
UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 13

1. INTRODUCTION

Sequence alignment refers to the search of similarity regions
within biological sequences of DNA, RNA, or proteins.
Besides the biological significance and interpretation of the
results, the main problem of sequence alignment from the
computer science point of view is the very large number
of residue-to-residue comparisons that are needed when
searching for similarities.

The biological definition of the problem makes it time-
consuming taking in consideration the fact that in practice,
a single genome may contain in the order of 109 residues.

Thus, a computer program can therefore intensively search
for regions of similarity between sequences to detect such
relationships.

Alignment could be global or local. Global alignment is to
find the best match between the entire sequences, whereas
local alignment must find the best match between certain
regions of the sequences.

Global alignment algorithms such as Needleman–Wunsch
(NW) [1], which attempt to align every residue in every
sequence, are most useful when the sequences in the query
set are similar and of roughly equal size. Local alignments
instead, like in Smith–Waterman (SW) [2], are more often
used for dissimilar sequences that are suspected to contain
regions of similarity within their larger sequence context.

Fig. 1 shows a global and a local alignment of the same two
sequences. It shows that if sequences are not sufficiently
similar, a global alignment tends to spread gaps that hide
possible regions of similarity. Residue mismatches are called

An Improved Parallel Multiple Sequence
Alignment Algorithm on Multi-core System
Mohammed W. Al-Neama1, Salwa M. Ali2 and Kasim A. Al-Salem3

1Department of Computer Science, Education College for Girls, Mosul University, Mosul, Iraq
2Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
3Department of Computer Science, University of Cihan/Sulaimanya, Kurdistan Region, Iraq

A B S T R A C T
In this paper, we introduce an improved parallel algorithm for computing the number of exact matches nid (S,T) in the
local alignment of two biological sequences S and T. This number is used in the first stage of progressive alignment to
compute the distance between two sequences. The distance computations are usually its most computationally intensive
part. Therefore, this work concentrates on improving an algorithm for this stage using vectorizing technique and running
on multi-core. Our program is able to compute nid (S,T) between very long sequences, up to 34 k residues by C++ with
OpenMP library on an Intel Core-i7-3770 quad-core processor of 3.40 GHz and main memory of 8 GB. It outperforms
ClustalW-MPI 0.13 with 2.9-fold speedup, and the efficiency reached 0.35. Furthermore, a higher speedup with improved
efficiency can be accomplished. Its performance figures vary from a low of 0.438 GCUPS to a high of 3.66 GCUPS as
the lengths of the query sequences decrease from 34,500 to 9200.

Index Terms: Bioinformatics, Distance Computation, Multi-cores, Multiple Sequence Alignment, Parallel Programming

Corresponding author’s e-mail: mwneama@uomosul.edu.iq

Received: 10-03-2017	 Accepted: 25-03-2017� Published: 29-08-2017

Access this article online

DOI: 10.21928/uhdjst.v1n2y2017.pp13-24 E-ISSN: 2521-4217

P-ISSN: 2521-4209

Copyright © 2017 Al-Neama, et al. This is an open access article
distributed under the Creative Commons Attribution Non-Commercial
No Derivatives License 4.0 (CC BY-NC-ND 4.0)

ORIGINAL RESEARCH ARTICLE UHD JOURNAL OF SCIENCE AND TECHNOLOGY

Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

14	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

substitutions (mutations in genetic terminology), and the
character “-” denotes gaps that may be insertions or deletions
depending on the point of view.

A. Substitution Matrix
Biologists have learned that some mutations are more
likely than others (e.g., a DNA mutation from cytosine to
adenine is more common than cytosine to guanine) and they
need alignment algorithms to reflect this property. For this
purpose, substitution matrices have been built using statistical
data from known sequences and mutations. Fig. 2 shows the
BLOSUM62 [3], a common substitution matrix for amino
acids alignments.

Definition 1: A substitution matrix (sbt) on an alphabet
Σ = {a1, a2..., an} has n × n entries, where each entry (i, j)
assigns a score for a substitution of the letter ai by the letter
aj in an alignment.

The elements on the main diagonal have the highest values
to encourage matching of identical residues in alignment
algorithms. Amino acids are divided into colored groups
according to the chemistry of the side group.

B. Gap Penalty
Besides having substitution matrices for mutations, it is also
desirable to score insertions and deletions gaps differently.
First, to avoid having gaps all over the alignment, gaps have
to be given penalties, just like unmatching amino acids. This
penalty cannot be derived from the database alignments used
to create the substitution matrices such as BLOSUM since
these matrices were derived from ungapped alignments. The
score given to an insertion/deletion is commonly called a
gap penalty.

