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1. INTRODUCTION

The basic aim of  cryptography is to transmit messages from 
one place to another in a secure manner. To satisfy this, the 
original message called “plaintext” is encrypted and sent 
to the receiver as “ciphertext.” The receiver decrypts the 
ciphertext to get the plaintext. This can be done using a 
cipher which is a tool that hides the plaintext and converts 
it to the ciphertext (and also can return back the plaintext 
from the ciphertext). Ciphers make use of  (cryptographic) 
keys that determine the relationship between the plaintext and 
the ciphertext. Cryptography can be considered as assemble 
from security and mathematics. It is used to protect important 
information and ensure that this information arrives to its 
destination in peace without violations. Ciphers gradually 

evolved from simple ones which are currently considered 
to be easily breakable such as Caesar cipher through more 
complex cipher algorithms such as the data encryption 
standard (DES) and the advanced encryption standard 
(AES) [1], [2].

On the other hand, cryptanalysis means trying to break any 
security system (or cipher) using unauthorized ways to access 
the information in that system. Thus, cryptanalysis works 
against cryptography. The cryptanalyst tries to find any 
weakness in the cryptographic system to get either the source 
of  information (plaintext) or the key used in the encryption 
algorithm. This process is called an attack. If  this attack is 
successfully applied, then the cryptographic system is said 
to be broken. Cryptography and cryptanalysis together form 
the field of  cryptology [3], [4].

In the recent decades, cryptography developed quickly 
because of  the development in computational resources which 
increased the speed and decreased the time of  encryption and 
decryption processes. This moved cryptography from solving 
by hand to more and more complex computer programs 
that need considerably long time and sophisticated attack 
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techniques to solve. Hence, instead of  using the simple Caesar 
cipher which needs no more than few minutes (or seconds) 
to be broken using brute force attack (trying every possible 
solution), we are using now more complex ciphers (AES, 
triple DES, etc.) that might need hundreds (or thousands) 
years to break using brute force attack with the current 
technology.

One important issue to mention is that despite the 
technological and mathematical complexity, the modern 
versions of  cryptosystems still follow the same classical 
concepts. Thus, it is still prudent to apply certain attacks 
on classical ciphers and study their evolution aspects 
before using them with more complex modern ciphers. 
This is quite justifiable considering the nature of  intelligent 
techniques such as GAs, artificial neural networks (ANNs), 
and evolutionary algorithms (EA).

Although several survey works can be found in earlier 
literature [5]-[7], more work is needed in this direction 
to shed the light on various aspects of  this kind of  
interdisciplinary research. The aim of  this paper is to review 
various applications of  intelligent techniques in cryptanalysis 
problems and to investigate some possible future research 
directions.

The remaining of  this paper is organized as follows: Section 2 
summarizes various types of  ciphers and cryptanalysis attacks 
in a generic way. The intelligent techniques of  ANNs, GAs, 
and evolutionary computation are reviewed and compared 
to each other in Section 3. Then, Section 4 reviews the 
application of  GAs in cryptanalysis of  classical ciphers. 
The issue of  classification or identification of  cipher type 
is considered in Section 5. Next, we present some insights 
regarding the future direction of  using spiking ANNs 
in cipher classification in Section 6. Finally, the paper is 
concluded in Section 7.

2. CLASSIFICATION OF CIPHERS AND ATTACKS

Cryptosystems can be classified in multiple approaches 
depending on various criteria. This can simplify the study of  
cryptography science and make it easier to understand and 
implement. At first, if  we take in consideration the amount 
of  data that can be encrypted at a time, we can then classify 
cryptosystems in two classes:[3]
1.	 Block ciphers, which encrypt block of  data at time like 

DES
2.	 Stream ciphers, which encrypt single datum (symbol, 

byte, or bit) at a time like Caesar cipher.

Second, it is also possible to classify cryptosystems according 
to the key used in encryption and decryption processes. 
In this case, we can put a cryptosystem under one of  the 
following:
1.	 Symmetric key ciphers, where the same key is used 

for encryption and decryption, for example, Vigenere 
cipher.

2.	 Public key ciphers, where one key is used for encryption 
and another one for decryption, for example, Rivest-
Shamir-Adleman system.

