae yeast, A. thaliana, and homo 
sapience. 

- The analysis is performed using various 
measurement of k-mers; from 2-mer to 30-mer. 

- The analysis is completed using a variety of data 
set sizes. 

Experimental results from what has been stated 
above, without any previous assumptions, 
demonstrate: 

1. Strong existences of the property exceeding a 
quarter of the motif model that motivates to 
describe it as an axiom. High scoring of the 
property may correlate with structurally or 
functionally important genes. 

2. Active and vivid presentation of IdN property 
leading to its description as a potential and 
significant property 

3. Due to GC Island, insertion, deletion and 
mutation in biological sequences, the frequency 
of A and T are higher than C and G, therefore 
IdN of A and T is also higher than C and G. The 
situation is vice versa in GC Island. 

4. IdN pattern is a special kind of patterns that 
consists of identical symbols with different 
length, these patterns form part of biological 
molecular structure. Patterns have been 
regarded a good task of data mining that reveal 
information. 

5. This property is a novel biological structural 
property, discovered in this research for the 
first time. 

6. Discovered properties; above remarks 
guarantee that IdN is important structure 
property of biological sequence. They motivate 
to exploit it in molecular biology algorithms 
generally and in en/decoding genome in 
particular. 

7. Existing motif models suffer from common 
weakness as discussed in [24], [25]. They 
assume the occurrence of each base at a 
particular position of motifs is independent of 
the occurrence of bases at other positions. The 
assumption is not true since sequences are 
biologically related. Thus the naturalistic 
method of research is necessary, especially in 
Bioinformatics, because this method 
concentration on the real data (assumption free 
methodology) in order to reveal properties. 

 
TABLE 7 IDN IN HUMAN GENOME 
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IdN property is not based on position 
independency; in contrast it exists arbitrary in biodata. 
Therefore, the importance of discovered property 
could be presented in: 

1. Reflecting the nature of bio sequences, 
2. Expressing biological related functions, 
3. Promising to enhance motif representation. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, a new direction of research method 
was implimented called ‗Naturalistic‘ which has been 
conducted in the field of motifs finding, accordingly 
new biological structure properties have been 
discovered named IdN and AdjN. The analysis is done 
in different situations of background frequency and 
motif model, using distinctive real data set of varied 
data size. The analysis demonstrated the strong 
existence of the properties. In the next paper, the new 
properties we will use them to develop positional join 
algorithm for motif discovery. 
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