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1. INTRODUCTION

The identification of  canonical regions plays a crucial role 
in conformal mappings of  multiply connected regions. 
The regions identified as canonical include the disk with 
circular slits, the annulus with circular slits, the circular slit 
region, the radial slit region, and the parallel slit region. 
Furthermore, additional canonical regions for conformal 
mappings include the disk with spiral slits region, annulus 
with spiral slits region, spiral slits region, and straight 
slits region [1]-[13]. Nasser’s method of  computing 
conformal mapping is based on Riemann-Hilbert problem 

[2], [5], [14], while Sangawi’s methods rely on integral 
equations satisfy the interior non-homogeneous boundary 
relationship [8]-[12].

The canonical slit regions introduced by Koebe [1], DeLillo 
et al. [15], and Nasser [5] are special cases of  the spiral 
slits region. Sangawi [9]-[11] and Sangawi et al. [12] have 
demonstrated conformal mapping of  bounded multiply 
connected regions onto the second, third, and fourth 
categories of  Koebe’s canonical slit regions using a boundary 
integral equation method. In Nasser [14] study, the study 
of  bounded multiply connected region onto the disk with 
rectilinear slit and spiral slits region was facilitated by 
reformulating the conformal mapping as a Riemann-Hilbert 
problem. The present paper aims to establish a new boundary 
integral equation method for numerical conformal mappings 
from Ω onto Ω1 and Ω2.

The design of  the study is as follows: Section 2 presents some 
necessary materials. A derivation of  integral equation method 
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for computing the function  has been presented in 
Section 3. The boundary integral equation method has been 
illustrated through examples provided in Section 4. Lastly, 
Section 5 comprises of  the conclusion.

2. NECESSARY MATERIALS

A bounded multiply connected region Ω of  connectivity M + 1. 
The boundary Γ consists of  M + 1 smooth Jordan curves 
Γι,ι=0,1,…,M as demonstrated in the following, (see Fig. 1)

The curve Γι is parametrized by a 2π periodic twice 
continuously differentiable complex function ξι (t)
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Assuming ˆ  ( )  A t is a complex function that is continuously 
differentiable with a periodicity of  2π ∀t∈Iι. The generalized 
Neumann kernel that is formed using Â can be described as[16]:
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The classical Neumann kernel is the generalized Neumann 
kernel formed with ( )  1ˆ  A t = , i.e.
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The adjoint kernel N* (s,t) of  the Neumann kernel is as 
follows:
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The generalized Neumann kernel N s t( ,� )  is as follows:
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Refer to Sangawi [10] for the definitions of  N, N  and N*.

3. INTEGRAL EQUATION METHOD FOR COMPUTING 
THE FUNCTION 𝓕

The canonical region can be described as a disk with a finite 
straight slit along the line where Im F �=0 , as well as M−1 
finite spiral slits. Additionally, there is a rectilinear slit, which 
refers to a slit that lies on a straight line.

Im � � � ,� � ,� � ,e r ri−  = ∈  �R

The variable α represents the angles of  intersection 
between the line and the real axis. There is also a spiral 

Fig. 1. Mapping of Ω onto Ω1 and Ω2.



Sangawi Ali W. K.: A Boundary Integral Equation Method

94 UHD Journal of Science and Technology | Jan 2023 | Vol 7 | Issue 1

slit, which refers to a slit that is located on a logarithmic 
spiral.

Im l o g� � � , ,� � ,e r ri−  = ∈  �R

Where the oblique angles α are prescribed in advance.

Assume that the function  �� �  maps the curve Γ0 onto the 
circle with radius e R− 0 , the circle Γ1 onto a finite rectilinear 
slit that lies on the line where Im � F( ) � �( ) =0 , and the 
curves Γι, where ι=2,…,M, onto M−1 finite spiral slits with 
oblique angles θι,ι=2,…,M. Therefore, the mapping function 
that transforms Ω onto Ω1 and Ω2 fulfills the following 
conditions.
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ρ is a radius of  Γ1 c=1 for Ω1, c=0 for Ω2, ĥ (ξ) is an analytic 
function in Ω1 for c=1 and ĥ (ξ) is an analytic function in Ω2 
for c=0. And then define S(t) by,
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From the definitions of   ( )  and  ( )  we obtain,
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We reach the following from (7):
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In the light of  [14, Theorem 2], (20) is uniquely solvable. 
S t
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hι is obtained through solving (13) and (11) in Sangawi [11] 
from which rι is provided through (16). Having solved (20) 
we are granted the value S t
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equations (37), (38) and (12) in Sangawi [11] from which ˆ  
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Using the Cauchy integral formula, the interior value of  
 ( )  is determined.