Third, we can classify cryptosystems depending on the history 
and time of  invention. Thus, we can put cryptosystems under 
one of  the following:
1.	 Classical ciphers, which are those ciphers used in the past 

and can be solved by hand. They became now breakable, 
for example, Caesar cipher

2.	 Modern ciphers, which are those complex (computerized) 
ciphers widely used currently and cannot be solved by 
hand, for example, AES.

Finally, another classification approach is to classify ciphers 
according to their building blocks. This approach is typically 
applied for classical ciphers to divide it into:[3]
1.	 Substitution systems, where every character is replaced 

by another one, for example, monoalphabetic ciphers
2.	 Transposition systems, where characters are rearranged 

rather than replaced, for example, columnar cipher.

It is also possible to further classify both of  the main two 
categories of  classical ciphers: Substitution and transposition 
ciphers. Transposition ciphers can be classified into sub 
classes:[3], [8]
•	 Single transposition: This type transposes one letter at 

a time, for example, the columnar transposition, route 
transposition, and grille transposition ciphers

•	 Double transposition: This type transposes more than 
one letter at a time.

Substitution ciphers can be classified into sub classes as 
follows:[3], [9]
•	 Monoalphabetic substitution ciphers: In this type 

of  encryption techniques, one letter of  plaintext 
is represented by one letter in ciphertext, and one 
ciphertext letter represents one and only one plaintext 
letter, so it is the simplest form of  substitution 
techniques. Monoalphabetic substitution includes direct 
monoalphabetic, reversed monoalphabetic, decimated 
monoalphabetic, and mixed monoalphabetic ciphers

•	 Polyalphabetic substitution ciphers: In this type of  
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encryption, one letter of  plaintext is represented by 
multiple ciphertext letters, and one ciphertext letter 
represents multiple plaintext letters. There are two types 
of  polyalphabetic substitution ciphers: Periodic (where 
there is a keyword repeating along plaintext like the 
Vigenere cipher) and non-periodic (where there is no 
repeating key, e.g., the running key cipher)

•	 Polygraphic substitution ciphers: In this type of  
substitution, more than one plaintext letters are 
encrypted at a time by more than one ciphertext letters. 
This includes digraphic, trigraphic, and tetragraphic 
ciphers. Examples of  these ciphers are the Playfair cipher 
and Hill cipher

•	 Homophonic substitution ciphers: In this type of  
substitution, one plaintext letter is represented by 
multiple ciphertext letters or characters, and every 
ciphertext letters or characters can only represent one 
plaintext letter, for example, the nomenclator cipher.

Furthermore, it is possible to define combinations of  
transposition and substitution ciphers to produce more secure 
systems. Such combinations are used to avoid the weaknesses 
in pure transposition and pure substitution systems. 
A classical example of  such combined ciphers is when we 
combine simple substitution with a columnar transposition. 
In modern cryptography, ciphers are designed around 
substitution and transposition principles simultaneously. 
Fig. 1 depicts various types of  classical systems.

Similarly, we can also classify cryptanalysis attacks. Actually, 
there are many types of  such attacks. Some of  them can 
be considered as general types, while others are specific for 
certain ciphers, protocols, or implementations. Here, we 
are not going to try to list all attack types rather we are only 
interested in some generic ways for classifying attacks. It is 
possible to generically classify attacks based on the amount 
of  information available to the attacker. The amount of  
information that attacker have is important to make any 
attack so the cryptanalyst should determine what is available 
in his hand. Accordingly, we are going to have cipher text 
only, known plaintext, chosen ciphertext, chosen plaintext, 
adaptive chosen plaintext, adaptive chosen ciphertext, and 
related key attacks. Alternatively, we might generically classify 
attack according to the computational resources (time, 
memory, and data) required by these attacks [3], [10].

3. INTELLIGENT TECHNIQUES

In this section, we review the relevant intelligent techniques 
of  ANNs, genetic algorithms (GAs), and evolutionary 
computation. We also give a brief  comparison on their 
characteristics an application scope.

A. ANNs
ANNs are numerical models that use a gathering of  basic 
computational units called neurons that connect with each 
other to build a network. There are many types of  ANNs; each 
type is suitable for one or more problems depending on the 
problems itself. Hence, the important thing in ANNs is how 
to design the topology of  ANN that can better describe the 
problem then solving it using very simple principles to obtain 
very complex behavior [5], [11]. ANNs can model human 
brains and use nervous system to solve the problems by 
learning it with true examples and giving a chance to generalize 
all solutions. Since the nature of  ANNs that simulate the brain 
and use parallel processing rather than serial computation, 
we can put ANNs in multiple fields according to the huge 
capabilities that ANNs can introduce. These fields include 
classification, approximation, prediction, control, pattern 
recognition, estimation, optimization, and others.