There are two schemes used, namely, linear gap (g) penalty and
affine gap penalty. Having only one score for any gap inserted
is called a linear. However, insertions and deletions often
involve a longer stretch of sequence in a single event. For
this reason, two different gap penalties are usually included
in the alignment algorithms: One penalty for having a gap at
all (gap opening penalty (go)) and another smaller penalty for

extending already opened gaps (ge). This is called an affine
and is actually a compromise between the assumptions that
the insertion or deletion is created by one or more events [4].

Definition 2: Given a sequence S over the alphabet Σ
of length L, a sequence Sg of length Lg over Σ U “-” is
called a gapped sequence of S if Lg ≥ L and there exist a
transformation T(S) = Sg such that:
1.	 ∀ 1≤ i ≤ L; ∃ 1≤ j ≤ Lg; S(i) = Sg(j)
2.	 If Sg(p) = S(i), and Sg(q) = S(j); and i < j then p < q.

2. PAIR-WISE ALIGNMENT

Pair-wise sequence alignment is defined as an alignment of
two sequences to determine how similar they are. In most
sequence similarity calculations, a similarity score is inferred
from the alignment. Gap insertions are allowed until the
resulting sequences are of the same size, and the alignment
must obey the restriction that gaps cannot appear in the
same position in both sequences. This score is determined
based on a substitution matrix and specific penalties for the
insertions and deletions gaps.

In the following, the two most common pair-wise alignment
algorithms used to compute the similarity matrix H for each
a pair of sequences S and T with their length Ls and Lt,
respectively, are explained in detail.

Definition 3: Given a pair of sequences S and T over the
alphabet Σ with their lengths Ls and Lt, respectively. Let Sg
and Tg be two-gapped sequences with lengths Ls

g and Lt
g ,

respectively. A pair-wise sequence alignment of S and T is
defined to be a matrix M of size (2 × n) with n = max(Ls

g

Lg
s, Lt

g) with the following properties: ∀ 1 ≤ i ≤ n.

Fig. 1. A global and a local alignment of the same two sequences

Fig. 2. The BLOSUM62 substitution matrix

Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 15

1.	 M(s, i) = Sg(i) and M(t, i) = Tg(i)
2.	 If M(s, i) = “-” then M(t, i) ≠ “-” and vice versa.

Definition 4: Given two sequences S and T on an alphabet Σ.
A similarity score function of an alignment.

Score: M → R

Score (M) ∈ R

Assigns a similarity score to each pair of characters in M.

Definition 5: A score of alignment is a real value function
(score) that associate for each alignment M(S,T) a real value
function Score (M(S,T)).

The problem of pair-wise alignment S and T is to find an
alignment Mo(S,T) with optimal score (Mo(S,T)), that is,

Score (M(S,T)) ≤ Score (Mo(S,T)) for all alignments M(S,T).

A. NW Algorithm

The NW algorithm [1], introduced in 1970, as the first
dynamic programming tool to compute a global alignment
for any pair of biological sequences. The NW algorithm
achieves its goal by going through the following three phases:
•	 The initialization phase: Initiates the H(0,0) matrix

element by 0. The first row and column are initialized
with the costs of gaps of lengths s and t.

	 i.e., H(s,0) = g.s and H(0,t) = g.t ∀ 1 ≤ s ≤ Ls, 1 ≤ t ≤ Lt;
g is a gap penalty.

•	 The score computation phase: Computes all other values
of matrix H(s,t) using one of the following recursive
formula:

H s t max
H s t sbt S s T t

H s g
H s t

L

L

L

L

(,)
, , ,

, ,
,

=
− −() + () ()()

−() +
−(

1 1
1
1
t
)) +















g

or

H s t max
H s t sbt S s T t

E s t g
F s t g

A

A

(,)
, , ,

, ,
,

=
− −() + () ()()

() +
() +






1 1












E s t max
H s t go

E s t ge
A(,)
, ,
,

=
−() +
−() +









1
1

F s t max
H s t go

E s t ge
A(,)
, ,
,

=
−() +
−() +









1
1

Where, sbt is a substitution matrix and (g, go, and ge) are the
gaps penalty.
•	 The trace back phase: Recovers the alignment by

tracing back the path starting from the last element
H(Ls+1; Lt+1).

A. SW Algorithm
From the evolution perspective, two-related sequences could
evolve independently with many independent mutations
lowering the similarity between the sequences. Aligning the
sequences with noised information often fails to produce a
biologically meaningful alignment. In these cases, the local
alignment, proposed by Smith and Waterman [2], identifies
the longest segment pair that yields the best alignment score is
more preferable. In the SW’s algorithm, the longest segment
pair between two aligning sequences that yield the optimal
alignment is identified by comparing all possible segments
of all lengths between the two sequences through dynamic
programming technique.

