
 

)   133 ( 

 

 313-311ص/  …A new challenge to build an  application for design (  2مجلة جامعة  التنمية البشرية / العدد )        
 

 

A new challenge to build an  application for 

design Generative Design Pattern 
 

Mazen Ismaeel Ghareb 

Department of Computer Science 

University of Human Development  

Sulimanya, Iraq 

mazin.ismaeel@uhd.edu.iq 

mazen.ghareb@hud.ac.uk 

 
Abstract—A design pattern is used as a static reusable 

component of object oriented design in the many patterns 

catalogue. The regular design pattern does not show any 

collaboration of shared resource between patterns in the 

software design. But generative design pattern is a new 

design pattern that shows the relationship and shared 

resources between them. The generative design pattern is 

considered a dynamic and active design, which creating new 

design as a result of collaboration and resource usage 

between two designs. This paper will demonstrate benefit 

and the structure of generative pattern. It also demonstrates 

the creation of a desktop application for modeling 

generative design pattern. The Java language creates the 

desktop application. The application provides many 

features, for instance, users can place drawing objects such 

as class, Interface and Abstract Class object. The users also 

can draw different connection line between these objects, 

such as simple, inheritance, composition lines. This project 

shows the implementation details techniques of drawing 

objects and their connection. It also provides an open source 

code that many novice developers can understand and 

analysis for further development. The application source 

code gives the developers new ideas and skills in object 

oriented programming and graphical user interface in Java 

language. 

Keywords—Design Pattern, Generative Design pattern, 

Object Oriented Programming. 

I. INTRODUCTION 

The aims of this paper is to explain how to design, 

analysis, implement, test and evaluate a Java desktop 

application using new object oriented techniques which is 

called Generative Design Pattern. The application is 

capable of drawing and designing main components of 

generative design pattern. According to Dr. Dave he 

claims that this application in a few years will change the 

future of design in software development. It will make 

development process faster because it saves time and 

help to reuse the resources in their structure and make 

designing a software application more integrated. 
Design object-oriented software is difficult to 

produce. Designing reusable object oriented software is 
even more difficult. This is because it needs to find the 

related object in the classes, and define a class, interface 
and inheritance hierarchies, to establish a key relationship 
between them. The fundamental objectives are to achieve 
part of this application in three stages. The application 
should be able to drawing UML (Unified Modelling 
Language) notation such Class, Interface and Abstract 
class. It contains the feature of delete, move and select 
for all drawing components. Make three types of 
connection between them such as simple, inheritance, and 
composite connections. This development of this 
application divided into three stages, stage one describes 
problem contexts, solutions and the references which are 
used to identify the issue. During this period, the 
developer needs to meet the stakeholder and gather all 
requirements that needed to be delivered. . Adding to that 
mark, an investigative research about generative design 
pattern and understand it is structured and the available 
software that capable of design UML notations. Next 
stage deals with designing the application. The design 
procedure is accomplished by using Soft System 
Methodology SSM [ ], it illustrates the rich picture, class 
and sequence diagram of the application. Finally, in the 
third stage the implementation of the desktop application 
has been done by using the entire information on stage 
one and two. The implementation stage needs an 
advanced programming in object-oriented programming 
in Java, especially in graphics. It is recommended to 
conduct a research about different development method 
and choosing the suitable method. This project used 
Model Driven Architecture (MDA) development method 
which helps to deliver this application in three months‟ 
time [ ]. The implementation stage is very challenging; it 
needed dealing with generic objects in the Java language 
to store drawing objects such as a link list. It is vital to 
have a good knowledge of using the Integrated 
Development Environment (IDE) such as eclipse or 
NetBeans. The application development progress deals 
with developing a mouse listener event in Java language 
because all operations of the drawing object will be 
accomplished by mouse events [ ]. 

mailto:mazin.ismaeel@uhd.edu.iq
mailto:mazen.ghareb@hud.ac.uk


 

)   133 ( 

 

 313-311ص/  …A new challenge to build an  application for design (  2مجلة جامعة  التنمية البشرية / العدد )        
 

II. LITERATURE REVIEW 

Design object-oriented software is difficult to produce. 