When using ANN for solving a problem, the following 
steps should be chosen carefully to make ANN works in an 
effective way: Design of  ANN topology, choosing suitable 
learning way, and setting the inputs. There are many ANN 
topologies such as:[12]
•	 Feed-forward ANNs
•	 Recurrent ANNs
•	 Hopfield ANNFig. 1. Most important classical cipher types



Sufyan T. Al-Janabi et al.: Intelligent Techniques in Cryptanalysis: Review and Future Directions

4	 UHD Journal of Science and Technology | April 2017 | Vol 1 | Issue 1

•	 Elman and Jordan ANNs
•	 Long short-term memory
•	 Bi-directional ANNs
•	 Self-organizing map
•	 Stochastic ANN
•	 Physical ANN.

There are three generations of  neuron models [13]. The 
first generation of  ANNs also called perceptrons, which are 
composed each of  two sections: Sum and threshold. The sum 
part receives input from a set of  weighted synapses. Then, 
it performs a threshold function on the result of  the sum. 
The input and the output have values that may be equal to 
either 0 or 1, as shown in Fig. 2.

The second generation of  ANNs is composed by two stages:
•	 Sum of  values that are received through weighted 

synapses
•	 Sigmoid function evaluator whose input is the result 

of  the sum previously computed. In this generation, 
the inputs can be any real-valued number, and the 
output is defined by the transfer function. For example, 
the sigmoid unit limits outputs to [0; 1], whereas the 
hyperbolic function produces outputs in the range [1; 1], 
as shown in Fig. 3.

The third generation of  ANNs is composed by spiking 
neurons: Neurons which communicate through short signals 
called spikes. This generation has two main differences when 
compared with the previous two generation. At first, this 
generation introduces the concept of  time in the simulation, 
while earlier, the neural networks were based on abstract steps 
of  simulation. Second, such neurons present similarities to 
biological neurons, as they both communicate using short 
signals, which in biology are electric pulses (spikes), also 
known as action potentials, as shown in Fig.  4. The spike 
train generation can be Gaussian receptive fields [14], Poisson 
distribution [15], or directed spike generation [16]. Indeed, 
the applied training algorithm for ANNs is usually the 
backpropagation [17], while spiking ANNs use Spikeprop [18].

B. GAs
GAs are considered to be one of  the best ways to solve a 
problem, for which there is only a little knowledge. Hence, 
they work well in any search space. All that is required know 
is what the solution is needed to be able to do well, and a 
GA will be able to create a high-quality solution. GAs apply 
the both principles of  selection and evolution to produce 
several solutions to a given problem [19].

GAs are better applied in an environment in which there is a 
very large set of  candidate solutions and in which the search 
space is uneven and has many hills and valleys. Although 
GAs will do well in any environment, they will be greatly 
outclassed by more situation-specific algorithms in the 
simpler search spaces. Therefore, GAs are not always the best 
choice. Sometimes, they can take quite a while to run and 
are therefore not always feasible for real-time use. However, 
they are considered to be among the most powerful methods 
with which to (relatively) quickly create high-quality solutions 
to a problem. The proper selection of  appropriate mutation 
operators and fitness functions is necessary for implementing 
a successful attack [19], [20].

In fact, GAs are adaptive heuristic search algorithms based 
on the evolutionary ideas of  natural selection and genetics. 

Fig. 2. The first generation of artificial neural networks[13]

Fig. 3. The second generation of artificial neural networks[13] Fig. 4. The third generation of artificial neural networks[13]
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Thus, they represent an intelligent exploitation of  a random 
search used to solve optimization problems. They exploit 
historical information to direct the search into the region 
of  better performance within the search space. The basic 
techniques of  the GAs are designed to simulate processes 
in natural systems necessary for evolution, especially those 
follow the principle of  “survival of  the fittest.” This is 
based on our understanding of  nature where competition 
among individuals for scanty resources results in the fittest 
individuals dominating over the weaker ones [19].

