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ABSTRACT

A significant challenge and threat to public health have been created by the COVID-19 pandemic for the entire global
population. The study aimed to compare the SARS-CoV-2 RNA detection capabilities of available primers and probes
to identify the most reliable, efficient, and affordable method. From 200 previously detected samples of SARS CoV-2,
94 samples were selected randomly and used for the optimization of our primers and probes. We compared our results
with two kits that have been approved by the health authority. In addition, we evaluated the detectability of each gene.
The study compared the diagnostic performance of different gene combinations for COVID-19 detection using kits A
and B and a novel approach combining RdRp, N, and E genes. Results showed that the combined approach exhibited
superior discriminatory power, particularly with the inclusion of the £ gene, boasting area under the curve (AUC) values
of 83.3%, 79.1%, and 93.7% for the respective genes. Kit B, with Orf1lab and N genes, outperformed Kit A (RdRp
and S genes), with AUC values of 81.2% and 90.6% versus 80.2% and 75%, respectively. The chart representation
highlighted gene detection frequencies across various cycle threshold (Ct) ranges, demonstrating robust identification
within the 20.1-30 Ct range across all kits and genes, emphasizing the reliability of detection within specific intervals.
Combining RdRp, N, and E genes showed the highest accuracy for COVID-19 diagnosis, particularly with the £ gene.

Detection was most reliable within the 20.1-30 Ct range across all gene combinations and Kkits.

Index Terms: SARS-CoV-2, RdRp Gene, E Gene, N Genes, Kit Comparison

1. INTRODUCTION

Coronaviruses cause various illnesses from common colds
to severe diseases such as syndrome coronavirus 2 (SARS-
CoV) and COVID-19. These viruses carry a single-stranded
RNA genome ranging from 26 to 32 kb. They are classified
into four genera — Alpha, Beta, Gamma, and Delta, and they
infect both humans and animals, with around 30 species
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found across human, mammal, and bird samples. Human
coronaviruses fall into alpha and beta species [1]. Following
229E, NL63, OC43, HKU1, Middle East Respiratory
Syndrome (MERS)-CoV, and the initial SARS-CoV outbreaks,
SARS-CoV-2 marks the eighth known coronavirus to impact
human populations [2].

The SARS-CoV outbreak in 2002-2003 stemmed from
class B beta-coronaviruses originating from bats, whereas
the MERS resulted from a class C beta-coronavirus linked
to camels in 2012 and beyond [3]. The pneumonia case
identified in Wuhan, China, in late December 2019, initially
attributed to a coronavirus due to respiratory symptoms, was
designated as severe acute respiratory SARS-CoV-2 by the
World Health Organization [4], [5].
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The novel virus’ genomic sequence is 96.2% identical to
that of the bat. In Wuhan, China, researchers discovered
the SARS-related coronavirus (SARStCoV; RaTG13), which
contains a genome that is not entirely identical to either the
SARS-CoV (about 79%) or the MERS-CoV (about 50%)
genomes [6], [7].

Developing specific primers and probes in regions with
minimal similarity to other viruses is crucial to avoid
misidentification of SARS-CoV-2 [8]. As the most sensitive
and specific assay, real-time reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) is the “gold standard”
diagnostic technique for the detection of SARS-CoV-2
infection [9].

SARS-CoV-2 displays the typical genome organization of
the B-coronaviruses. There are 14 functional open reading
frames in the genome, including two noncoding regions at
each end and other areas that code for structural, accessory,
and nonstructural proteins [10].

This study aims to detect SARS-CoV-2 using various probes
and primers that target different genes (such as RdRp, L,
and NN genes) through reverse transcription real-time and
conventional PCR assays. The goal is to compare the efficacy
of these primers/probes in detecting SARS-CoV-2 RNA
and identify the most accurate, speedy, and cost-effective
detection method.

2. MATERIALS AND METHODS

2.1. Sample Collection

Between September 2020 and September 2021, ninety-four
samples were selected randomly from a total of 200 samples
(Nasopharyngeal swabs) of SARS-CoV-2 previously gathered
by Shahid Tahir Ali Wali Bag laboratory in Sulaimani City/
Iragi Kurdistan Region. The (94) selected samples were
used for optimization of our primers and probes and for
comparing the obtained results with two available kits
(AddMedi/South Kotea and AeHealth/UK) proved by
health authority and evaluation of detectability of each gene.

2.2. RNA Extraction

RNA extractions were carried out using an Addprep viral
nucleic acid extraction kit according to the manufacturer’s
protocol (AddBio Company/South Korea).