Designing reusable object oriented software is even more 

difficult. This is because it needs to find the related object 

in the classes, and define a class, interface and inheritance 

hierarchies, to establish a key relationship between them. 

According to [ ] Fixed reused object-oriented design is 

hard to produce instantly. These patterns are used to solve 

design problem and make it more elegant, flexible and 

ultimate for reusing. Therefore the successful pattern will 

be used by designer in new design problem without the 

need to know about the pattern solution depending on 

successful usage. Each design pattern names explain, and 

evaluate recurring design in object oriented systems. It is 

easier to reuse successful design and architecture. It helps 

the developer to access them and choose the alternative 

design that improves the documentation and the 

maintenance of the system as well. 

Christopher Alexander has important contributions in 

design pattern. Who had a series of books in designing 

urban and town plan and architecture, these books 

inspired programmers to design object oriented from 

design pattern.  According to Alexander “To reach the 

quality without a name we must build a living pattern 

language as a gate “[ ].  He meant by that the quality of 

life cannot be made but only generated. For instance, 

when a thing is made, it has a will of the person who 

make it, but when it is generated, it is freely by the 

operations of self-image rules acting on real situations and 

generated. The gang of four which they had written a 

design pattern book said that each pattern describes a 

problem that repeated over and over in our environment. 

Then they describe solutions to those problems. These 

solutions can be used millions of times over and over, but 

not in the same ways twice [ ]. So as Christopher 

mentions a design pattern is a tool for improving existing 

code. It allows the writing of code to be easier to 

implement and maintain. It is used to improve efficiency 

and more importantly to improve the developer skills in 

designing and improve the qualities of products. It also 

allows to find a different solution to the same problem and 

giving a wider the scope of skills sets [ ]. Generally, 

pattern has four vital elements problem name, problem, 

solution and consequences. The name is used to explain 

design problem, its solutions and consequences in short 

name one or two words. Naming the pattern increases the 

vocabulary of the design. It gives designer higher level of 

abstraction. The problem is described when the pattern 

applied. The context of the problem might explain specific 

design issue such as how to represent algorithms as 

objects. The problem might describe the structure of a 

class or object that is indicative the unbreakable design. 

The solution of the design describes the element that 

makes it, with it is responsibilities, collaborations and 

relationships. This is because the pattern is a template that 

can be applied in many different situations so the solution 

does not describe an implementation of the problem. The 

consequences are the results of applying the pattern. The 

key issues for consequences are evaluating design 

alternative and understanding the cost and benefit of using 

the patterns. The software development processes deal 

with a time trade off, space, address of implementation 

and language issues [ ]. 

 

 

A.  Catalogue of design pattern 

A design pattern is different in their level of 
abstraction and difficult to understand software design. 
Therefore, gang of four define some of design patterns 
that have been used in object oriented design solutions 
[ ] 

Abstract Factory: It provides and interface for creating the 

depending object without specifying their main class. 

Adapter: It creates another interface by converting the 

class interface to clients and allow classes to work 

together, but in reality they cannot work together because 

of incompatible interfaces. 

Bridge: It decouples the implementation of two classes so 

they can vary independently. 

Builder: It creates a different representation of object 

construction by separation complex constructed from it. 

Command: It supports undoable operation by encapsulate 

an object. It is letting parameterize client with different 

requests. 

Composite: It composites objects into a tree structure. 

Allow client to treat the object individually and 

compositions of objects uniformly, and represent part or 

whole hierarchies. 

Decorator: Provide additional responsibilities‟ to object 

dynamically. It provides alternative flexible to sub 

classing in order to extend functionality. 

Facade: It gives higher level of interface that makes the 

subsystem easy to use. It creates a unified interface for a 

set of interfaces in a subsystem. 

Iterator: It helps to access elements of aggregate objects in 

sequence. Iterator implementation is invisible to the client. 

Observer:  It provides dependency between objects one-

many, when one object changes its state all other 

dependent object informed and changes their status 

automatically. 