The main difference between this technique and NW’s is that
negative scores are set to zeroes. This modification produces
an alignment score matrix with positive scores. Thus, the
backtracking procedure of the algorithm starts at the highest
positive score cell and proceeds until it encounters a cell
with zero score. The longest segment pair identified in these
backtracking steps is the optimal scored local alignment of
the two sequences.

The similarity matrix score H is filled using one of the
following recurrence formula:

H s t max
H s t sbt

L
L(,)

,

, , ,
, ,

,

=
− −() + () ()()

−() +
−

0

1 1
1

S s T t
H s t g
H s t

L

L 11() +



















g

or

H s t max
H s t sbt S s T t

E s t g
F s t g

A
A(,)

,

, , ,
, ,
,

=
− −() + () ()()

() +
() +

 0

1 1


















Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

16	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

E s t
H s t go

E s t ge
A(,) max

, ,
,

=
−() +
−() +









1
1

F s t
H s t go

F s t ge
A(,) max

, ,
,

=
−() +
−() +









1
1

Where, sbt is a substitution matrix and (g, go, and ge) are the
gaps penalty.

Fig. 3 shows the example of calculating the pair-wise
loca l a l ignment S = {ATCTCGTATGAT} and
T = {GTCTATCAC} using the SW algorithm.

The similarity matrix H is shown for:

g = −1,

sbt S s T t
S s T t

() ()() = () =
−








,
� ()2

1
if
Otherwise

From the highest score (H(8,11) = 10), a procedure of trace-
back carries out the corresponding alignment as shown in
Fig. 3.

3. ALIGNMENT FOR MULTIPLE SEQUENCE

Multiple sequence alignment (MSA) refers to the alignment
of more than two biological sequences (DNA, RNA, or
protein). It is considered as an extension of pair-wise
sequence alignment as discussed in the previous section. It

helps in many criteria such as identifying diagnostic patterns
or motif to characterize protein families, demonstrating
homology between new sequences and existing families of
sequences.

MSA is NP-complete problem [5] since the computational
cost grows exponentially with the expansion of biological
datasets. This leads to the development of many algorithms
aiming at reaching the most accurate and efficient alignment.
Most commonly used algorithms are classified into two
categories, progressive and iterative.

Recent studies have shown significant progress in enhancing
the quality, accuracy, and speed of MSA tools. However, the
big dataset of sequences of biologically relevant length can
be difficult and time-consuming to align. Thus, many MSA
tools have been proposed. In this section, only important
MSA paradigms are introduced. They are used as a base
for various MSA distinguished tools [6]. A progressive
method most widely used MSA tools utilize the progressive
method that was first introduced in 1987 [7]. For aligning N
sequences, it goes through the following three main stages
(Fig. 4):
•	 Stage 1: Generates all possible N(N−1)/2 pair-wise

sequence alignment to construct a distance matrix
computing the similarity between of each two sequences

•	 Stage 2: Creates a guide-tree using all the pair-wise
distances using a clustering method such as unweighted
pair-group method with arithmetic [8] or neighbor-
joining [9]

•	 Stage 3: Builds-up the final multiple alignments by the
progressive inclusion of the N sequences alignment
based on the range given by the guide tree.

Stage 1 is calculated using the match between the residues of
the two sequences found by the local alignment. The number
of exact match is computed by counting the identical residues
appearing in the same column in the local alignment excluding
gaps, using the equation [10]:

Dist S T nid S T
min L Ls t

(,) (,)
{ , }

= −1 � (2)

Where, nid(S,T) indicates the number of exact matches using
SW algorithm to align S and T. For instance, the nid-value
in Fig. 3 is 6. Actually, this method will run-out storing the
similarity matrix H, which is not practical for the datasets
with long sequences.Fig. 3. Local alignment using Smith–Waterman

Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 17

Liu et al . [11] presented new recurrence relations
equations (3) and (4) for the nid-value calculation that is
compatible for parallel systems such as GPUs. They facilitate
nid-computations without calculation of the actual trace-
back, to reduce the storage space using the matrices NL(s,t)
and NA(s,t) for linear and affine gap penalty, respectively.
The computations of these matrices are given by following
recurrences:

N s t

H s t
N s t H s t H s t

m sL

L

L L L

,

� ,
, � , ,
,() =

() =
− −() () = − −()

+

0 0
1 1 1 1

if
if

tt sbt S s T t
N s t H s t H s t g
N s t

L L L

L

() + () ()()
−() () = −() +

−(

,
, � , ,

,
1 1
1

if
)) () = −() +

























if � , ,H s t H s t gL L 1

	

