

 (253)

 257-253ص ص/ …Improving the Design and Implementation of Software (2مجلة جامعة التنمية البشرية / العدد)

IMPROVING THE DESIGN AND IMPLEMENTATION

OF SOFTWARE SYSTEMS USES ASPECT

ORIENTED PROGRAMMING

Mazen Ismaeel Ghareb

Department of Computer Science

University of Human Development

Sulimanya, Iraq

mazin.ismaeel@uhd.edu.iq

mazen.ghareb@hud.ac.uk

Dr Gary Allen

Department of Informatics

School of Computing and Engineering

University of Huddersfield

Huddersfield, England

g.allen@hud.ac.uk

Abstract- Aspect Oriented Programming (AOP) is a

technique used to enhance the separation of concern in

software design and implementation. To implement AOP

developers most commonly use AspectJ, an extension of the

Java language. In order to represent the separation of

concerns a new design technique is needed for modeling of

aspects. Aspect Oriented Design language (ASDL) is a

design notation could build on the existing design language

UML. It is capable of supporting many aspects-oriented

languages. This research aims to investigate where

developers can use aspect-oriented programming in the

software development process. This includes how to identify

Aspects in the design stage, then how they can be applied in

the implementation process in software development .This

will lead to improve modularity and reusability of the

software. The paper will be a position paper abut Aspect

Oriented Software Design, also will investigate several case

studies of the design and implementation of a software

application that shows how we can identify the Aspect in the

process.

Keywords—Aspect Oriented Programming; ASDL (Aspect

Oriented Design language)

I. INTRODUCTION:

In the software development process, Aspects are
difficult to identify because they are usually tangled and
scattered across the entire system. Some aspects are
obvious can be identify but others are more subtle
difficult to identify. This makes it complex to locate all
points of the system where aspects should be applied. To
address these aspects in the software development
lifecycle, developers need more support to find and
analyze aspects in requirements documentation.

AODL (Aspect Oriented design language) is a
notation used to show the interaction between
traditional UML models of base (Object Oriented)
code and Aspect extensions, such as point cuts, join
points and advice. The challenge of this study is to
find the relationship between design patterns and
aspect oriented programming to meet a modular
solution for specific issue in the software engineering
field. Many studies have been done on Aspect

programming techniques during recent years. One of
the aspect definitions according to [1] defines Aspect,
as ―aspects tend not to be the system's functional
decomposition, but rather to be properties that affect
the performance or the semantics of the components
in a systematic way‖ Kiczales tried to differentiate
between the aspects and components [1]. Another
definition of Aspect Oriented Programming is to
overcome the issues arising from crosscutting
concern. It helps developers to change the Object
Oriented model dynamically, so the crosscutting
enhances code reuse rate and maintainability [2].
Aspect Oriented programming helps developers to
overcome the issues associated with code scattering
and tangling over multiple system units by reducing
the duplication the code. Aspect Oriented
Programming supports several crosscutting concerns
such as join points, point cuts, and advice. A Join
point is one of the several points of the system where
concern crosscut a method or constructor, while a
point cut is a query about selecting required join
points. Consequently, the advice is the construction
that takes an action where the join point matched:
before, after and around in the specific system [3].
This research will investigate to use AODL aspect
Oriented Design Language notation to represent
software in the design phase. These notations are a
new language proposed by Gary Allen and Saqib
Iqbal [11] . This language represents the aspects and
usual objects using UML notations and models.
Adding to that if could we identifying the Aspects in
early design it is possible by applying it on Design
patterns. There were several works investigate this
issue using the case study of the Car Crash
management system [11]. According to [5] studies
have shown implemshowions of six GOF design
patterns (Observer, Mediator, Prototype, Strategy,
State and Abstract Factory) with aspect
implementations, the results that shows most aspect
oriented programming improves the design of base
object-oriented code.