Visitor: It defines new operation of element changing the 

classes. This operation is performed on the element of the 

object. There are many other patterns; therefore the best 

way is to organize them in order to understand how to use 

them. According to Gama they classify the pattern 

according to two criteria [ ]. A first criterion is the 

purpose which describes what the pattern does. A second 

criterion is the scope which specified the pattern applies to 

the classes or objects. In figure   displays the 

classification of the class depending on the purpose and 

the scope. 

http://library.books24x7.com.libaccess.hud.ac.uk/SearchResults.aspx?qdom=author&scol=%7ball%7d&qstr=Christopher%20G.%20Lasater


 

)   131 ( 

 

 313-311ص/  …A new challenge to build an  application for design (  2مجلة جامعة  التنمية البشرية / العدد )        
 

 

Figure    classification of the class depending on the 
purpose and the scope 

B. Generative Design Pattern 

Previously it has been explained that design pattern 

and the relationships between these patterns. Generative 

Design pattern defines these relationships. For instance, 

pattern „X‟ can use a pattern „ Y‟, associate with or can 

combine with.The result of these relationships creates new 

solutions in software development and create new designs 

from these collaborations. Dr. Wilson mentioned in his 

thesis that generative design pattern is a dynamic design 

pattern [ ] The generative pattern shows how Pattern „X‟ 

uses Pattern „Y‟ and collaborates with each other. And it 

is better than traditional design pattern that did not show 

any relationship between any of two design.He also 

describes it as dynamic design because it allows to share 

resources between collaboration design patterns. Also, it 

will reduce time during the implementation and provide 

new ways of solving software development problems. For 

instance Composite design pattern is defined as a 

generative pattern when related to Decorator Patten. The 

problem is that the composite pattern cannot implement 

collection of object in different shape, size or group. The 

solution that the client can draw objects and composite 

throw interface component that is implemented by all 

components. The collection that stores the composite 

object can be an Array List or vector. The related pattern 

is a Decorator Pattern. It added decoration and 

functionality to the object. The Decoration is applied to 

the object rather than being a part of it. The decoration 

design pattern can change the decoration of the object 

without affecting it. This is called decoupling from the 

object. This decoupling has helped to divide the system 

into independent units. The relationships between the 

composite and decoration design is described. When it is 

implemented both would have a component interface that 

combine into a single interface. The composite pattern 

will supply the collection element from the bolt patterns, 

while the decorator acts as an interface for concrete 

decorator components [ ]. Figure   shows the 

relationships between Composite and Decorator patterns. 
 

 

 
Figure   Composite and Decorator Relationships (Wilson,     ) 

That generative design pattern is used in generating 
code for parallel code for a distributed memory 
environment (Tan et al.,     ). It has also been used in 
design network applications and develops many network 
server applications [ ]. 

III. METHODOLOGY  

A. Development Method for the application 

There are common points between all of development 

methods. The methods are meeting user needs, analysis, 

design and implementation of the product. All these 

previous methods have been used in the development, 

generative design pattern application. However, there are 

some differences of this iteration in development 

generative design application. This change includes 

adding or removing extra steps of the method in order to 

save time, and produces higher qualities of software. In 

the generative application development method used more 

than one development method ideas, because it's 

developed by a solo developer and one stakeholder. The 

details of the development progress of generative design 

pattern are as follows. The first step that is needed is to 

gather information about the product. It required meeting 

with the stakeholder Dr. Dave Wilson that he explains the 

requirements. What is recommended for analysis the 

requirements are to study his thesis about generative 

design pattern [ ]. This application is to complex and 

challenging. So it has been decided to use a piece of 

sketcher Java application source code to save time and 

focus on the actual requirement of stakeholder, which is  

Ivor Horton‟s source code [  ]. The whole code has been 

analysis and understood. Then it has been updated 

according to the project objectives. The development 

method used an idea of Rapid application development 

ideas to speed up the process. Choosing prioritizes some 

requirement of the stakeholder and completed. After 

stakeholder feedback who asked me to speed up the 

development progress alternative method that has been 

chosen, because RAD wastes much time in it is iteration 

and its complex customization. The RUP development 

method has not been chosen in this software iteration 

process, because it is too complex and costly. While the 

MDA model Driven Architecture have been chosen and 

used as development method. This is because it is suitable 

to apply to this application and it could be configured with 

new requirements. MDA first stage is to work on free 

open source code which considers Platform Independent 

Model PIM. Then it is customized to the Integrated 

Development Environment (IDE) such as eclipse to create 

new Platform Specific Model PSM. However, other ideas 

for developing the methods have been discussed such as 

prototyping development method. For example, horizontal 

prototyping as it is described in figure   which shows each 

task implemented horizontally and thus continue until the 

task is finished. Stakeholder allocates new tasks every 

week after evaluating and accepting the previous task. It 

looks like horizontal prototyping because the tasks are 

developed with horizontal until the end. An Idea of using 



 

