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1. INTRODUCTION

Sequence alignment refers to the search of  similarity regions 
within biological sequences of  DNA, RNA, or proteins. 
Besides the biological significance and interpretation of  the 
results, the main problem of  sequence alignment from the 
computer science point of  view is the very large number 
of  residue-to-residue comparisons that are needed when 
searching for similarities.

The biological definition of  the problem makes it time-
consuming taking in consideration the fact that in practice, 
a single genome may contain in the order of  109 residues. 

Thus, a computer program can therefore intensively search 
for regions of  similarity between sequences to detect such 
relationships.

Alignment could be global or local. Global alignment is to 
find the best match between the entire sequences, whereas 
local alignment must find the best match between certain 
regions of  the sequences.

Global alignment algorithms such as Needleman–Wunsch 
(NW) [1], which attempt to align every residue in every 
sequence, are most useful when the sequences in the query 
set are similar and of  roughly equal size. Local alignments 
instead, like in Smith–Waterman (SW) [2], are more often 
used for dissimilar sequences that are suspected to contain 
regions of  similarity within their larger sequence context.

Fig. 1 shows a global and a local alignment of  the same two 
sequences. It shows that if  sequences are not sufficiently 
similar, a global alignment tends to spread gaps that hide 
possible regions of  similarity. Residue mismatches are called 

An Improved Parallel Multiple Sequence 
Alignment Algorithm on Multi-core System
Mohammed W. Al-Neama1, Salwa M. Ali2 and Kasim A. Al-Salem3

1Department of Computer Science, Education College for Girls, Mosul University, Mosul, Iraq
2Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
3Department of Computer Science, University of Cihan/Sulaimanya, Kurdistan Region, Iraq

A B S T R A C T
In this paper, we introduce an improved parallel algorithm for computing the number of exact matches nid (S,T) in the 
local alignment of two biological sequences S and T. This number is used in the first stage of progressive alignment to 
compute the distance between two sequences. The distance computations are usually its most computationally intensive 
part. Therefore, this work concentrates on improving an algorithm for this stage using vectorizing technique and running 
on multi-core. Our program is able to compute nid (S,T) between very long sequences, up to 34 k residues by C++ with 
OpenMP library on an Intel Core-i7-3770 quad-core processor of 3.40 GHz and main memory of 8 GB. It outperforms 
ClustalW-MPI 0.13 with 2.9-fold speedup, and the efficiency reached 0.35. Furthermore, a higher speedup with improved 
efficiency can be accomplished. Its performance figures vary from a low of 0.438 GCUPS to a high of 3.66 GCUPS as 
the lengths of the query sequences decrease from 34,500 to 9200.

Index Terms: Bioinformatics, Distance Computation, Multi-cores, Multiple Sequence Alignment, Parallel Programming

Corresponding author’s e-mail: mwneama@uomosul.edu.iq 
 
Received: 10-03-2017	 Accepted: 25-03-2017� Published: 29-08-2017

Access this article online

DOI: 10.21928/uhdjst.v1n2y2017.pp13-24 E-ISSN: 2521-4217

P-ISSN: 2521-4209

Copyright © 2017 Al-Neama, et al. This is an open access article 
distributed under the Creative Commons Attribution Non-Commercial 
No Derivatives License 4.0 (CC BY-NC-ND 4.0)

ORIGINAL RESEARCH ARTICLE UHD JOURNAL OF SCIENCE AND TECHNOLOGY



Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

14	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

substitutions (mutations in genetic terminology), and the 
character “-” denotes gaps that may be insertions or deletions 
depending on the point of  view.

A. Substitution Matrix
Biologists have learned that some mutations are more 
likely than others (e.g., a DNA mutation from cytosine to 
adenine is more common than cytosine to guanine) and they 
need alignment algorithms to reflect this property. For this 
purpose, substitution matrices have been built using statistical 
data from known sequences and mutations. Fig. 2 shows the 
BLOSUM62 [3], a common substitution matrix for amino 
acids alignments.

Definition 1: A  substitution matrix (sbt) on an alphabet 
Σ = {a1, a2..., an} has n × n entries, where each entry (i, j) 
assigns a score for a substitution of  the letter ai by the letter 
aj in an alignment.