2.3. Storage of the RNA
To avoid degradation, eluted RNA was stored at —80°C after
the RNA extraction process was completed.
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2.4. Designing of primers and Probes for RT-qPCR
Based on the sequencing analysis, four sets of primers and
probes were designed as follows: One set of forward primers,
reverse primer, and dual modified fluorescence probe for
each of RdRp, N, E, and GAPDH gene for internal control
detection. Amplicons were selected for RdRp, N, and E genes
by Primer-BLAST, which were (110, 110, and 80 bp),
respectively, and 7 silico analyzed using NCBI Primer BLAST
to exclude miss annealing with other respiratory viruses.
In silico predictions also demonstrated that those primers do
not bind to non-specific targets for human, bacterial, fungal,
and apicomplexan.

The lyophilized form of primers and probes was produced by
a humanized genomic Macrogen company from South Korea

(Tables 1 and 2).

2.5. RT-gPCR Procedure

Samples containing RNA were subjected to a reverse
transcription step to convert RNA into cDNA using reverse
transcriptase enzymes. The reaction mixes, containing
the designed primers, probes, nucleotides, and specialized
polymerase enzymes, were prepared and inserted into the
(applied biosystems RT-qPCR) instrument. The instrument
cycled through denaturation, annealing, and extension stages,
amplifying the target sequences exponentially. Fluorescence
emitted during each cycle was monitored, with the software
recording and analyzing the signal, determining the initial
amount of viral genetic material present in the samples based

TABLE 1: Primers and probes for real-time
polymerase chain reaction (RdRp, N, E gene)

Genes

Primers and probes

RdRp F TTGATTGTTACGATGGTGGCT

RdRp R CATAATAAAGTCTAGCCTTACCCCA

RdRp- FAM- GGTTGTTGACGATGACTTGGTTAGCA-BHQ
Probe

NF ATTCGTGGTGGTGACGGTAA

N R ATGCCGTCTTTGTTAGCACC

N Probe HEX-GGGAAGTCCAGCTTCTGGCCC-BHQ

EF ACTTCTTTTTCTTGCTTTCGTGGT

ER GCAGCAGTACGCACACAATC

E Probe ROX- AGCGCAGTAAGGATGGCTAGTGT -BHQ

TABLE 2: Primers and probes for real-time
polymerase chain reaction (internal control
GAPDH)

Internal control GAPDH

ICF GGTGAAGGTCGGAGTCAACG
ICR TGAAGGGGTCATTGATGGCAA
IC Probe Cy5- CTGGTGACCAGGCGCCCAAT-BHQ
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on the Ct values. Results were interpreted by comparing Ct
values against known standards or controls to ascertain the
presence and approximate quantity of SARS-CoV-2 genetic
material in the samples.

2.6. Statistical Analysis

Statistical analysis was conducted using two software
programs: IBM SPSS (Version 26) and RStudio (Version
1.1.463). These programs were employed to perform various
statistical tests (atea under the curve [AUC], z — test, and
P-value) and analyses, ensuring a comprehensive and rigorous
approach to data analysis.

2.7. AUC

AUC refers to the graphical representation of a receiver
operating characteristic (ROC) curve. In this context, it
reflects the assay’s ability to distinguish between positive
and negative samples based on Ct values. A higher AUC
value indicates better discrimination between these samples,
signifying the test’s accuracy in correctly identifying the
presence or absence of SARS-CoV-2 genetic material. This
statistical measure helps assess the overall performance
and reliability of the PCR assay by quantifying its ability to
differentiate between infected and non-infected samples
based on Ct values, contributing crucial insights into the
assay’s diagnostic potential.

Z-test: Z-values represent the number of standard deviations;
a data pointis from the mean. In this case, the more negative
the Z-value, the lower the Ct value, indicating higher viral
RNA levels or better detection sensitivity.

P-value: The low P-values indicate high statistical significance.
It suggests strong evidence against the null hypothesis,
reinforcing the reliability of the observed differences.

3. RESULTS

3.1. Detectability of Primers and Probes in Clinical Samples
Out of 200 previously identified SARS-CoV-2 samples, 94
were randomly chosen for the optimization of our primers
and probes. The obtained findings were compared with two
health authority-endorsed kits to evaluate the detectability
of each gene: Kit A with CE and IVD certificate from
South Korea with detection channel HEX (RdRp gene) and
FAM (S gene), while Kit B with CE and IVD certificate from
United Kingdom with detection channel FAM (ORF1ab
gene) and VIC (N gene) and the current designed primers
as well as probes FAM (RdRp), HEX (N), ROX (E), and
CY5 (IPC).
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Kit A, which consists of RdRp and S genes, demonstrated an
AUC of 80.2% and 75%, respectively. This indicated that Kit
A’s performance, as measured by the AUC, is 80.2% for one
gene and 75% for the other. The AUC value served as a metric
for the ability of this kit to distinguish between positive and
negative COVID-19 samples. Higher AUC values generally
indicated better discriminatory power.