� (3)

Where,

m s t
S s T t

,
� ()

() = () =







1
0
if
otherwise

For linear gap penalty, and for affine gap penalty, we use:

N s t

H s t
N s t H s t H s t

m sA

A

A A L

,

� ,
, � , ,
,() =

() =
− −() () = − −()

+

0 0
1 1 1 1

if
if

tt sbt S s T t
N s t H s t s t
N s t H

EE A

F

() + () ()()
−() () = ()

−()

,
, � , ,

, �
1
1

if
if AA s t F s t, ,() = ()

























 	

� (4)
Where,

m s t
S s T t

,
()

() = () =







1
0
if�
otherwise

N s t
t

N s t E s t H s t go
N s t

E A A

E

,
�

, � , ,
, �

() =
=

−() () = −() +
−()

0 1
1 1
1

if
if
if EE s t E s t ge, ,() = −() +















1

N s t
t

N s t E s t H s t go
N s t

F A A

F

,
�

, � , ,
, �

() =
=

−() () = −() +
−()

0 1
1 1
1

if
if
if EE s t E s t ge, ,() = −() +















1

4. PROPOSED METHOD

This section propose vectorized and parallelized algorithm
for computing the sequence alignment. The aim of this
work is switching of all the previous matrices to vectors and
computing it by parallel. The main goal for it is to reduce used
storage and speed-up runtime, for aligning long biological
sequences fast.

The proposed algorithm will implement on the optimal local
alignment (SW) algorithm because of the following features:
•	 It has been trusted by biologists for almost two decades

with quality that is still comparable to more recent
algorithms

•	 Its alignment results are similar to biologists expectations
•	 It is relatively fast, simple, understandable, and provides

fairly good alignments across a diverse range of sequence
types

•	 It has highly cited aligner, especially for big dataset of
sequences as mentioned in recent studies [12]-[15].

SW algorithm [2] compares two sequences by computing a
distance that represents the minimal cost of transforming one
segment into another, with respect to the given scoring system.

As previously mentioned, there are two approaches to
compute SW algorithm, based-on-gap penalty, linear, and
affine gap penalties. Gap penalties prefer more continuous

Fig. 4. Multiple sequence alignment produced with ClustalW

Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

18	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

gaps to opening new gaps. Therefore, it encourages that gaps
occur in loop regions instead of in highly structured regions.

The background biological meaning for this is that
biologically divergence is often less likely in highly structured
regions, which are commonly very important to the fold and
function of a protein. In this paper, the affine gap penalty
will be used.

A. Vectorization Approach
Vectorizing all matrices presented in the previous section is the
main contribution of the proposed method. It was used when
computing the aligning sequences of long lengths, aiming at
accelerating computations, and used less space. This approach
was based on the calculation of each elements of antidiagonal
D in the similarity matrix (H) with affine gap penalty is based
only on the computed elements of the four antidiagonals;
two from (H) matrix with one from both E and F matrices.

This postulate that just one vector D for current antidiagonal,
with six buffers previously computed D1, D2, DE, DE1, DF,
and DF1 are enough to calculate the elements of D. After the
newly D is computed, D1 is replaced by D2, D2 is replaced by
D, DE is replaced by DE1, and DF is replaced by DF1.

In the subsequent iteration, this cyclic method is used to
replace the six buffers D1, D2, DE, DE1, DF, and DF1. The
values of all cells in D are computed in terms of its diagonal
neighbor stored at D1, with its left and upper neighbors stored
at D2 in addition the cells in DE and DF, and the maximum
value is selected indicating the highest score.

Fig. 5 shows the vectorization approach when aligning pair
of sequences S = {GCTACTCAC} and T = {GCTAGG
TATGAT} with their lengths are 9 and 12, respectively.
It illustrates the calculation of the elements of HA, using
affine gap (go = 7, ge = −1) and a substitution cost of (2) if
the characters are match and (−1) otherwise, and how it is
replaced by D, using D1, D2, DE, DE1, DF, and DF1.

This figure shows the dependence relationship of the
elements of the matrices, which is visualized by considering
its antidiagonals D1, D2, DE, DE1, DF, and DF1 dependencies.
It is clear that antidiagonal D in iteration i = 9 computations
depend on the four previously computed antidiagonals D7,
D8, DE

8 , and D8
F. Therefore, all other computed antidiagonals

can be neglected.

Furthermore, it shows the dependence relationship of cell
D(5) with its left neighbor DE(5) = −9, upper neighbor
DF(4) = −8, and upper left neighbor D1(4) = 5. Where D2(5)

+ go is a maximum value of (DE1(5) + ge and DE
1 (5) + go);

D2(4) + go is a maximum value of (DF1(4) + ge and DF(4) + go).
Using this way, all elements along vector D are computed in
parallel from all elements in vectors D1, D2, DE, and DF.