The elements on the main diagonal have the highest values 
to encourage matching of  identical residues in alignment 
algorithms. Amino acids are divided into colored groups 
according to the chemistry of  the side group.

B. Gap Penalty
Besides having substitution matrices for mutations, it is also 
desirable to score insertions and deletions gaps differently. 
First, to avoid having gaps all over the alignment, gaps have 
to be given penalties, just like unmatching amino acids. This 
penalty cannot be derived from the database alignments used 
to create the substitution matrices such as BLOSUM since 
these matrices were derived from ungapped alignments. The 
score given to an insertion/deletion is commonly called a 
gap penalty.

There are two schemes used, namely, linear gap (g) penalty and 
affine gap penalty. Having only one score for any gap inserted 
is called a linear. However, insertions and deletions often 
involve a longer stretch of  sequence in a single event. For 
this reason, two different gap penalties are usually included 
in the alignment algorithms: One penalty for having a gap at 
all (gap opening penalty (go)) and another smaller penalty for 

extending already opened gaps (ge). This is called an affine 
and is actually a compromise between the assumptions that 
the insertion or deletion is created by one or more events [4].

Definition 2: Given a sequence S over the alphabet Σ 
of  length L, a sequence Sg of  length Lg over Σ U “-” is 
called a gapped sequence of  S if  Lg ≥ L and there exist a 
transformation T(S) = Sg such that:
1.	 ∀ 1≤ i ≤ L; ∃ 1≤ j ≤ Lg; S(i) = Sg(j)
2.	 If  Sg(p) = S(i), and Sg(q) = S(j); and i < j then p < q.

2. PAIR-WISE ALIGNMENT

Pair-wise sequence alignment is defined as an alignment of  
two sequences to determine how similar they are. In most 
sequence similarity calculations, a similarity score is inferred 
from the alignment. Gap insertions are allowed until the 
resulting sequences are of  the same size, and the alignment 
must obey the restriction that gaps cannot appear in the 
same position in both sequences. This score is determined 
based on a substitution matrix and specific penalties for the 
insertions and deletions gaps.

In the following, the two most common pair-wise alignment 
algorithms used to compute the similarity matrix H for each 
a pair of  sequences S and T with their length Ls and Lt, 
respectively, are explained in detail.

Definition 3: Given a pair of  sequences S and T over the 
alphabet Σ with their lengths Ls and Lt, respectively. Let Sg 
and Tg be two-gapped sequences with lengths Ls

g  and Lt
g , 

respectively. A pair-wise sequence alignment of  S and T is 
defined to be a matrix M of  size (2 × n) with n = max( Ls

g

Lg
s, Lt

g ) with the following properties: ∀ 1 ≤ i ≤ n.

Fig. 1. A global and a local alignment of the same two sequences

Fig. 2. The BLOSUM62 substitution matrix
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1.	 M(s, i) = Sg(i) and M(t, i) = Tg(i)
2.	 If  M(s, i) = “-” then M(t, i) ≠ “-” and vice versa.

Definition 4: Given two sequences S and T on an alphabet Σ. 
A similarity score function of  an alignment.

Score: M → R

Score (M) ∈ R

Assigns a similarity score to each pair of  characters in M.

Definition 5: A score of  alignment is a real value function 
(score) that associate for each alignment M(S,T) a real value 
function Score (M(S,T)).

The problem of  pair-wise alignment S and T is to find an 
alignment Mo(S,T) with optimal score (Mo(S,T)), that is,

Score (M(S,T)) ≤ Score (Mo(S,T)) for all alignments M(S,T).

A. NW Algorithm

The NW algorithm [1], introduced in 1970, as the first 
dynamic programming tool to compute a global alignment 
for any pair of  biological sequences. The NW algorithm 
achieves its goal by going through the following three phases:
•	 The initialization phase: Initiates the H(0,0) matrix 

element by 0. The first row and column are initialized 
with the costs of  gaps of  lengths s and t.

	 i.e., H(s,0) = g.s and H(0,t) = g.t ∀ 1 ≤ s ≤ Ls, 1 ≤ t ≤ Lt; 
g is a gap penalty.