In contrast, Kit B, comprising the Orflab and N genes,
exhibited AUC values of 81.2% and 90.6%. These AUC values
suggested that Kit B is quite effective, with the first gene
achieving an AUC of 81.2% and the second gene reaching
an even higher AUC of 90.6%. The higher AUC for the N
gene in Kit B may indicate its higher accuracy in diagnosing
COVID-19 cases. The approach of the current study, which
combines the RdRp, N, and E genes, achieved the AUC
values of 83.3%, 79.1%, and 93.7%, respectively. These AUC
values demonstrated the effectiveness of this approach when
using different gene combinations. The AUC of 93.7% for
the E gene suggested that it may be a particulatly valuable
component for COVID-19 diagnosis within this approach.

To visualize the data and facilitate a more comprehensive
understanding, the information is presented in a bar chart (Fig. 1).
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Fig. 1: The X-axis of the chart represents the number of samples
tested, while the y-axis indicates the Ct values. Ct values are often
used in polymerase chain reaction tests and indicate the number
of amplification cycles required to detect a specific gene target in a
sample. Gene detection across Ct value ranges in various test kits.
The bar chart visually presents gene detection within specific Ct value
ranges across different test kits and methodologies, it's important to
note that the statistical significance of differences in detection rates
was assessed separately through appropriate statistical tests. These
tests, including but not limited to t-tests, ANOVA, or non-parametric
equivalents, were conducted to evaluate the significance of differences
in detection rates between the various gene targets across different
kits and methodologies. The results of these statistical analyses
provide quantitative insights into the observed differences in detection
rates, complementing the visual representation provided by the bar
chart. Ct: Cycle Threshold.
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The chart allows for a visual comparison of how the AUC
values for Kit A, Kit B, and the current approach with various
gene combinations vary with the number of samples tested
and their corresponding Ct values. This comprehensive
comparison of kits and gene combinations could be useful
in making informed decisions about which testing method
may be the most suitable for COVID-19 diagnosis, taking into
account both accuracy and scalability based on the number
of samples. It appeared that the current approach with three
genes (RdRp, N, and E) showed the highest AUC values,
which are 83.3%, 79.1%, and 93.7%, respectively. These
AUC values are indicative of the accuracy and discriminatory
power of the diagnostic method.

Comparatively, Kit B, which combines Orflab and N genes,
has AUC values of 81.2% and 90.6%. Kit A, with RdRp and
S genes, has AUC values of 80.2% and 75%. Based on these
AUC values alone, it appeared that the current approach with
three genes was the most effective in diagnosing COVID-19,
especially when the E gene is included which appeared to
contribute significantly to the accuracy of the test, as reflected
in its higher AUC value of 93.7%.

In the comparison between kits with two genes (Kit A and
Kit B), Kit B, with AUC values of 81.2% and 90.6%, seemed
to be more effective than Kit A, which has AUC values of
80.2% and 75%.

The Ct value ranges are color coded to depict the distribution
of gene detection levels. Notably, the range of 20.1-30
exhibits the highest frequency of gene detection across all
kits and genes, indicating consistent and reliable identification
within this Ct range. The chart highlights the varying
detection levels among different genes and kits, emphasizing
the robustness of detection within specific Ct value intervals.

The Z-test results indicate significant differences (P < 0.0001)
among gene targets tested within Kit A, B, and our approach.
The E gene exhibits the lowest Z-value of —1.49, followed
closely by the N gene (kit B) with a Z-value of —1.46. These
findings suggest that £ gene demonstrates the highest
sensitivity in detecting COVID-19.