The remainder of this paper will be structured as
follows. In Section 2 we describe the state of the art

mailto:mazin.ismaeel@uhd.edu.iq
mailto:mazen.ghareb@hud.ac.uk
mailto:g.allen@hud.ac.uk

 (252)

 257-253ص ص/ …Improving the Design and Implementation of Software (2مجلة جامعة التنمية البشرية / العدد)

 about AOP technology. In Section 3, we introduce UML
Language AOP Notation. In Section 4, we describe AOP
and its relationship with design patterns. Section 5 we
show the result of our survey. In Section 6 we described
the methodology approach to identify aspects. In Section
7 we present the experimental results, followed by our
conclusion and future work.

II. STATE OF ART

A. History of AOP

Aspect Oriented programming (AOP) was

discovered several years ago, before Demeter team. In

1997, Aspect oriented programming was officially

revealed by Gregor Kiczales, with his colleagues in

conference name ECOOP97 [6]. AOP Aspect Oriented

programming developed methodologies called Subject

Oriented Programming. According to [6] AOP is a

development methodreducesthat improves software

development by capturing the domain related processes

in the system, to better fit real domain problems into

code; therefore it reduce debugging time and increases

readability.
.

B. Aspect Oriented Modelling AOM

Developers should be aware of, and

understand the software modelling or architecture before

staring implementing AOP. AOM (Aspect Oriented

Modelling) is an approach to produce a logical aspect

oriented architectural model. Early usage of AOM in

development stage will reduce the software development

risk of conflicts and undesirable behavior emerging

during implementation. The cross cutting element is

common in AOP and AOM, but the difference is between

the artifices versus source code, it could rise difference

technique in representing it. For instance, the code can

represent in single functionality, while a model can

represent the system with different diagram views.

Another difference between AOP and AOM in code is

aspect weaving is primarily concerned with inserting

functionality at program execution. AOM module

consists of major components: primary model, aspect

model and composition model Fig.1[7] below shows this

model.
.

Fig 1 (component of AOM approach)

Fig1 shows a primary model such as a UML diagram
to describe a basic architecture class diagram and
interactive diagram. The aspect model describes a logical
architectural solution. An Aspect Oriented Architecture
Model is a logical view of software architecture. Another
definition of Aspect Oriented Programming is
simplifying of the development process by allowing
separation of developmental tasks. In addition, Aspect
Oriented Modelling improves an object-oriented
application by making it more modular. AOP solves the
code scattering problem in OOP. Scattering means the
problem of shared the functionality of an application
spread among many classes, which tends to slow down
the application and make it difficult to maintain.
Therefore, AOP solves this problem by bringing together
the scattered code in the aspect. An aspect is a cross
cutting structure. It implements the functionality such as
security, logging and persistence.

C. Development of Aspect-Oriented

AspectJ used to implement AOP, which is a simple

aspect oriented programming extension for the Java

language. It is an open source programming extension of

Eclipse. Moreover, it will support modular

implementation of a range of crosscutting concerns [9].

An AspectJ program consists of two major parts, the first

part is the base code such as classes and interfaces to

carry out a basic functionality of the program, and the

second part is the aspect code, which includes the aspects

for capturing crosscutting concerns in the program [5].

Aspect supports the main AOP constructs of join points,

point cuts and aspects.A join points is a dynamic

execution point in the program. Point cuts consist of a

collection of join points. An Advice is a somewhat

special method attached to the point cuts. Finally, an

aspect is a modular unit of AOP. Fig. 2 shows the process

of aspect development method [10].

Fig. 2 (process of aspect-oriented development)

Recent research shows that there is not a tool to support

an aspect-programming notation such as UML (Unified

Modelling Language) . One of the approaches to design

an aspect notation is to extend the UML notation to

support aspect oriented units called aspect oriented

design model AODM. Therefore, this approach will help

to show the aspect programming weaving mechanism and

represented in UML, which will help developers to

develop aspect programming notation language [11].