•	 The score computation phase: Computes all other values 
of  matrix H(s,t) using one of  the following recursive 
formula:

H s t max
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L

L

L

L

( , )
, , ,

, ,
,

=
− −( ) + ( ) ( )( )

−( ) +
−(

1 1
1
1
t
)) +















g

or

H s t max
H s t sbt S s T t

E s t g
F s t g

A

A

( , )
, , ,

, ,
,

=
− −( ) + ( ) ( )( )

( ) +
( ) +






1 1












E s t max
H s t go

E s t ge
A( , )
, ,
,

=
−( ) +
−( ) +









1
1

F s t max
H s t go

E s t ge
A( , )
, ,
,

=
−( ) +
−( ) +









1
1

Where, sbt is a substitution matrix and (g, go, and ge) are the 
gaps penalty.
•	 The trace back phase: Recovers the alignment by 

tracing back the path starting from the last element 
H(Ls+1; Lt+1).

A. SW Algorithm
From the evolution perspective, two-related sequences could 
evolve independently with many independent mutations 
lowering the similarity between the sequences. Aligning the 
sequences with noised information often fails to produce a 
biologically meaningful alignment. In these cases, the local 
alignment, proposed by Smith and Waterman [2], identifies 
the longest segment pair that yields the best alignment score is 
more preferable. In the SW’s algorithm, the longest segment 
pair between two aligning sequences that yield the optimal 
alignment is identified by comparing all possible segments 
of  all lengths between the two sequences through dynamic 
programming technique.

The main difference between this technique and NW’s is that 
negative scores are set to zeroes. This modification produces 
an alignment score matrix with positive scores. Thus, the 
backtracking procedure of  the algorithm starts at the highest 
positive score cell and proceeds until it encounters a cell 
with zero score. The longest segment pair identified in these 
backtracking steps is the optimal scored local alignment of  
the two sequences.

The similarity matrix score H is filled using one of  the 
following recurrence formula:

H s t max
H s t sbt

L
L( , )

,

, , ,
, ,
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−
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E s t
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Where, sbt is a substitution matrix and (g, go, and ge) are the 
gaps penalty.

Fig.  3 shows the example of  calculating the pair-wise 
loca l  a l ignment S = {ATCTCGTATGAT} and 
T = {GTCTATCAC} using the SW algorithm.

The similarity matrix H is shown for:

g = −1,

sbt S s T t
S s T t

( ) ( )( ) = ( ) =
−








,
� ( )2

1
if
Otherwise

From the highest score (H(8,11) = 10), a procedure of  trace-
back carries out the corresponding alignment as shown in 
Fig. 3.

3. ALIGNMENT FOR MULTIPLE SEQUENCE

Multiple sequence alignment (MSA) refers to the alignment 
of  more than two biological sequences (DNA, RNA, or 
protein). It is considered as an extension of  pair-wise 
sequence alignment as discussed in the previous section. It 

helps in many criteria such as identifying diagnostic patterns 
or motif  to characterize protein families, demonstrating 
homology between new sequences and existing families of  
sequences.

MSA is NP-complete problem [5] since the computational 
cost grows exponentially with the expansion of  biological 
datasets. This leads to the development of  many algorithms 
aiming at reaching the most accurate and efficient alignment. 
Most commonly used algorithms are classified into two 
categories, progressive and iterative.

Recent studies have shown significant progress in enhancing 
the quality, accuracy, and speed of  MSA tools. However, the 
big dataset of  sequences of  biologically relevant length can 
be difficult and time-consuming to align. Thus, many MSA 
tools have been proposed. In this section, only important 
MSA paradigms are introduced. They are used as a base 
for various MSA distinguished tools [6]. A  progressive 
method most widely used MSA tools utilize the progressive 
method that was first introduced in 1987 [7]. For aligning N 
sequences, it goes through the following three main stages 
(Fig. 4):
•	 Stage 1: Generates all possible N(N−1)/2 pair-wise 

sequence alignment to construct a distance matrix 
computing the similarity between of  each two sequences

•	 Stage 2: Creates a guide-tree using all the pair-wise 
distances using a clustering method such as unweighted 
pair-group method with arithmetic [8] or neighbor-
joining [9]

•	 Stage 3: Builds-up the final multiple alignments by the 
progressive inclusion of  the N sequences alignment 
based on the range given by the guide tree.