To verify these postulates, authors have proposed the
following new recurrence and theorem.

Theorem: The pair-wise local alignment of the sequences S
and T, with an affine gap penalty (go for opining gap and ge
for extending gap), substitution matrix (sbt), in iteration (i),
and with element (j), the equation:

Di(j) = HA(j, i−j + 1)� (5)

Gives a vectorization Di of the matrix HA and the following
relations hold:

Ni(j) = NA(j, i−j + 1)� (6)

nid(S,T) = maxiN
i(imax)

Where max(2, s−Ls) ≤ i ≤ min((s + 1), (Ls + 1)) and (imax)
indicates the position of the maximum value in the vectors Di.

Proof: From Equation (1), we get:

H j i j max
H j i j stb S j
T i j
E j i j

A

A

()
((()

())
()

,

,
, ,

,
, ,

− + =
− − +

− +
− +

1

0
1
1
1

FF j i j(), − +












 1

E j i j max
H j i j go
E j i j ge

F j i j max
H

A

A

()
()

()

()
(

,
, ,

,

,

− + =
− +

− +




− + =

1

1
jj i j go

F j i j ge
− − +

− − + +




1
1 1

, ,
,

)
()

and from Equation (5), we get:

D j max
D j stb S j T i j

D j

D j

i
i

E
i

F
i

()
() (() ())

()

()

=
− + − +










−

0

1 12

,

, ,

,


Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 19

Fig. 5. Relation between H, D, D1, D2, DE, and DF

D j maxE
i ()

,
=

− +

+







−

−

D j go

D j ge

i

E
i

1

1

1()

()
D j max

D j go

D j ge
F
i

i

F
i

()
()

()
=

+

− +







−

−

1

1 1

Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

20	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

Since Di−1 is computed in the previous iteration of Di, DE
i ,

and DF
i , that is, in one iteration before Di, DE

i , and DF
i ,

hence Di
2 is computed in the second iterations before Di,

let us denote Di−1, Di−2, DE
i−1 , and DF

i−1 by Di−1, Di−2, DE
i

1 ,
and DF

i
1 , respectively. Then, we get:

D j max
D j stb S j T i j

D j

D j

i
i

i
E

i
F

()
() (() ())

()

()

=
− + − +












0

1 12

,

, ,

,


D j max D j go D j geE
i i

E() () ()= − + +{ 1 11 ,

D j max D j go D j geF
i

1
i

F() () , ()= +{ − +1 1 � (7)

To proof of N jD
i () let the Equation (6), gives the

vectorization NA(s,t):

NA j i j
H j i j

N j i j H j i j H j i jA

(,)
(,)

(,) (,) (,

− + =

− + =
− − − = − −

1
0 1 0

1 1
if
if))

(,) ((), ())
(,) (,)

+ − + + − +
− + − + =

m j i j sbt S j T i j
N j i j H j i j EE A

1 1
1 1if ((,)

(,) (,) (,)
j i j

N j i j H j i j F j i jF A

− +
− + − + = − +














1
1 1 1if

N j i j
i j

N j i j H j i j H j i j go
N

E

A A A

E

(,)

(,) (,) (,)
(

− + =

− =
− − + = − +

1
0 0

1
if
if

jj i j H j i j E j i j geA,) (,) (,)− − + = − +







 if 1

N j i j
k

N j i j H j i j H j i j

F

A A A

(,)

(,) (,) (,)

− + =

=
− − + − + = − − +

1
0 1

1 1 1 1 1
if

if ++
− − + − + = − − + +









go
N j i j H j i j F j i j geF A(,) (,) (,)1 1 1 1 1if

After vectorizing the matrix NA as shown in Fig. 5.

N j

D j

N j D j D j
m j sbt S jD

i

i

D
i i i

()

()

() () ()
() (()=

=

− = − +
+ +

−

0 0

1 12
1

if

if
,, ())

() () ()

() () ()

T i j

N j D j D j g

N j D j D j g
E
i i

E
i

F
i i

F
i

− +

= +

− = +



1

1

if

if













N j

j

N j D j D j go

N j D j D j ge
E
i

A
i i

E
i

E
i

() () () ()

() () ()

=

=

= +

= +−

0 1

1

if

if

if









N j

j

N j D j D j go

N j D j D
F
i

A
i i i

F
i i

F
i

() () () ()

() ()

=

=

− = − +

− =

0 1

1 1

1

if

if

if −− − +







 1 1()j ge

Then, we get:

N j

D j

N j D j D j
m j sbt S j TD

i

i

i i i

()

()

() () ()
() ((), (=

=

− = −
+ +

0 0

1 11 1

if

if
ii j

N j D j D j g

N j D j D j g

i i
E
i

i i
F
i

− +

= +

− = +




−

1

1
2

1

2

))

() () ()

() () ()

if

if











� (8)

Where,

m j
S j T i j

()
() ()

=
= − +




1 1
0 otherwise

N j

i j

N j E j D j go

N j E j D j
E
i

A
i i

i

E
i i

E
i

() () () ()

() () ()

=

− =

= +

=

0 0

1

if

if

if ++







 ge

N j

j

N j D j D j go

N j D j D
F
i

A
i i

F
i i

F
i

() () () ()

() ()

=

=

− = − +

− =

0 1

1 1

1 1

if

if

if (()j ge− +







 1

We now show that for a given i, NA(j) is equal to the number
of exact matches in the optimal (i) suffix alignment.

Case 1: D(j) = 0. The alignment is empty. Hence, NA(j)=0.

Case 2: D(j) = D1(j−1)+sbt(S(j),T(i−j+1)). The alignment ends
with S(j) aligned to T(i−j+1), which contributes m(S(j), T(i−
j+1)) to the nid-value. The residual number is than equal to
the nid-value got in the optimal j−1 suffix alignment. Hence,

NA(j) = N1(j−1) + m(S(j), T(i−j + 1))

Case 3: D(j) = D2(j−1) + go. The alignment ends with S(j)
aligned to a gap, which contributes zero exact matches.
The residual number is than equal to the number got in the
optimal D2(j−1) suffix alignment. Hence,

Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 21

NA(j) = N2(j−1)

Case 4: D(j) = D2(j) + ge. The alignment ends with T(i−j + 1)
aligned to a gap, which contributes to zero exact matches.
The remaining number is equal to the number found in the
optimal D2(j) suffix alignment. Hence,

NA(j) = N2(j)

The increase in ND
i occurs only at the vectors Di which has

matching in its elements. Hence,

NA(xmax, ymax) = nid(S,T) is obtained by maximization
N iD

i
max() .

B. Parallelization Approach
Another critical challenge that must be dealt with is the
gigantic explosion in the amount of molecular data which
makes the ability to align a huge number of long sequences
becoming even more essential.

For example, the Ribosomal Database Project Release 10 [16]
consists of more than million sequences. This leads to the
massive number of calculations. Even if the sequences
are short, and pair-wise calculations can be done relatively
quickly, say at a rate of 5000−1 s, then their alignment still
requires almost 12 days of CPU time. Another difficulty is
how to store the similarity matrix elements, as it will take up to
40 GB of memory. This leads to the need of new approaches
to parallelize the calculations using sort of sophisticated
parallel and distributed systems such as multi-cores.

Recent studies refer some attempts have made to accelerate
computation of similarity matrix. Ying et al., uses GPU’s
in [17]. They show speedup comparing with the serial
CPU program. Wirawan et al., [18] introduced a parallel
algorithm on the cell broadband engine multi-core system
for the calculation by taking benefit of the 128-bit SIMD
vectorization registers of each SPEs and used half word
values (16 bits) for the computation. Their results show a
good speedup comparing with sequential ClustalW program.

Recently, Al-Neama et al. [19] proposed a new parallel
algorithm of distance matrix computations of ClustalW is
based on OpenMP system. It achieves speedup of about 2.39
on 50 sequences of the average length of 9200 nucleotide;
tested on Core-i7 Intel Xeon 2.83GHz of the processor.

The second contribution of the proposed algorithm is
parallelizing the computations to align the long-sequences
dataset. The multithreads technique is used to apply the

parallelism that reduces runtime necessary for repeated
tasking synchronization and exchanging data. In addition,
it makes efficient the scheduling through a task allocation
policy that prefers the distribution according to the location
of data. Each core (P) in the processor has a thread that its
responsibility is calculation the maximum value of D’s and
all threads runs in parallel. Calculations of the vector D are
distributed over the total number of available cores (P). The
elements of all vectors D1, D2, DE, DE1, DF, DF1, and D are
accessible through the core’s shared memory.

The maximum value for each elements of D using
Equation (7) and ND

i using Equation (8) are calculated
in parallel. The value of each cell is evaluated in terms of
its diagonal neighbor stored at D1, with its left and upper
neighbors stored at D2, with DE and DF, and then the
maximum value is selected indicating the highest score.

Fig. 6 shows the parallelization approach. It displays the
scheduling of calculations of the elements of D and
distributed them on the available cores labeled P0, P1, P2,
and P3. They run in parallel on each four sequent elements
of D, then they sequentially run on the second sequent 4
rows, and so on.