AODM might show an aspect as a modular unit of

 (253)

 257-253ص ص/ …Improving the Design and Implementation of Software (2مجلة جامعة التنمية البشرية / العدد)

 crosscutting implementation, which acts as a container of

the given members in the piece of source code [12].

According to Stein ―AspectJ is an

implementation for aspect oriented programming in Java

language‖, adding that cross cutting is a part of the

aspect that specifies where the crosscutting code has been

woven into base classes. Join Points in AspectJ are

standard points in executable dynamic programs. Join

points present many actions such as calls to constructors

and method execution. In addition, they call classes and

object initialization. In AspectJ Point cuts consist of joint

points. It specifies at which of the join points particular

crosscutting behavior should execute. In terms of a

designator point cuts are 'if', 'this', 'target', 'urges, or

'flow'. Developers will select Join points depending on

the dynamic context during execution of the base

code[13] .

 The designer should specify at what time on the

execution the advice is to execute for instance before,

after, or around specific source code. Another important

unit in Aspect J is introducing an additional member type

of classes such as methods, constructor and another field

for the class.

 In addition, it may change the super class type of super

interface by inserting new initialization and

generalization relationship to the class structure.

III. UML LANGUAGE AOP NOTATION:

UML language is object-oriented programming

notation language. UML provides the basic building
blocks to model software systems such as abstraction,
relationships and diagrams. Adding to UML will give
extended UML notation such as tagged values used to
attach arbitrary information to a model element. Besides
that, the extension totally supports new building blocks
that drive from existing ones. This new building called
stereotyping, have the same structure (attributes,
association and operations) as the base system block that
thrive on it.

Therefore, a UML extension is able to represent an

AspectJ basic abstraction such as a Join point, Point cut

and pieces of Advice. Fig.3 illustrates a UML

representation for Join Points only, and shows the

communication links to create or destroy an instance.

Therefore, UML cannot assign or represent the Join

Point. AODM suggests solving this problem by

representing the communication as a pseudo operation

that can only write and read for a specific field. This

makes sure no execution might happen without calling a

constructor or the initialization. Fig.4 shows that UML

could represent a message that pass between two

instances. As it seems that the join points indicate the

special kinds of stereotypes such as <<execute>>,

<<initialize>>, <<set>> and <<get>>.

In AODM, point cuts are represented as special

stereotype operations named as <<Pointcuts>>. As it is

shown in Fig. 5. (Stein, D., Hanenberg, and S. And

Unland R., 2002).

Fig. 3 (Aspect Oriented Design Model)

While in UML notation point cuts have an operational

definition that has an arbitrary number of (output-only)

parameters and their declaration and implementations as

it shows in Fig. 4.

Fig. 4(Similarities between points cut in Aspect and Operation in UML)

Similar to Point cuts, Advice can be represented as an

operation, but one semantic difference is that Advice

does not have a unique identifier. Therefore, this might

be a big conflict in Aspect. Therefore, AODM has solved

this issue by defining by pseudo identifier that cannot be

overdriven. As it appears in Fig. 5 .

Fig. 5 (Similarities between Advice and Operation)

In [4] the authors propose a new notation of

AODL Aspect Oriented Design Language, this language

helps to model the Aspects with their attributes and

characteristics along with a traditional UML object

diagram. Both aspects and objects can be used within a

design for single framework. This reduces designer

operating cost to work with two different platforms.

Therefore, developers chose UML to extend to contain

aspects for many reasons. One important reason is that

UML is most used tool for modelling. Secondly, it is

easier for developers to use one tool rather two tools

together. Finally, it is easy to use UML extensibility to

design Aspects because it is easy to define a new notation

and use them with the core notation. In AODL uses an

aspect notation similar to class notation in UML to model

other components such as Aspects and point cuts.