Stage 1 is calculated using the match between the residues of  
the two sequences found by the local alignment. The number 
of  exact match is computed by counting the identical residues 
appearing in the same column in the local alignment excluding 
gaps, using the equation [10]:

Dist S T nid S T
min L Ls t

( , ) ( , )
{ , }

= −1 � (2)

Where, nid(S,T) indicates the number of  exact matches using 
SW algorithm to align S and T. For instance, the nid-value 
in Fig. 3 is 6. Actually, this method will run-out storing the 
similarity matrix H, which is not practical for the datasets 
with long sequences.Fig. 3. Local alignment using Smith–Waterman
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Liu et al . [11] presented new recurrence relations 
equations (3) and (4) for the nid-value calculation that is 
compatible for parallel systems such as GPUs. They facilitate 
nid-computations without calculation of  the actual trace-
back, to reduce the storage space using the matrices NL(s,t) 
and NA(s,t) for linear and affine gap penalty, respectively. 
The computations of  these matrices are given by following 
recurrences:
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For linear gap penalty, and for affine gap penalty, we use:
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4. PROPOSED METHOD

This section propose vectorized and parallelized algorithm 
for computing the sequence alignment. The aim of  this 
work is switching of  all the previous matrices to vectors and 
computing it by parallel. The main goal for it is to reduce used 
storage and speed-up runtime, for aligning long biological 
sequences fast.

The proposed algorithm will implement on the optimal local 
alignment (SW) algorithm because of  the following features:
•	 It has been trusted by biologists for almost two decades 

with quality that is still comparable to more recent 
algorithms

•	 Its alignment results are similar to biologists expectations
•	 It is relatively fast, simple, understandable, and provides 

fairly good alignments across a diverse range of  sequence 
types

•	 It has highly cited aligner, especially for big dataset of  
sequences as mentioned in recent studies [12]-[15].

SW algorithm [2] compares two sequences by computing a 
distance that represents the minimal cost of  transforming one 
segment into another, with respect to the given scoring system.

As previously mentioned, there are two approaches to 
compute SW algorithm, based-on-gap penalty, linear, and 
affine gap penalties. Gap penalties prefer more continuous 

Fig. 4. Multiple sequence alignment produced with ClustalW
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gaps to opening new gaps. Therefore, it encourages that gaps 
occur in loop regions instead of  in highly structured regions.

The background biological meaning for this is that 
biologically divergence is often less likely in highly structured 
regions, which are commonly very important to the fold and 
function of  a protein. In this paper, the affine gap penalty 
will be used.

A. Vectorization Approach
Vectorizing all matrices presented in the previous section is the 
main contribution of  the proposed method. It was used when 
computing the aligning sequences of  long lengths, aiming at 
accelerating computations, and used less space. This approach 
was based on the calculation of  each elements of  antidiagonal 
D in the similarity matrix (H) with affine gap penalty is based 
only on the computed elements of  the four antidiagonals; 
two from (H) matrix with one from both E and F matrices.

This postulate that just one vector D for current antidiagonal, 
with six buffers previously computed D1, D2, DE, DE1, DF, 
and DF1 are enough to calculate the elements of  D. After the 
newly D is computed, D1 is replaced by D2, D2 is replaced by 
D, DE is replaced by DE1, and DF is replaced by DF1.

In the subsequent iteration, this cyclic method is used to 
replace the six buffers D1, D2, DE, DE1, DF, and DF1. The 
values of  all cells in D are computed in terms of  its diagonal 
neighbor stored at D1, with its left and upper neighbors stored 
at D2 in addition the cells in DE and DF, and the maximum 
value is selected indicating the highest score.

Fig. 5 shows the vectorization approach when aligning pair 
of  sequences S = {GCTACTCAC} and T = {GCTAGG 
TATGAT} with their lengths are 9 and 12, respectively. 
It illustrates the calculation of  the elements of  HA, using 
affine gap (go = 7, ge = −1) and a substitution cost of  (2) if  
the characters are match and (−1) otherwise, and how it is 
replaced by D, using D1, D2, DE, DE1, DF, and DF1.

This figure shows the dependence relationship of  the 
elements of  the matrices, which is visualized by considering 
its antidiagonals D1, D2, DE, DE1, DF, and DF1 dependencies. 
It is clear that antidiagonal D in iteration i = 9 computations 
depend on the four previously computed antidiagonals D7, 
D8, DE

8 , and D8
F. Therefore, all other computed antidiagonals 

can be neglected.