)   133 ( 

 

 313-311ص/  …A new challenge to build an  application for design (  2مجلة جامعة  التنمية البشرية / العدد )        
 

the source code as a beginning step to develop the product 

is taken from the extreme programming agile method. In 

summary, Generative Design Application uses the 

controversial development method, because it consists of 

different development method techniques. First MDA, 

Model Driven Architecture is used as a main development 

method structure. A second, horizontal prototyping 

technique has been used to deliver some weekly tasks. 

Third RAD Rapid Application Development has been 

used to speed up and deliver some of the requirements 

that requested by stakeholders. Finally, some ideas of 

agile method XP has been used to test many source codes 

and analysis them in the first stage of the application [ ]. 

 
Figure    Vertical and Horizontal prototyping  

       Generative Design Pattern (GDP) is a software 

application that allows the user to draw many different 

shapes such as Interface, class, Abstract class and can 

save the drawing into files. Users can draw some design 

pattern such as Composite, Decorator and Builder Design 

pattern. This software is a Preliminary idea to make a 

dynamic design pattern. It illustrates how to link two 

objects as a first step in this huge software to draw 

generative design pattern. The aim of this project is 

produced much functionality such as drawing multiple 

shapes and illustrates the connection between them and 

mixed all with each other. And finally produce generative 

design pattern. If all functionalities of GDP are not 

delivered on this project, new MSc students in the future 

will complete it. 

 

B. Software Development process 

A soft system methodology was developed by 

Professor Peter Checkland in university of Lancaster is the 

best member of developing the SSM methodology. The 

Aim of SSM is to understand and analysis the problem 

rather than solve it. SSM concern with Human Activities 

System HAS. HAS deals with defining activities that 

people involve in and the relationships between these 

activities. So Checkland divided the SSM into   stages 

[  ]: 

 - Unstructured problem situation. 

 - Expressed the problem. 

 - Root definition of the system. 

 - Construct a conceptual model. 

 - Comparing the conceptual model with real word. 

 - Describing the changes. 

 - Taking action after changes is implemented. 

Rich picture is used to represent stages one and two 

of SSM. It shows the relationships between all system 

components. The rich picture illustrates the problem with 

a simple module that all team members and stakeholder 

will easily understand and reflect on it. Rich Picture helps 

to address the problem in more details. Figure   shows 

the Generative Design Pattern Desktop Application rich 

picture.  

 
 
 

 

 

 

 

 

 

 

 

 
 
 

Root definition is the third stage in Checkland in SSM.  

It defines the structure description of the system. It is a 

clear statement of the activities of the organization being 

studied. Root definition, comprises three elements (What, 

How, Why). For instance X-What the system does. Y-

How it does it, and Z-Why is being done. To achieve 

these points CATWOE mnemonic helps to identify and 

categorize the stakeholders (People, Environment, 

Processes and Entities) to formulate the root definition 

[  ]. 

The CATWOE Mnemonic is describing blow: 

C-Customers or Clients: It describes the end user that 

receives the system and uses it. 

A-Actor: It deals with (People participate in the system. 

Usually who are responsible for transforming input to 

outputs). 

T-Transformation: It deals with what the system will do to 

the input and transform it to output. 

W-Weltanschauung (World view): It deals with the world 

view of the system. Putting the system in wider context 

and highlight the consequences of the whole system. 

O-Ownership: People who have the authority to decide on 

the future of the system. 

Adding to that if they want to stop the system or change 

the objective of the system usage.    

E-Environment constrains: It deals with the environmental 

constraints such as financial constraint, ethical limitation, 

regulation, resource limitation and limit set by term of 

reference. 