However, there is an interaction between these

components . For instance, point cuts contain the join

point which advice directly depends on. As a result, each

 (254)

 257-253ص ص/ …Improving the Design and Implementation of Software (2مجلة جامعة التنمية البشرية / العدد)

 part has its own characteristics; therefore [4] claim that

AODL should represent each notation as unique notation,

as shown below in Fig.6:

Fig. 6 (AODL component notations)

In the AODL design notation, join points are

represented as a hook. They connect the other parts of the

program with the point cuts. Point cuts are explained as a

rectangle box with a collection of related join points. The

box symbol is used for Aspects because of them having

similar characteristics to classes in their behavior, as it

shows above. Aspect notation looks like class notation

also it has same similarities of class and the cross circle

shows the cross cutting concern of the aspect. Code

weaving is associated which connects the aspect with

classes where aspect code is woven in. Moreover, there

are two models to design weaving process, aspect static

diagram and aspect dynamic diagram. Aspect

Programming has to show the join points in the

programming. Sequence diagram in UML will show the

join point in early design phase. This diagram called a

join point identification diagram. The behavior of join

points is modeled using an activity diagram, which shows

the place of join point and the system activity. Fig.7

shows them below.

Fig. 7 (Joint point identification and behavior diagram)

The main AODL notation is the Aspect notation, which is

represented as a big rectangle with many attributes and

operations. It has the aspect name at the top and circle

cross to show the cross concern behavior. Fig.8 shows a

typical representation of an Aspect in AODL.

Fig. 8(Aspect Representation in AODL)

Aspects can be identified in the early stages of

development using use case diagrams, as shown by Ivor

Jacobson [10]. However, Ivor argued that aspects could

not be implemented using use case diagram because

tangling problems of the component in the use case

diagram. While Iqbal suggests that to redundant the

calling other component of use case and develop use case

component separately. In this way, it is easy to find a

crosscutting concern in use a case study [14]. He has

shown an example of ATM system the withdraw cash use

case needs to add logging aspect to the ATM use case as

appears in Fig.9.

Fig. 9(ATM Use Case)

When Draw this use case diagram of with cash draw with

sequence diagram it show the interaction with all parts of

aspects joint point , point cuts and aspects. It could

identify the aspects and also can show aspect

characteristics such as calling joint point and point cut

(before, after and around)[14] .The aspect identification

and showing properties of it in Fig.10.

Fig. 10 (Sequence diagram showing aspect)

 (255)

 257-253ص ص/ …Improving the Design and Implementation of Software (2مجلة جامعة التنمية البشرية / العدد)

 IV. AOP VS DESIGN PATTERN

[15] stated that Aspect oriented programming

complements the Object oriented programming by giving

powerful constructs to handle composition and

modularity. This will help develop the best modularity of

design patterns of these concerns. The patterns consist of

two parts, part one identified the aspects, classes,

relationships and operations related to the solution.

Second part is concerned with the number of signifying

behaviors and structural relations between components.

For instance, in the adapter design pattern there are two

classes which cannot use the same interface that share

components, while an Aspect oriented, model will allow

that by extending the interface of the Adoptee as is

shown Fig. 11.

Fig. 11 (Adapter Pattern in aspect class diagram)

Another example is Observer pattern, which

defines one to many dependent objects. If one of the

objects is changing all the depended objects should be

notified and updated automatically. While in the Aspect

class diagram some part is common to all potential

initiation of the pattern, and other specific to each

initiation as it shows in Fig. 12 [15].

Fig. 12 (Observer aspect class diagram)

Another important case study was (AGS)

Antenna Group Server. This system is used to drive the

antenna systems. It consists of 37 classes implemented in

the C/C++ language. It had discovered some design

patterns in implementing the system such as Observer,

command, states, singleton and chain of responsibility.

[16] Show that the drawback of implementing AGS using

objects oriented programming with design pattern are

these points:

Inheritance relationships: The Inheritance relationships

between classes are static when apply the design pattern

because some classes to be concrete cannot be reused in

the system. Pattern overlapping: This has happened when

more than one pattern instance, has one concrete class,

and this leads to cut in pattern traceability and class

reusability. Encapsulation violation: composite and

observer patterns force to the developer to expose

internal objects to another object to handle requested

computations.