4. DISCUSSION

Since the first record of the coronavirus disease 2019
(COVID-19) pandemic, real-time RT-qPCR laboratory
testing to identify severe acute respiratory SARS-CoV-2 has
been crucial in limiting the spread of the virus [11]. The
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World Health Organization developed and made a number of
RT-qPCR assays accessible to the general public not long after
the viral genome sequences became available. The E gene,
RdRp gene, ORF1ab gene, and N gene are only a few of the
target genes within the viral genome that was used to select
the primer and probe sequences for these experiments. Based
on these primer and probe sequences, numerous commercial
and laboratory-developed tests for SARS-CoV-2 detection
were created. Several mutational events have resulted from
the widespread sustained person-to-person transmission of
SARS-CoV-2, some of which may alter the sensitivity and
specificity of existing PCR assays [12]. The gold standard for
diagnosing COVID-19 is tRT-PCR, but it has been noted that
false-positive and false-negative samples may cause issues.
Regarding which of the goals is most important for diagnosis,
there are differing viewpoints. Testing with three targets is
more expensive and time-consuming than testing with two
targets. The conclusion drawn from our study is based on
a comparative analysis of two different assay methods: one
that detects N and RdRp genes (utilizing commercial kits)
and another that detects N, E, and RdRp genes (our manual
3-gene method). While it’s true that the comparison involves
a 3-gene method versus a 2-gene method, the primary focus
is on evaluating the sensitivity difference between these
two approaches rather than a direct comparison of equal
gene sets. Our conclusion is derived from the observation
that the assay detecting N, E, and RdRp genes consistently
yielded more positive detections across the tested samples
compared to the assay detecting only N and RdRp genes. This
difference in sensitivity forms the basis of our conclusion
that the 3-gene assay is more sensitive than the 2-gene assay.

Barjaktarovic e al. revealed that the new variations of SARS-
CoV-2 are continuously found since it is an RNA virus that
mutates more frequently than DNA viruses. Sequences that
are less mutable are the focus of diagnostic testing, Yet, it has
been discovered that mutations in the N gene and the RdRp
gene increase the possibility of false-negative results, reduce
test sensitivity, and result in diagnostic errors [13]. Because
of the £ gene’s high stability, it is possible to develop new
mRNA vaccines against illnesses caused by newer SARS-
CoV-2 strains. Moreover, known coronaviruses have highly
conserved £ and M gene sequences. They are less likely to
experience mutations than the § gene, making the E gene a
suitable diagnostic target with a high level of specificity. It is
vital to use diagnostic tests that target less changeable genes
to identify people infected with present and future variations
of the SARS-CoV-2 virus since new SARS-CoV-2 variants
are continually developing and complicating COVID-19
testing [13].
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The quantitation cycle, which is the primary outcome of
qPCR, is the cycle in which fluorescence can be observed.
Lower Ct values indicate higher starting copy numbers of
the target. This is the fundamental tenet of the quantitative
strategy offered by real-time PCR. Previous researchers
have recorded comparisons of the effectiveness of various
commercial PCR kits for the RT-qPCR diagnosis of SARS-
CoV-2 [14], [15], [16], [17].

Lu et al. in 2020, compared and evaluated the effectiveness
of Sansure and BioGerm, which are both commonly used
in Liuzhou people’s Hospital in Guangxi, China, and had
corresponding effectiveness levels of 80 and 94% [8]. On
the other hand, Eberle ¢ a/in 2021 examined nine RT-qPCR
kits that were being utilized in the German city of Bavaria to
diagnose viruses. Most of them achieved sensitivity levels of
90—-100%, however, two kits claimed efficacy levels of 49%
(Fast Track Diagnostics Kit) or 62% (Wells Bio, Inc.) with
the greatest proportion of false negatives. Hence, when it
comes to the identification of viral variations, kits with more
than one target gene are less likely to produce false negative
results than tests with a single genetic target [18], [19].

These studies recommended evaluating the effectiveness
of commercial RT-qPCR kits used locally to analyze
COVID-19. In fact, a poor SARS-COV-2 diagnosis could
encourage the future spread of this and other infectious
diseases. No standardization, comparison, or efficacy
investigations using commercial RT-qPCR kits used in
the mass diagnosis of local SARS-CoV-2 or the detection
of developing variants have been reported for Sulaimani,
the city with a high number of PCR tests performed per
thousand residents.

The current study announces the first clinical validations
and comparison of two commercially available RT-qPCR
Kits for detecting SARS-CoV-2 Kit A and Kit B to primers
and probes we designed. For the detection of SARS-CoV-2
genes and diagnosis, the Ct and the relative fluorescence units
acquired from their RT-qPCR reactions exhibited significant
disparities in the total RNA volume. These differences were
significant because they significantly affected the detection
of COVID-19-positive cases.