Furthermore, it shows the dependence relationship of  cell 
D(5) with its left neighbor DE(5) = −9, upper neighbor 
DF(4) = −8, and upper left neighbor D1(4) = 5. Where D2(5) 

+ go is a maximum value of  (DE1(5) + ge and DE
1 (5) + go); 

D2(4) + go is a maximum value of  (DF1(4) + ge and DF(4) + go). 
Using this way, all elements along vector D are computed in 
parallel from all elements in vectors D1, D2, DE, and DF.

To verify these postulates, authors have proposed the 
following new recurrence and theorem.

Theorem: The pair-wise local alignment of  the sequences S 
and T, with an affine gap penalty (go for opining gap and ge 
for extending gap), substitution matrix (sbt), in iteration (i), 
and with element (j), the equation:

Di(j) = HA(j, i−j + 1)� (5)

Gives a vectorization Di of  the matrix HA and the following 
relations hold:

Ni(j) = NA(j, i−j + 1)� (6)

nid(S,T) = maxiN
i(imax)

Where max(2, s−Ls) ≤ i ≤ min((s + 1), (Ls + 1)) and (imax) 
indicates the position of  the maximum value in the vectors Di.

Proof: From Equation (1), we get:
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Fig. 5. Relation between H, D, D1, D2, DE, and DF
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Since Di−1 is computed in the previous iteration of  Di, DE
i , 

and DF
i , that is, in one iteration before Di, DE

i , and DF
i , 

hence Di
2  is computed in the second iterations before Di, 

let us denote Di−1, Di−2, DE
i−1 , and DF

i−1  by Di−1, Di−2, DE
i

1 , 
and DF

i
1 , respectively. Then, we get:
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To proof  of  N jD
i ( )  let the Equation (6), gives the 

vectorization NA(s,t):
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After vectorizing the matrix NA as shown in Fig. 5.
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We now show that for a given i, NA(j) is equal to the number 
of  exact matches in the optimal (i) suffix alignment.

Case 1: D(j) = 0. The alignment is empty. Hence, NA(j)=0.

Case 2: D(j) = D1(j−1)+sbt(S(j),T(i−j+1)). The alignment ends 
with S(j) aligned to T(i−j+1), which contributes m(S(j), T(i−
j+1)) to the nid-value. The residual number is than equal to 
the nid-value got in the optimal j−1 suffix alignment. Hence,

NA(j) = N1(j−1) + m(S(j), T(i−j + 1))

Case 3: D(j) = D2(j−1) + go. The alignment ends with S(j) 
aligned to a gap, which contributes zero exact matches. 
The residual number is than equal to the number got in the 
optimal D2(j−1) suffix alignment. Hence,
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NA(j) = N2(j−1)

Case 4: D(j) = D2(j) + ge. The alignment ends with T(i−j + 1) 
aligned to a gap, which contributes to zero exact matches. 
The remaining number is equal to the number found in the 
optimal D2(j) suffix alignment. Hence,

NA(j) = N2(j)

The increase in ND
i  occurs only at the vectors Di which has 

matching in its elements. Hence,

NA(xmax, ymax) = nid(S,T) is obtained by maximization 
N iD

i
max( ) .

B. Parallelization Approach
Another critical challenge that must be dealt with is the 
gigantic explosion in the amount of  molecular data which 
makes the ability to align a huge number of  long sequences 
becoming even more essential.

For example, the Ribosomal Database Project Release 10 [16] 
consists of  more than million sequences. This leads to the 
massive number of  calculations. Even if  the sequences 
are short, and pair-wise calculations can be done relatively 
quickly, say at a rate of  5000−1 s, then their alignment still 
requires almost 12 days of  CPU time. Another difficulty is 
how to store the similarity matrix elements, as it will take up to 
40 GB of  memory. This leads to the need of  new approaches 
to parallelize the calculations using sort of  sophisticated 
parallel and distributed systems such as multi-cores.

Recent studies refer some attempts have made to accelerate 
computation of  similarity matrix. Ying et al., uses GPU’s 
in  [17]. They show speedup comparing with the serial 
CPU program. Wirawan et al., [18] introduced a parallel 
algorithm on the cell broadband engine multi-core system 
for the calculation by taking benefit of  the 128-bit SIMD 
vectorization registers of  each SPEs and used half  word 
values (16 bits) for the computation. Their results show a 
good speedup comparing with sequential ClustalW program.