The study tries to show the different results when

applying AOP, two implementation ways used to carry

out the case study: A Lazy implementation (L): This

implantation used to move all inter-type declaration to

Aspects such as methods and fields for all patterns then

re-inject them into original places at load time. This will

help to better modularize the scattered code .A Unplug

implementation of AOP, the logical Design pattern code

encapsulation into aspects. A reusable AOP

implementation: improving the aspects where two large

aspect use large dynamic properties of AOP to get greater

(UN) plug ability and reusability.

Finally, to prove that AOP in Design patterns is

improving the implementation [16] used metrics to check

the AOP implementation. The metric parameters are

Depth of inheritance (DIT).

Coupling method calls (CMC).

Weighted Operation in Module (WOM).

Coupling between Modules (CBM).

Lack of Cohesion in Operations (LCO).

Response for Module (RFM)

The study confirms that implementation the design

patterns using AOP improve the quality and modularity

of the software. It also helps to avoid cross cutting

concerns cause by implementing the Design pattern with

object oriented code scattering. The AOP solution of

coupling and cohesion are critical issues because of the

interception mechanism at run time [16].

V. PRELIMINARY ANALYSIS

Aspect Oriented Programming is not currently

widely known among developers and researchers. The

previous sections illustrates, there are various attempts to

use AOP for software developer.A survey has been

carried out to investigate the awareness between

developers and other researcher about AOP. 40 responses

have been collected. The result shows that 80% of the

participant did not hear about AOP, as it appears In

Fig.13

 (256)

 257-253ص ص/ …Improving the Design and Implementation of Software (2مجلة جامعة التنمية البشرية / العدد)

Fig. 13 (Using AOP)

 Therefore, it is clear that there is a gap for using

AOP in many stages of the development process. Another

important question was do you work with AOP and how

many years do you work with it, 45% do not work with

it or have less than 1 year of experience . As it is shown

in Fig 14.

Fig 14 (AOP Experience)

Moreover, many developers do not have enough

knowledge about the differences between OOP and AOP.

In Fig 15 shows that participants not sure, whether AOP

is better than OOP on software development, or have

neutral opinion about it.

Fig 15 (AOP vs OOP)

VI. SOLUTION APPROACH

This research tries to investigate and find the

best approach to identifying Aspects in the early stage of

software design. The idea is to make a global rule or

regulation to make it systematic across all aspect oriented

components and software design. For instance, in

requirement stage either from the stockholder or business

analysis. These requirements are functional requirements

such as the activities of the business needs. However,

there are other non-Functional requirements such as

logging, security, performance and transaction

management which should be taken into account during

the development stage. AOP can implement these non-

functional requirements separately and can span across

the entire business model. This makes it easier to change

or maintain this part later in the system lifecycle [17].

Another approach to identifying aspects is to define

stakeholder concerns, refine the stakeholder related

concerns, define cross cutting concern, separate cross

cutting concern and finally weave these cross cutting

concern across the system [18]. There are also several

other approaches that we have mentioned in state of art

section, they also show that it is possible to identify

cross cutting in UML design diagrams in the design

stage. However, there is not a unique approach to identify

,where Aspects should be or when they should be

triggered.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented initial

investigations into identifying Aspects in software

design stage. The research shows that there are

many approaches to identifying AOP in software

design, but not all approaches are applied in all

cases or have specific rules or standards that can

easily found cross cutting concern in any system

easily. Adding more we have shown that in

Kurdistan region most software engineering and

academic staff do not have enough knowledge

about this new approach. Therefore, we thought it

was important to start working on how to find a

standard approach to identifying a crosscutting

concern and Aspect in the early stage of the system

on requirement stage.