The evaluation of different testing kits and gene combinations
in the context of COVID-19 diagnostics, as measured by
AUC values, offered crucial insights into their accuracy
and discriminatory power [20]. AUC values, representing
the ability to distinguish between positive and negative
COVID-19 samples, showcased varying performance among
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the tested kits and gene combinations. Notably, higher
AUC values typically indicated better discriminatory ability,
serving as a fundamental metric for assessing the efficacy
of these diagnostic methods. Comparing Kit A and Kit B
revealed intriguing nuances in their performance. While Kit
A demonstrated AUC values of 80.2% for RdRp and 75%
for the 5 gene, Kit B exhibited a relatively higher accuracy,
with AUC values of 81.2% for Orflab and an impressive
90.6% for the N gene. This comparison suggested that Kit B,
particularly the N gene within it, displayed a superior capacity
in accurately diagnosing COVID-19 cases compared to Kit A.

The findings of this study underscore the pivotal role of
gene selection in optimizing the accuracy of COVID-19
diagnosis. Our results revealed compelling evidence
supporting the superior performance of the combined RiRp,
N, and E genes, showcasing robust discriminatory power
with notable area under the curve (AUC) values. Particularly
striking was the outstanding 93.7% AUC value for the E gene
within this multi-gene approach, surpassing individual gene
performances within both Kit A and Kit B. The statistically
significant differences (p <0.0001) observed in AUC values
among these genes signal the potential for the I gene as a
cornerstone in enhancing diagnostic precision, suggesting its
superiority over RARp and N genes in our tested context. The
remarkably high AUC for the E gene highlights its promise as
a key component in amplifying the reliability and accuracy of
COVID-19 diagnosis, offering a potential avenue for refining
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Fig. 2. Line graph shows the performance of different testing kits
and our approach using specific genes evaluated in the context of
COVID-19 diagnostics. The assessment is based on the calculation of
the area under the curve values, which are a common measure of the
accuracy of diagnostic tests. The comparison involved three different
sets of genes: Kit A (RdRp and S), Kit B (Orfiab and N), and our
approach combining RdRp, N, and E genes.
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testing strategies and elevating diagnostic efficacy (Fig. 2).
The bar chart provided a clear overview of gene detection
across various Ct value ranges for different genes tested
using multiple kits (Kit A, Kit B) and a distinct approach. It
vividly showed the frequency of gene detection within each
Ctrange, presenting a color-coded comparison across kits and
genes. One striking observation was the consistency in gene
detection within the 20.1-30 Ct range, which emerged as the
most reliable across all kits and genes. This range consistently
exhibited the highest frequency of gene detection, implying
a robust and dependable identification within this specific
Ct interval. Moreover, the chart highlighted the disparities in
detection levels among different genes and kits. It underscored
the importance of considering both the gene being targeted
and the testing methodology, as they influence the detection
efficacy within specific Ct value intervals (Fig: 1).

The Z-values reflect the deviation from the mean and indicate
the sensitivity of each target in detection. Lower Z-values
suggest a higher abundance or greater ease of detection.
Notably, the E gene Ct stands out with the lowest Z-value
of —1.49, followed closely by Kit B N Ct with a Z-value of
—1.46. These values imply a potentially heightened sensitivity
for detecting COVID-19 viral RNA in these specific gene
regions. Moreover, all recorded P-values are extremely low
(0.00001), signaling strong statistical significance. This
suggests substantial evidence against the null hypothesis
and underscores the reliability of the observed differences
in sensitivity among gene targets.

The practical implications of these findings extend to the
clinical realm of COVID-19 diagnostics. The superiority
of the current approach suggested a promising avenue for
enhancing accuracy in detecting COVID-19 cases, particulatly
emphasizing the significance of incorporating the E gene in
diagnostic methodologies. The insights gained from this study
advocate for the critical consideration of gene combinations
in optimizing diagnostic accuracy, potentially influencing
decision-making in clinical settings.

Despite the significance of these findings, there are
inherent limitations that warrant consideration. Factors
such as sample size, variations in testing methodologies, or
specific population characteristics might have influenced
the observed results. Therefore, future research endeavors
should focus on expanding sample sizes, validating findings
in diverse populations, as well as exploring additional gene
combinations to further solidify these findings and translate
them into clinically applicable solutions.

UHD Journal of Science and Technology | Jan 2024 | Vol 8 | Issue 1

In conclusion, the assessment of AUC values among different
testing kits and gene combinations elucidated a hierarchy
of effectiveness in COVID-19 diagnostics. This approach,
particularly with the inclusion of the E gene, emerges as a
highly promising diagnostic method with enhanced accuracy,
laying a foundation for improved COVID-19 testing
methodologies and potentially contributing to more effective
disease management strategies. The most dependable
detection occurred within the 20.1-30 Ct range across various
gene combinations and testing kits.
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