5. PERFORMANCE EVALUATION

The performance of the conceived parallel implementation
of the proposed algorithm was extensively evaluated using
different processing parameters. The evaluation methodology
that was followed to correctly study the results obtained by
the described solution is presented. The analysis goes from
pair-wise alignment methods (SW). The improvements
achieved due to introduced optimizations for multi-core
system.

In this section, all needed information about the experimental
setup for performance measurements is illustrated. It includes
specifications of used platforms, details of experimented
biological datasets, and characteristics of other programs
used during comparisons.

A. Platform
As obviously clear from the previous section, the presented
algorithm was designed to parallelize computations on a
multi-core-based environment. Thus, to correctly evaluate
the performance of the both original and proposed
methods, the platform was considered as specified: An
Intel quad-core-i7-3770, with 3.40 GHz processor and
main memory of 8 GB; implementing on 64-bit Linux

Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

22	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

OS (Ubuntu) and running using C + + with OpenMP
library.

B. Datasets
The tests have been conducted using a variety of data sets.
These data sets sequences including long, medium-length,
and short sequences. These lengths are ranging from 400 to
34,500 residues to study the solution’s overall performance
against multiple different sizes. The data sets consist of
sequences selected from NCBI [20].

Fig. 6. Scheduling D’s computations on 4 cores

TABLE I
Used Benchmark Dataset Specifications

Sequences’ No. Sequences’ length Standard deviation
50 34,500 5.307
100 19,700 1.417
500 9200 514
400 856 7
1,000 858 8
400 408 3
2,000 266 2
4,000 247 2

TABLE II
Sequential Performance Measurements of Our

Algorithm versus ClustalW‑MPI
Sequences’
No.

Sequences’
length

Our
algorithm

CW‑MPI Speedup

50 34,500 79,027 164,613.66 2.083
100 19,700 51,203 96,876.08 1.892
500 9,200 47,140 80,892.24 1.716
1000 858 2572 3569.94 1.388
400 856 382 626.86 1.641
400 408 163 187.12 1.148
2000 266 903 1,008.65 1.117
4000 247 2,631 2767.81 1.052

Table I shows the used data set with the number of sequences
and average their length with a numerical measure of the
scatter of a data set (standard deviation).

C. Programs
Overall, tests have been conducted on the specific
platforms using various groups of data sets. To evaluate
the implementation of our algorithm, it was tested in

Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 23

comparison to popular and efficient MSA program named
ClustalW-MPI. This program is available online at: http://
www.mybiosoftware.com/alignment/3052.

The runtime and speedup are considered most common
performance measurements. Runtime is the elapsed time
for all calculation, including all additions, comparisons, and
maximum values. Speedup is the ratio between the runtime
of the two involved programs.

Table II gives the runtime (in sec) and speedup of the two
sequential of the proposed program against the ClustalW-
MPI program computing the distance computation

to illustrate how vectorization approach accelerates
calculations.

Fig. 7 illustrates that the longer sequences have the more
acceleration of our algorithm calculation. Furthermore, our
program achieves a speedup up to 2-fold over ClustalW-MPI.

Furthermore, parallel runtime of both is shown in
Table III. Fig. 8 shows the execution time and speedup
of proposed parallel program on the above-mentioned
datasets. Our parallel program achieved reducing the
runtime of aligning sequences of length 34,500 from
164,613 s using ClustalW-MPI to 79,027 s using the
proposed algorithm using 8 cores.

The speed-up of our parallel program achieved significant
speedup of almost 3 for aligning sequences of longest length
of sequence. Obviously, the sequences with the short length,
the decrease the overall performance

TABLE III
Parallel Performance Measurements of Our

Algorithm versus ClustalW‑MPI
Sequences’
No.

Sequences’
Length

Our
Alg.

CW‑MPI Speedup

50 34,500 33,270 93,157.03 2.92
100 19,700 25,602 67,075.93 2.62
500 9,200 28,803 67,109.92 2.33
1000 858 240.66 517.42 2.15
400 856 115.73 223.59 1.93
400 408 1,955 3,67.98 1.72
2000 266 677.25 819.47 1.21
4000 247 2026 2329.75 1.15

TABLE IV
Efficiency Comparisons Using 8 Cores

Sequences’ No. Sequences’ length CW‑MPI
50 34,500 0.35
100 19,700 0.33
500 9200 0.29
1000 858 0.27
400 856 0.24
400 408 0.22
2000 266 0.15
4000 247 0.14

Fig. 7. Performance comparison between sequential our algorithm,
ClustalW-MPI

TABLE V
Performance Comparison (in GCUPS) for

Scanning the Datasets
Sequences’
No.