C. Evolutionary Computation
Simply, evolutionary computation simulates evolution on 
a computer. The result of  such a simulation is a series of  
optimization algorithms. These are usually based on a simple 
set of  characteristics. Optimization iteratively can improve 
the quality of  solutions to some problem until an optimal (or 
at least feasible) solution is found. Evolutionary computation 
is an umbrella term that includes GAs, evolution strategies, 
and genetic programing [21].

D. Differences Between ANNs, Gas, and Evolutionary 
Computation
An ANN is a function approximator. To approximate a 
function, you needs an optimization algorithm to adjust 
the weights. An ANN can be used for supervised learning 
(classification and regression) or reinforcement learning and 
some can even be used for unsupervised learning.

GAs are an optimization algorithm, in supervised learning, 
a derivative-free optimization algorithm like a GA is slower 
than most of  the optimization algorithms that use gradient 
information. Thus, it only makes sense to evolve neural 
networks with GAs in reinforcement learning. This is known 
as “neuroevolution.” The advantage of  neural networks 
like multilayer perceptrons in this setup is that they can 
approximate any function with arbitrary precision when they 
have a sufficient number of  hidden nodes.

An EA deploys a randomized beam search, which means your 
evolutionary operators develop candidates to be tested and 
compared by their fitness. Those operators are usually non-
deterministic and you can design them, so they can both find 
candidates in close proximity and candidates that are further 
away in the parameter space to overcome the problem of  
getting stuck in local optima.

EAs are slow because they rely on unsupervised learning: 
EAs are told that some solutions are better than others but 
not how to improve them. Neural networks are generally 

faster, being an instance of  supervised learning: They know 
how to make a solution better using gradient descent within 
a function space over certain parameters; this allows them to 
reach a valid solution faster. Neural networks are often used 
when there is not enough knowledge about the problem for 
other methods to work.

4. CRYPTANALYSIS OF CLASSICAL CIPHERS 
USING GAS

There are many approaches and tools that are used in the 
field of  cryptanalysis. One of  the successful approaches 
that achieved promising results is based on GAs. This is 
mainly due to the nature of  GAs that allow reducing the big 
size of  solutions, leading to optimal or likely best solution 
from this group of  solutions. GAs use fitness function to 
evaluate each solution then select the best one or best group 
of  solutions to generate other children solutions and so 
on until the cipher is broken. In this section, we report on 
some interesting aspects of  applying GAs in cryptanalyzing 
classical ciphers.

A. Cryptanalysis of Monoalphabetic Substitution Ciphers
The GA attack on such cipher can be implemented by 
generated initial keys consisting of  permutation of  the set 
of  letters. These keys are generated randomly, and after 
encrypting using each generated key, we can measure the value 
of  fitness of  each key. Then, pairs of  these keys which have 
a high fitness value are selected and crossover operation then 
is used between selected keys to produce new enhancement 
child keys. After crossover operation is completed, some keys 
are selected to mutation to enhance the attributes of  it by the 
choice of  a random point in a selected key and replacing it 
with another point. After the two operations are completed, 
the loop is repeated until the end with suitable stopping [22].

B. Cryptanalysis of Playfair Cipher
For attacking the Playfair cipher using GAs, we should 
determine the individuals which contain one possible key 
of  the cipher and each individual has its fitness value. One 
individual is represented as a matrix of  5*5 positions that 
contain the characters of  alphabets distributed randomly. 
After the generation of  the individuals is completed, the 
selection operation begins according to each individual 
fitness, so the individual has a highest fitness value that is 
put in the beginning of  the rank. After selection process is 
completed, the reproduction or crossover operation will begin 
to produce new children key that may has attribute better than 
its parents. The crossover operation is implemented by filling 
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the positions of  the child with character of  the parents or 
mutating the child by replacing characters positions locally. 
The loop continues until meeting the stopping condition.

However, the recovery of  the plaintext is not easy to 
implement usually, for several reasons. One is that words 
that have double letters may not be counted correctly, due 
to the fact that the double letters might be split up. Second, 
because I and J share a position in the key (typically), all 
the words that have Is and Js in them have to be checked 
using both letters, if  the dictionary is fully implemented. 
Third, the plaintext has no white space to delimit words 
so being able to tell where words end and begin can be 
difficult [23].