To apply these concepts on this application Design a 

Generative Design Pattern using Java desktop application 

the CATWOE is represented as follows: 

C-Customers or Clients: The stakeholder is Dr. Dave 

Wilson, MSc Students who are interested in using and 

design, generative design pattern and other School staff 

Figure   Rich Picture of Generative Application 

 



 

)   133 ( 

 

 313-311ص/  …A new challenge to build an  application for design (  2مجلة جامعة  التنمية البشرية / العدد )        
 

who their major is to deal with system development 

molding. 

A-Actor: The actor of this system designer, developers, 

project managers and other members who participate in 

software development process and responsibilities of 

design the software. This software will give them different 

idea of traditional software design. 

T-Transformation: The system will be capable of 

transforming design pattern to generative design pattern 

and show the different between them. 

O-Ownership: The developers of the application that can 

continue to develop the software, change the objective of 

it, or stop this project. 

E-Environment constrains in this Application there are 

many constraints such as financial constrain that the 

university could not support me with license software, 

resources the generative design pattern is a new subject 

and the resource is limited and regulated because this 

project must be delivered only by solo developer. 

The conceptual model is the fourth stage in Checkland 

definition. It is derived from root definition. Conceptual 

Model shows the minimum activities from human activity 

system. All elements of conceptual model should be 

driven from root definition. All the elements of CATWOE 

must be included in the conceptual model, with strong 

link are grouped together. The real world can be imposed 

on it to reveal discrepancies. Figure   shows the 

conceptual model. 

 
Figure   Conceptual Model Generative Design Pattern 

As it appears in conceptual model all elements of 

CATWOE is existed in it. The monitor of the system is 

important for controlling and evaluating the application 

objective and purpose. Conceptual Model evaluated by 

these measures below:  

E  (efficacy): are the Generative Design Patterns is 

created? 

E  (efficiency): How many Generative Design Pattern is 

produced, of what standard? 

E  (effectiveness): is the qualities of the Generative 

Design Pattern are useful for practitioners and users?  All 

these should be controlled and addressed to deliver good 

quality of this application. Stage Five and Six of 

Checkland will be concerned about how these activities 

will be carried out and compared with the real world. The 

Activities‟ might not exist in the real world. If not it 

requires changing the activities to meet the real world 

situation. 

C. Results and contributions 

Final Stage is deal with the recommendation for change 

being implemented [  ] The Development process Model 

Driven Architecture development method has been 

chosen. The source code has been updated to meet the 

requirement which is defined as a Platform Independent 

Model (PIM). PIM helps to build and develop other 

drawing object. Later Platform Specific Model (PSM) 

model is generated which is a part of PIM but it contains 

more details about specific models. After PSM and PIM is 

creating a relationship source code between them is 

developed to deliver drawing object. The relationship 

between PIM and PSM is considered as the challenging 

stage in MDA development method. Final stage of 

development PSM will produce the code and then it will 

be tested and repeat whole process until meets the 

requirements as it appears in Fig.   . However, another 

development method ideas are applied such as agile, 

Rapid Application Development and prototyping. 

 

 
Figure   MDA Development method for my Generative Design Pattern 

Application 

Finally, Graphical User Interface is used to draw 

Design Pattern in this application with all its functions as 

shown in figure  : 

 
Figure   Creating Generative Design Pattern stages 

 

In Figure   , it shows the project plan for delivering this 

application. 

 



 

)   133 ( 

 

 313-311ص/  …A new challenge to build an  application for design (  2مجلة جامعة  التنمية البشرية / العدد )        
 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 
Fig.    Project Plan Tasks schedules details 

IV. CONCLUSION  

The Proposal helps me to (SWOT) analysis, which is 

stand for Strengths, Weaknesses, Opportunities and 

Threats to choose Modeling Generative Design Pattern 

Project. I chose this project because it is a new subject in 

that does not have been done before in Computing and 

Engineering school. It was challenging because there was 

not many resources in the library to achieve this project. 

During the three months of this project I have learned and 

got many skills and experience as it shows below: 

 Working on advance graphical desktop application 

Graphical User Interface Programming (GUI). The 

supplication development gave me new skills of 

programming such as dealing link list components and 

working with the Abstract Windows toolkit in Java how to 

draw frames place many objects on it.  