4. NUMERICAL EXAMPLES

Nyström’s method alongside the trapezoidal rule [17] 
[18] was used to solve (13) in Sangawi [11] and (20). The 
computational details are almost identical to [19], [20].

Some test regions of  connectivity three, four, and seven 
have been used for numerical experiments [14]. MATLAB 
R2020a was used to carry out all the computations. In each 
boundary Γj the same number of  collocation point has been 
used. Ω, Ω1 and Ω2 are shown in Figures 2-4. Tables 1-3 
exhibit our computed values of  rι,ι=0,…,6 compared to 
those of  Nasser [14].
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Example 1
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Table 1 give the computed values of  r and Ω, Ω1 and Ω2 are 
shown in Figure 2.

Example 2

The region Ω bounded by four multiply connected region, 
Nasser [14],

Γ0 4 2 4� :� � � � � � � � � ,� � t c o s t s i n t e i t( ) = + +( ){ }
Γ1 � :� � � ,� � t e i t( ) ={ }−

Fig. 2. Mapping Ω onto Ω1 and Ω2 with three connectivity.

Fig. 3. Mapping Ω onto Ω1 and Ω2 with four connectivity.

Fig. 4. Mapping Ω onto Ω1 and Ω2 with seven connectivity.
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Fig. 5. Ω, Ω1 and Ω2 with high connectivity.
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Γ3 1 0 25 4
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The values of  rι,ι=0,…,3 are listed in Table 2 and Ω, Ω1 and 
Ω2 are shown in Figure 3.

Example 3

The region Ω bounded by seven multiply connected region, 
Nasser [11],
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The values of  rι,ι=0,…,6 are listed in Table 3 and Ω, Ω1 and Ω2 
are shown in Figure 4. Some more examples are shown in Fig. 5.

5. CONCLUSIONS

The present study proposes a new boundary integral equation 
for the conformal mapping of  multiply connected regions 
onto the disk with rectilinear slit and spiral slits regions, Ω1 
and Ω2. We used the proposed method to compute several 
mappings of  some test regions and computed the boundary 
values of  the mapping function. The interior mapping 
function was then determined using Cauchy’s integral 
formula. Numerical examples were provided to demonstrate 
the high accuracy of  the boundary integral equation method.
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Table 1: Computed values of rι,ι=0,1,2
Computed values of rι,ι=0,1,2 for Ω1

n r0 r1 r2

32 1.53579417691881 0 −0.570199621240809
64 1.53579417442883 0 −0.570199620799919
128 1.53579417442883 0 −0.570199620799919

Computed values of rι,ι=0,1,2 for Ω2

n r0 r1 r2

32 1.40674522978284 0 −0.174539534772558
64 1.40674523035241 0 −0.174539535774301
128 1.40674523035241 0 −0.174539535774301

Table 2: Computed values of rι,ι=0,…,3 with n=128
Computed values of rι,ι=0,…,3 for Ω1

rι Proposed method Presented method in 
Nasser [11]

r0 0.632297599993722 0.632297593480685
r1 0 0
r2 0.89615354957018 0.896153544382371
r3 0.47224415769662 0.472244154231282
Computed values of rι,ι=0,…,3 for Ω2

r1 Proposed method Presented method in 
Nasser [11]

r0 0.260931620532661 0.260931605731473
r1 0 0
r2 2.13317552874793 2.13317551821617
r3 0.100276605317663 0.100276596055608

Table 3: Computed values of rι,ι=0,…,6
Computed values of rι,ι=0,…,6 for Ω1

rι Proposed method Presented method in 
Nasser [11]

r0 1.23570971232484 1.235709712326
r1 0 0
r2 0.390611187505815 0.390611187504613
r3 −1.12990942307151 −1.12990942307163
r4 −0.537364361903202 −0.537364361903388
r5 0.590670832485013 0.590670832470072
r6 −0.43049693297431 −0.430496932984193
Computed values of rι,ι=0,…,6 for Ω2

rι Proposed method Presented method in 
Nasser [11]

r0 0.967817156520659 0.967817156521745
r1 0 0
r2 −0.202389826842849 −0.202389826843975
r3 −1.56125001631144 −1.56125001631162
r4 −1.05242061198575 −1.05242061198594
r5 −0.0844703418222131 −0.0844703418361004
r6 −1.2703736171962 −1.27037361720976
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