Recently, Al-Neama et al. [19] proposed a new parallel 
algorithm of  distance matrix computations of  ClustalW is 
based on OpenMP system. It achieves speedup of  about 2.39 
on 50 sequences of  the average length of  9200 nucleotide; 
tested on Core-i7 Intel Xeon 2.83GHz of  the processor.

The second contribution of  the proposed algorithm is 
parallelizing the computations to align the long-sequences 
dataset. The multithreads technique is used to apply the 

parallelism that reduces runtime necessary for repeated 
tasking synchronization and exchanging data. In addition, 
it makes efficient the scheduling through a task allocation 
policy that prefers the distribution according to the location 
of  data. Each core (P) in the processor has a thread that its 
responsibility is calculation the maximum value of  D’s and 
all threads runs in parallel. Calculations of  the vector D are 
distributed over the total number of  available cores (P). The 
elements of  all vectors D1, D2, DE, DE1, DF, DF1, and D are 
accessible through the core’s shared memory.

The maximum value for each elements of  D using 
Equation  (7) and ND

i  using Equation (8) are calculated 
in parallel. The value of  each cell is evaluated in terms of  
its diagonal neighbor stored at D1, with its left and upper 
neighbors stored at D2, with DE and DF, and then the 
maximum value is selected indicating the highest score.

Fig.  6 shows the parallelization approach. It displays the 
scheduling of  calculations of  the elements of  D and 
distributed them on the available cores labeled P0, P1, P2, 
and P3. They run in parallel on each four sequent elements 
of  D, then they sequentially run on the second sequent 4 
rows, and so on.

5. PERFORMANCE EVALUATION

The performance of  the conceived parallel implementation 
of  the proposed algorithm was extensively evaluated using 
different processing parameters. The evaluation methodology 
that was followed to correctly study the results obtained by 
the described solution is presented. The analysis goes from 
pair-wise alignment methods (SW). The improvements 
achieved due to introduced optimizations for multi-core 
system.

In this section, all needed information about the experimental 
setup for performance measurements is illustrated. It includes 
specifications of  used platforms, details of  experimented 
biological datasets, and characteristics of  other programs 
used during comparisons.

A. Platform
As obviously clear from the previous section, the presented 
algorithm was designed to parallelize computations on a 
multi-core-based environment. Thus, to correctly evaluate 
the performance of  the both original and proposed 
methods, the platform was considered as specified: An 
Intel quad-core-i7-3770, with 3.40 GHz processor and 
main memory of  8 GB; implementing on 64-bit Linux 
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OS  (Ubuntu) and running using C + + with OpenMP 
library.

B. Datasets
The tests have been conducted using a variety of  data sets. 
These data sets sequences including long, medium-length, 
and short sequences. These lengths are ranging from 400 to 
34,500 residues to study the solution’s overall performance 
against multiple different sizes. The data sets consist of  
sequences selected from NCBI [20].

Fig. 6. Scheduling D’s computations on 4 cores

TABLE I
Used Benchmark Dataset Specifications

Sequences’ No. Sequences’ length Standard deviation
50 34,500 5.307
100 19,700 1.417
500 9200 514
400 856 7
1,000 858 8
400 408 3
2,000 266 2
4,000 247 2

TABLE II
Sequential Performance Measurements of Our 

Algorithm versus ClustalW‑MPI
Sequences’ 
No.

Sequences’ 
length

Our 
algorithm

CW‑MPI Speedup

50 34,500 79,027 164,613.66 2.083
100 19,700 51,203 96,876.08 1.892
500 9,200 47,140 80,892.24 1.716
1000 858 2572 3569.94 1.388
400 856 382 626.86 1.641
400 408 163 187.12 1.148
2000 266 903 1,008.65 1.117
4000 247 2,631 2767.81 1.052

Table I shows the used data set with the number of  sequences 
and average their length with a numerical measure of  the 
scatter of  a data set (standard deviation).

C. Programs
Overall, tests have been conducted on the specific 
platforms using various groups of  data sets. To evaluate 
the implementation of  our algorithm, it was tested in 
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comparison to popular and efficient MSA program named 
ClustalW-MPI. This program is available online at: http://
www.mybiosoftware.com/alignment/3052.