 Developing many mouse action listeners such as 

mouse pressed, mouse entered, mouse exited and mouse 

click. It has been used generic which is a collection of 

elements as array list, which contains objects of drawing 

components. 

   I have used Integrative project model documents and 

lectures to manage development projects and lead the 

change when the implementation not meet the 

requirements. This model helps me in managing my 

project timetable. 

 Swing components are used in creating the new frame 

that allows dealing with many different packages and 

powerful component to create a connection point between 

two objects. It helps me to learn how to deal with hash 

map and how to call a method of executing commands 

using it. It is obvious from the project that it is challenging 

because of dealing with dynamic graphics objects to 

implement a new way of drawing and designing 

generative design pattern. 

 I have experienced in using Unified Model Language 

UML Diagram to develop it by installing new plug-in to 

eclipse tool called Object Aid. It allows converting the 

source code to UML notation which is saving time and 

accomplish the  tasks quicker [  ] 

  I have used much development research methodology 

which gave me good experience to apply many 

development methods in future implementation for my 

carrier. 

  The research that I have done with stakeholder gave 

me the abilities to challenge any other subject in the 

future. 

The Stakeholder accepts the proposal and like it, 

because it displays enthusiasm and challenging to deliver 

Generative Design Application. He is satisfied with the 

project and the applications. Modelling Generative Design 

pattern application approved by stakeholder. He has a 

positive feedback as a starting point application that 

delivered in this short period.  

Acknowledgment  
 I‟m thanking the University of Human Development 

Staff also all postgraduate students of Huddersfield 

University. Thanks to Dr. Dave Wilson for his support. 
 

References 
[ ] B. Bergvall-Kåreborn, A. Mirijamdotter, and A. Basden, “Basic 
principles of SSM modeling: an examination of CATWOE from a soft 

perspective,” Systemic Practice and Action Research, vol.   , no.  , pp. 

  –  ,    .  
 

[ ] A. G. Kleppe, J. Warmer, W. Bast, and M. Explained, “The 

model driven architecture: practice and promise,”     .  
 

[ ] P. Keegan, L. Champenois, G. Crawley, C. Hunt, and C. 

Webster, NetBeans (TM) IDE Field Guide: Developing Desktop, Web, 

Enterprise, and Mobile Applications. Prentice Hall PTR,     .  
 

[ ] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design 

patterns: elements of reusable object-oriented software. Pearson 

Education,     .  
 

[ ] C. Alexander, The timeless way of building, vol.  . Oxford 

University Press,     .  
 

[ ] C. G. Lasater, Design patterns. Jones \& Bartlett Publishers, 

    .  
 

[ ] D. Wilson, “A Framework for the Definiton of a Generative 

Design Pattern,”     .  
 

[ ] Z. Guo, J. Schaeffer, D. Szafron, and P. Earl, “Using generative 
design patterns to develop network server applications,” in Parallel and 

Distributed Processing Symposium,     . Proceedings.   th IEEE 

International,     , p.    a–   a.  
 

[ ] P. Beynon-Davies, D. Tudhope, and H. Mackay, “Information 

systems prototyping in practice,” Journal of Information Technology, 
vol.   , no.  , pp.    –   ,     .  
 

[  ] A. Platt and S. Warwick, “Review of soft systems methodology,” 

Industrial Management \& Data Systems, vol.   , no.  , pp.   –  , 
    .  
 

[  ] E. del Nuevo, M. Piattini, and F. J. Pino, “Scrum-based 

methodology for distributed software development,” in Global Software 
Engineering (ICGSE),       th IEEE International Conference on, 

    , pp.   –  .  
 

[  ] A. W. Brown, M. Delbaere, P. Eeles, S. Johnston, and R. 

Weaver, “Realizing service-oriented solutions with the IBM rational 

software development platform,” IBM systems journal, vol.   , no.  , 
pp.    –   ,     .  
 

[  ] M. Vӧlter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-

driven software development: technology, engineering, management. 
John Wiley \& Sons,     .  
 

[  ] L. Forite and C. Hug, “FASMM: Fast and Accessible Software 

Migration Method,” in Research Challenges in Information Science 

(RCIS),      IEEE Eighth International Conference on,     , pp.  –  . 

 

 


