Using Artificial Neural Networks and SPI Measure Techniques to Forecast the Risk of Drought in Iraq and Its Impact on Environment

Authors

  • Renas A.A. Nader College of Administration and Economics, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
  • Aras J.M. Karim College of Administration and Economics, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
  • Mohammad M.F. Hussien College of Administration and Economics, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq

DOI:

https://doi.org/10.21928/juhd.v4n2y2018.pp69-77

Abstract

The world suffers from drought, which has a negative impact on human, economic, social, cultural and tourism fields. As science progressed and developed, several ways of reducing drought were found. This phenomenon is also called (aridity and infertility, and water retention), it means a severe shortage of water resources due to low precipitation and low rainfall over a specific normal period time, which are causing heavy losses in agricultural production, and the occurrence of disasters and human calamities such as starvation, and it is forcing some population to emigrate collectively. The artificial neural networks (ANN) and the Standard Rain Index (SPI) were used in the analysis of the rainfall for all Iraqi governorates for the period 1991-2016 monthly. This study shows that the best model of the neural network is [19-3-1] according to AIC to forecast the amount of rainfall, and that the Iraqi provinces over next 10 years are exposed to a different behavior of climate between moderate dry and average humidity, and increase the area of ​​desertification.

References

المصادر العربية
الخياط ، باسل يونس وزكي ، عزة حازم .(2005)." استخدام الشبكات العصبية في التكهن بالسلسلة الزمنية لاستهلاك الطاقة الكهربائية في مدينة الموصل " ، المجلة العراقية للعلوم الإحصائية ، المجلد 5،العدد8 ،كلية علوم الحاسبات والرياضيات ، جامعة الموصل.
الصقال، أديبة اسماعيل وطاهر،غادة محمد .(2006)." استخدام الشبكات العصبية الاصطناعية وشجرة القرار في تشخيص امراض الفم " ، مجلة الرافدين لعلوم الحاسبات والرياضيات ، المجلد 3 ، العدد2،كلية علوم الحاسبات والرياضيات ، جامعة الموصل.
العبيدي ، محمودخليل ابراهيم (2000) ."الشبكات العصبية الاصطناعية"، مجلة ابحاث الحاسوب ، المجلد4، العدد1، الجامعة التكنولوجية ، بغداد .
الكسو ،ابتهاج عبد الحميد محمد علي .(2005): " استخدام الشبكات العصبية في تقدير رتب سلاسل ماركوف مع التطبيق على سلسلة جبل بطمة في محافظة نينوى "، اطروحة دكتوراه غير منشورة كلية علوم الحاسبات والرياضيات ،جامعة الموصل ،العراق.
الناصر،عبد المجيد حمزة والعبيدي ، مروان عبد المجيد . (2003)." استخدام الشبكات العصبية للتنبؤ المستقبلي بقيم السلاسل الزمنية غير المنتظمة في طول الموسمية "، المجلة العراقية للعلوم الإحصائية ،المجلد 3،العدد ،كلية علوم الحاسبات والرياضيات ،جامعة الموصل .
عيسى، علام زكي .(2000):" الشبكات العصبية، البنية الهندسية-الخوارزميات – التطبيقات"، الطبقة الاولى، شعاع للنشر والعلوم ، حلب، سوريا.
منظمة الاغذية والزراعة للامم المتحدة (2014)، وزارة الزراعة "الاستراتيجية الوطنية وخطة العمل لادارة الجفاف"
منظمة الامم المتحدة للتربية و التعليم ،مكتب العراق (2014)." الإطار الوطني للإدارة المتكاملة لمخاطر الجفاف في العراق دراسة تحليلية"
المصادر الانجليزية
Allende, Hector , Moraga, Claudio and Salas, Rodrigo (1999), "Artificial Neural Network in time Series Forecasting : A comparative Analysis", German Academic Exchange Service (DAAD) .
Andreescu ,Andrea.(2004)," Forecasting Corporate Earnings: A Data Mining Approach" , M.Sc. Thesis in Accounting The Swedish school of Economics and Business administration.
Christopher, M. Fraser (2000), Neural Networks : Literature Review From a Statiatical Perspective, CSU, Hayward, Statistics Department.
Everson, H. 1994, Using Artificial Neural Networks In Educational Research: some comparisons with statistical Models. Paper Presented At The Annual Meeting At The National Council On Measurement In Education. New Orleans, LA.
Ghodsian, M., Khosronejad, A. and Montazer, G.A.(2003)," Estimation of Scour Hold Properties Around Vertical Pile using ANNs" , International Journal of Sediment Research ,Vol 18, No. 4, PP.290-300.
Gilchrist, W. (1976). “Statistical Forecasting”, Department of Mathematics and Statistics Sheffield City Polytechnic, John Wiley&Sons, UK.
Gonzalez, J.M.B .& Desjandins, S.S.L. 2001 Artificial Neural Networks : Anew approach for Predicting Application Behavior. Paper presented At the Annual Meeting of The association For Institutional Research.
Hamilton, J. D. (1994). “Time Series Analysis”, Princeton University Press, New Jersey.
Johnson, R. A. and Wichern, W., (1996), Applied Multivariate Statistical Analysis (4th), New York: Patrice-Hell international.
Kaboudan, Mak (2005)," Computational Forecasting of two Exchange Rates", School of Business, University of Redlands , 1200 East Colton Avenue, Redlands , CA92373, USA.
KISI, ÖZGÜr (2005) , "Daily River Flow Forecasting using Artificial Neural Networks and Auto-Regressive Models", Turkish J. Eng. Env. Sci ., 9-20, © TÜBİTAK.
Kumar, D. Negesh , Raju , K. Srinivasa and Sathish , T. (2004) , "River Flow Forecasting using Recurrent neural Networks", Water Resources Management 18:1431-161.
Lin , Feng , Gregor , Shirley , Irons ,Richard and Yu ,Xing Huo . (1995) , "Time Series Forecasting with Neural Netwark", Complexity International (1995)2.
McKee B Thomas., Doesken J Nolan. and Kleist John, 1993, The relationship of drought frequency and duration to time scales, Proceedings of ninth Conference on Applied Climatology, American Meteorological Society, Boston, 179-184.
Moseley ,N. (2003) ,"Modeling Economic Time Series Using Afocused Time Lagged Feed Forward Neural Network", Proceeding of Student Research Day, CSIS,Pace University.
Mostafa, M. M., El-Refae, G.A. 2003, Forecasting the Suez Canal Traffic: A Neural Network And analysis, Arab Journal of Administrative Sciences. Kuwait University. 10 (3) : 387- 409 .
Nawzad M. Ahmed, (2007) “Forecasting Water Inflow and Electric Power Generation in Darbandi-khan Station By Using FFNN, and Adaptive Method In Time Series”, Phd. Thesis of Philosophy in Statistics, University of Sulaimani, Kurdistan Region – Iraq.
Zurada J. M., (1994) “Introduction to Artificial Neural Systems ” , Jaico Publishing House, Mumbai.

Published

2018-06-30

How to Cite

Nader, R. A., Karim, A. J., & Hussien, M. M. (2018). Using Artificial Neural Networks and SPI Measure Techniques to Forecast the Risk of Drought in Iraq and Its Impact on Environment. Journal of University of Human Development, 4(2), 69–77. https://doi.org/10.21928/juhd.v4n2y2018.pp69-77

Issue

Section

Articles