C. Cryptanalysis of Vernam Cipher
GAs can be used for attacking the Vernam cipher by building 
a dictionary of  words that consist of  words that are frequently 
used in English (e.g., they, the, and when). Then, the fitness 
value is calculated according to the following steps:[24]
1.	 Initialize the parameters of  the GA and maximum 

number of  iteration
2.	 Generate random keys which are the population of  

chromosomes as the 0th generation; each key is a vector 
with size equal to ciphertext size

3.	 Decrypt the ciphertext by all generated keys
4.	 Calculate the fitness function for each chromosome by 

adding the square value of  repeated three letters and 
four letters which are available in built dictionary. The 
calculation of  fitness function deals with the probability 
of  existing of  the three and four letter words in normal 
English

5.	 Sort the keys based on decreased fitness values
6.	 Apply the crossover operator to the parent keys and 

produce a new generation. Here, a simple two-point 
crossover can be performed. Furthermore, apply 
mutation operation by generating two random positions 
and replace the two letters in these positions by others 
letters randomly

7.	 The best key is used to decrypt ciphertext to get the 
best-decrypted text.

D. Cryptanalysis of Vigenere Cipher
To attack Vigenere cipher using GAs, we should determine 
the number of  attributes that the GA takes as parameters 
or inputs such as population size, number of  individuals 
tenured per generation, number of  random immigrants per 
generation, number of  generations, key length, maximum key 
length, ciphertext length, known text length, and number of  
runs per mutation operator combination. These parameters 

may be used together or some of  them might be ignored. 
The key length parameter is very important, so it must be 
firstly identified [25].

E. Cryptanalysis of Transposition Ciphers
GAs are very useful to break classical transposition ciphers 
by finding the sequence of  characters that the transposition 
cipher used. This particular class of  algorithms can be 
used because the automated breaking of  such ciphers 
is very difficult. In spite of  that, a number of  statistical 
tools aiding automated breaking have been developed for 
substitution ciphers, cryptanalysis of  transpositions is usually 
considered to be highly interventionist and demands some 
knowledge of  the likely contents of  the ciphertext to give 
an insight into the order of  rearrangement used. Thus, 
genetic cryptanalyst enables a known plaintext attack to be 
successfully made, based on only small portion of  some 
plaintext/ciphertext [26].

5. IDENTIFICATION OF CLASSICAL CIPHER TYPE

The typical sequence of  steps needs to be followed by 
cryptanalyst to break any cryptosystems is:[27]
1.	 The cryptanalyst should determine if  the text encrypted 

by any cipher or it is compressed or generated randomly
2.	 The cryptanalyst should determine the language of  the 

text
3.	 The cryptanalyst should determine the type of  cipher 

used in encryption process
4.	 The cryptanalyst should determine the key used in 

encryption process
5.	 The cryptanalyst then uses the key with encrypted data 

to extract the original data.

When the cryptanalyst wants to identify the cipher type 
(having just a ciphertext), he/she should extract some 
features that can lead to estimating the type of  cipher. The 
list below shows a group of  features that may help the 
cryptanalyst in the estimation process:
1.	 Frequency analysis: Every language has frequency 

characteristics for its characters such that each character 
has repeating ratio recognizing it from other characters 
in normal texts. In English, for example, the letter “e” 
has the greatest frequency ratio (12.70), but the letter 
“x” has the lowest (0.15) [8]. Frequency analysis can be 
done based on single letter frequency and/or multiple 
letter frequency (double, triple, etc.). Fig.  5 depicts 
the typical frequency distribution of  single letters in 
normal English text. Frequency analysis is very useful 
in differentiating between transposition ciphers and 
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substitution ciphers. Frequency analysis can be used in 
three main directions:[28]
•	 The first one is to compute the frequency of  

ciphertext letters and compare it with the frequency 
of  the original data such that compare the frequency 
of  the letter in ciphertext and natural text and 
compute the changing in two texts

•	 The second direction is to compute the frequency 
of  ciphertext letters and find which letters in normal 
text have the same repeating ratio such that if  the 
letter “j” in ciphertext has the same repeating ratio 
of  the letter “a” in the original text, we can say the 
letter “a” is encrypted by the letter “j.”

•	 Third one is to use frequency analysis to compute if  
there is any shifting occurs in ciphertext characters 
such that when the letter “x” gives the same ratio 
of  letter “a,” this indicates that possibly the Caesar 
cipher which encrypts “a” by “x” has been used

2.	 Ciphertext length: The length of  ciphertext plays an 
important role in identification of  cipher type where 
some ciphertext length is exactly divisible by 2 like the 
Playfair cipher case. Other ciphers (e.g., Hill cipher) can 
produce ciphertext length divisible by 3, etc.