The runtime and speedup are considered most common 
performance measurements. Runtime is the elapsed time 
for all calculation, including all additions, comparisons, and 
maximum values. Speedup is the ratio between the runtime 
of  the two involved programs.

Table II gives the runtime (in sec) and speedup of  the two 
sequential of  the proposed program against the ClustalW-
MPI program computing the distance computation 

to illustrate how vectorization approach accelerates 
calculations.

Fig. 7 illustrates that the longer sequences have the more 
acceleration of  our algorithm calculation. Furthermore, our 
program achieves a speedup up to 2-fold over ClustalW-MPI.

Furthermore, parallel runtime of  both is shown in 
Table III. Fig. 8 shows the execution time and speedup 
of  proposed parallel program on the above-mentioned 
datasets. Our parallel program achieved reducing the 
runtime of  aligning sequences of  length 34,500 from 
164,613 s using ClustalW-MPI to 79,027 s using the 
proposed algorithm using 8 cores.

The speed-up of  our parallel program achieved significant 
speedup of  almost 3 for aligning sequences of  longest length 
of  sequence. Obviously, the sequences with the short length, 
the decrease the overall performance

TABLE III
Parallel Performance Measurements of Our 

Algorithm versus ClustalW‑MPI
Sequences’ 
No.

Sequences’ 
Length

Our 
Alg.

CW‑MPI Speedup

50 34,500 33,270 93,157.03 2.92
100 19,700 25,602 67,075.93 2.62
500 9,200 28,803 67,109.92 2.33
1000 858 240.66 517.42 2.15
400 856 115.73 223.59 1.93
400 408 1,955 3,67.98 1.72
2000 266 677.25 819.47 1.21
4000 247 2026 2329.75 1.15

TABLE IV
Efficiency Comparisons Using 8 Cores

Sequences’ No. Sequences’ length CW‑MPI
50 34,500 0.35
100 19,700 0.33
500 9200 0.29
1000 858 0.27
400 856 0.24
400 408 0.22
2000 266 0.15
4000 247 0.14

Fig. 7. Performance comparison between sequential our algorithm, 
ClustalW-MPI

TABLE V
Performance Comparison (in GCUPS) for 

Scanning the Datasets
Sequences’ 
No.

Sequences’ 
length

Our 
algorithm

CW‑MPI

50 34,500 0.438 0.157
100 19,700 0.750 0.286
500 9200 3.667 1.574
1000 858 2.435 1.133
400 856 1.153 0.597
400 408 1.886 1.094
2000 266 2.104 1.739
4000 247 2.428 2.111

Fig. 8. Performance comparison between parallel our algorithm, 
ClustalW-MPI
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To conform that the proposed program is most efficient 
than other executed programs, the parallel efficiency of  the 
available cores was evaluated. It is the ratio of  the speedup 
(S) with respect to the number of  processors (P) [21]. It is 
given by the following equation:

E S
P

=
�

(8)

Results are shown in Table IV. It is clear that the efficiency 
of  our algorithm is exponentially increasing as the length 
of  sequences increases. In addition, our program supreme 
efficiency was up to 0.35 with respect to the ClustalW-MPI 
for the longest sequence length up to (34 k).

There is another performance measurement used in 
computational biology called billion cell updates per second 
(GCUPS). A  GCUPS represents the time for a complete 
computation of  one entry in the similarity matrix, including 
all comparisons, additions, and maximum operations. Table V 
shows the performance comparison for the datasets.

6. CONCLUSIONS

This paper presented a new parallel algorithm for computing 
the nid-value in the pair-wise local alignment. The results of  
the proposed algorithm were used in the first stage of  MSA. 
Since the new algorithm was implemented using vectorizing 
technique, we have got a significant improvement in the 
performance.

The program was able to calculate nid-value for sequences 
with length up to (34 k) residues. It surpasses ClustalW-
MPI 0.13 with 2.9 speedup and the efficiency reached 0.35. 
A  better performance can be achieved if  more cores are 
provided. Furthermore, it can be accomplished a higher 
speedup with improved efficiency.

Program’s performance figures vary from a low of  0.438 
GCUPS to a high of  3.66 GCUPS as the lengths of  the query 
sequences decrease from 34,500 to 9200.
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