In future work we will try to find rules in

software requirement and design that automatically

will specify cross cutting of aspect in early stage.

We will develop a new stage of the Aspect

Specification approach in all systems and extract

the possible aspect of the system. We will do that

by applying it to different case studies in the real

world.

VIII. ACKNOWLEDGMENT

We thanks University of Human Development Staff
for answering my survey also all postgraduate students of
Huddersfield University. Thanks to Dr. Gary for his usual
support.

IX. REFERENCES

[1] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold, ―Getting started with AspectJ,‖
Communications of the ACM, vol. 44, no. 10, pp. 59–65, 2001.

[2] H. Li, M. Zhou, G. Xu, and L. Si, ―Aspect-oriented
Programming for MVC Framework,‖ in Biomedical Engineering
and Computer Science (ICBECS), 2010 International Conference
on, 2010, pp. 1–4.

[3] J. D. Gradecki and N. Lesiecki, Mastering AspectJ: aspect-
oriented programming in Java. John Wiley \& Sons, 2003.

[4] S. Iqbal and G. Allen, ―Designing Aspects with AODL,‖
International Journal of Software Engineering, vol. 4, no. 2, pp. 3–
18, 2011.

[5] C. Sant’Anna, A. Garcia, U. Kulesza, C. Lucena, and A. Von
Staa, ―Design patterns as aspects: A quantitative assessment,‖
Journal of the Brazilian Computer Society, vol. 10, no. 2, pp. 42–
55, 2004.

 (257)

 257-253ص ص/ …Improving the Design and Implementation of Software (2مجلة جامعة التنمية البشرية / العدد)

 [6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin, Aspect-oriented
programming. Springer, 1997.
[7] R. France, I. Ray, G. Georg, and S. Ghosh, ―Aspect-oriented
approach to early design modelling,‖ IEE Proceedings-Software,
vol. 151, no. 4, pp. 173–185, 2004.
[8] R. Pawlak, L. Seinturier, J.-P. Retaillé, and H. Younessi,
Foundations of AOP for J2EE Development. Springer, 2005.
[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, ―An overview of AspectJ,‖ in ECOOP 2001—
Object-Oriented Programming, Springer, 2001, pp. 327–354.
[10] I. Jacobson, ―Use cases and aspects-working seamlessly
together,‖ Journal of Object Technology, vol. 2, no. 4, pp. 7–28,
2003.
[11]S. Iqbal, ―Aspects and Objects: A Unified Software Design
Framework,‖ 2013.
[12]D. Stein, S. Hanenberg, and R. Unland, ―A UML-based
aspect-oriented design notation for AspectJ,‖ in Proceedings of the
1st international conference on Aspect-oriented software
development, 2002, pp. 106–112.
[13] S. A. Khan and A. Nadeem, ―UML extensions for modeling

of aspect oriented software: a survey,‖ in Proceedings of the 2010
National Software Engineering Conference, 2010, p. 5.
[14] S. Iqbal and G. Allen, ―On Identifying and Representing
Aspects.,‖ in Software Engineering Research and Practice, 2009,
pp. 497–501.

[15] M. Berkane, M. Boufaida, and L. Seinturier, ―Reasoning
about design patterns with an Aspect-Oriented approach,‖ in
Information Technology and e-Services (ICITeS), 2012
International Conference on, 2012, pp. 1–7.
[16] M. L. Bernardi and G. A. Di Lucca, ―Improving Design
Patterns Modularity Using Aspect Orientation,‖ STEP 2005, p.
209, 2005.

[17]K. Sirbi and P. J. Kulkarni, ―Stronger enforcement of security
using aop and spring aop,‖ arXiv preprint arXiv:1006.4550, 2010.

[18]A. Rashid, ―Aspect-oriented requirements engineering: An
introduction,‖ in International Requirements Engineering, 2008.
RE’08. 16th IEEE, 2008, pp. 306–309.

.