3.	 Ciphertext characters number: Some ciphers employee 
few number of  characters such the Baconian cipher 
which uses just two letters “a” and “b” in encryption 
process and the Playfair cipher that uses 25 letters

4.	 Repeating sections: Periodic polyalphabetic substitution 
ciphertext has repeating sections with a constant 
period. This feature can help to identify this type of  
ciphers [29], [30]

5.	 AB-BA feature: Ciphertext may contain double sections 

with its reverse such as “xy” and “yx.” This feature 
appears in ciphertext produced from Playfair cipher [31]

6.	 Ciphertext characters type: Some ciphers employee just 
letters in encryption process another cipher employee 
letters and numbers [9]

7.	 Adjacent characters: It can be useful to check if  there 
are any adjacent characters have the same value [28].

6. FUTURE RESEARCH DIRECTIONS

This work lies within a larger team project aiming to 
design and implement a general cryptanalysis platform 
for pedagogical purposes. Considering the architectural 
design of  the proposed general cryptanalysis platform, the 
platform has a number of  components or modules including 
the supervisory module, the crypto-classifier, parallel 
cryptanalysis modules, feedback and reporting module, 
graphical analyzer, and the steganography module. Here, 
we are mainly interested in the crypto-classifier module that 
is responsible for the identification and classification of  the 
ciphertext type. At least, two levels of  classification need to 
be implemented:[32]
1.	 Level 1 crypto-classifier: In this module, a first level 

classification of  the considered ciphertext needs to be 
done so as to decide the general cryptographic category 
(e.g., classical cipher, block cipher, and public-key cipher) 
of  it. Information obtained from various resource need 
to be used, and some intelligent classification techniques 
(such as artificial intelligence, genetics, and neural 
networks) have to be developed

2.	 Level 2 crypto-classifier: In the second level of  
classification, specific algorithm(s) or cipher(s) should 

Fig. 5. Frequency distribution of single letters in normal English text[28]
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be assigned for the ciphertext in accordance with the 
classification done at the first level. For example, if  the 
classifier of  level 1 deduced that the ciphertext belongs 
to the category of  block ciphers; level 2 classifier job 
is to decide which specific block cipher has been used 
(e.g., DES, AES, and Twofish). Besides the information 
deduced by different means, some distinguishing 
characteristics for different ciphers must be known.

Concerning the future research, we are specifically 
interested in using the estimation capabilities of  ANNs to 
identify the ciphers type. As mentioned previously, ANNs 
use parallel processing rather than serial computation. This 
behavior may enable us to move from typical statistical 
techniques of  analyzing any cipher to more powerful 
generations that provide many solutions at a time. Thus, 
the analyzing process will depend on how to model ANN 

Fig. 6. Data flow of the proposed artificial neural network-based cipher identification process
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in the correct way and manage the training processes 
rather than spend the time in mathematical computation 
of  the cipher. Fig. 6 shows the data flow of  the proposed 
estimation process.

The ANN box will have two types of  inputs; the first one is 
a group of  training data and the second is a group of  testing 
data. These two groups are managed by ANNs to correct 
errors produced from estimation process. ANNs would use 
supervised learning to estimate the cipher type. The number 
of  neurons in the input, hidden, and output layers depend 
on the number of  ciphers used and how much the analyst 
can extract features from ciphertext.

Several previous works on using ANNs and other techniques 
for cipher type classification can be found [33]-[37]. However, 
to the best of  authors’ knowledge, we could not see specific 
previous work on using spiking ANNs for this task. Hence, 
our focus will be directed to this specific application of  
spiking ANNs. In the first stage, classification of  classical 
ciphers will be considered. In the next stages, other modern 
cipher types will be taken into consideration also.

7. CONCLUSION

This work is mainly concerned in building automatic tools 
for various cryptanalysis tasks. This definitely requires the use 
of  suitable intelligent techniques such as GAs and ANNs. 
The focus here has been on using GAs for cryptanalysis 
of  classical ciphers and adoption of  ANNs for cipher type 
identification. More specific results of  cipher classification 
based on spiking ANNs are going to be presented in a 
subsequent paper.
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