Sequences’
length

Our
algorithm

CW‑MPI

50 34,500 0.438 0.157
100 19,700 0.750 0.286
500 9200 3.667 1.574
1000 858 2.435 1.133
400 856 1.153 0.597
400 408 1.886 1.094
2000 266 2.104 1.739
4000 247 2.428 2.111

Fig. 8. Performance comparison between parallel our algorithm,
ClustalW-MPI

Mohammed W. Al-Neama et al.: An Improved Parallel Multiple Sequence Alignment Algorithm on Multi-core System

24	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

To conform that the proposed program is most efficient
than other executed programs, the parallel efficiency of the
available cores was evaluated. It is the ratio of the speedup
(S) with respect to the number of processors (P) [21]. It is
given by the following equation:

E S
P

=
�

(8)

Results are shown in Table IV. It is clear that the efficiency
of our algorithm is exponentially increasing as the length
of sequences increases. In addition, our program supreme
efficiency was up to 0.35 with respect to the ClustalW-MPI
for the longest sequence length up to (34 k).

There is another performance measurement used in
computational biology called billion cell updates per second
(GCUPS). A GCUPS represents the time for a complete
computation of one entry in the similarity matrix, including
all comparisons, additions, and maximum operations. Table V
shows the performance comparison for the datasets.

6. CONCLUSIONS

This paper presented a new parallel algorithm for computing
the nid-value in the pair-wise local alignment. The results of
the proposed algorithm were used in the first stage of MSA.
Since the new algorithm was implemented using vectorizing
technique, we have got a significant improvement in the
performance.

The program was able to calculate nid-value for sequences
with length up to (34 k) residues. It surpasses ClustalW-
MPI 0.13 with 2.9 speedup and the efficiency reached 0.35.
A better performance can be achieved if more cores are
provided. Furthermore, it can be accomplished a higher
speedup with improved efficiency.

Program’s performance figures vary from a low of 0.438
GCUPS to a high of 3.66 GCUPS as the lengths of the query
sequences decrease from 34,500 to 9200.

REFERENCES

  [1]	 S. B. Needleman and C. D. Wunsch. “A general method applicable to
the search for similarities in the amino acid sequence of two proteins.”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443-453, 1970.

  [2]	 T. F. Smith and M. S. Waterman. “Identification of common
molecular subsequences.” Journal of Molecular Biology, vol. 147,
no. 1, pp. 195-197, 1981.

  [3]	 S. Henikoff, J. G. Henikoff and S. Pietrokovski. “Blocks+: A non-
redundant database of protein alignment blocks derived from multiple

compilations.” Bioinformatics, vol. 15, no. 6, pp. 471-479, 1999.
  [4]	 B. Schmidt. Bioinformatics: High Performance Parallel Computer

Architectures. Florida: CRC Press, 2010.
  [5]	 L. Wang and T. Jiang. “On the complexity of multiple sequence

alignment.” Journal of Computational Biology, vol. 1, no. 4,
pp. 337-348, 1994.

  [6]	 R. C. Edgar and S. Batzoglou. “Multiple sequence alignment.” Current
Opinion in Structural Biology, vol. 16, no. 3, pp. 368-373, 2006.

  [7]	 D. F. Feng and R. F. Doolittle. “Progressive sequence alignment as
a prerequisitetto correct phylogenetic trees.” Journal of Molecular
Evolution, vol. 25, no. 4, pp. 351-360, 1987.

  [8]	 P. Sneath and R. Sokal. “Unweighted pair group method with
arithmetic mean,” in Numerical Taxonomy, San Francisco: W.H.
Freeman and Company, pp. 230-234, 1973.

  [9]	 N. Saitou and M. Nei. “The neighbor-joining method: A new method
for reconstructing phylogenetic trees.” Molecular Biology and
Evolution, vol. 4, no. 4, pp. 406-425, 1987.

[10]	 K. Chaichoompu and S. Kittitornkun. “Multithreaded clustalw
with im-proved optimization for intel multi-core processor,” in
Communications and Information Technologies, 2006. ISCIT’06.
International Symposium on. IEEE, 2006, pp. 590-594.

[11]	 W. Liu, B. Schmidt, G. Voss and W. Muller-Wittig. “Streaming
algorithms for biological sequence alignment on gpus.” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 9,
pp. 1270-1281, 2007.

[12]	 F. F. Ghaleb, N. M. Reda and M. W. Al-Neama. “An overview of
multiple sequence alignment parallel tools.” in Proc. CSCCA ’13,
Dubrovnik, Croatia, 2013, pp. 91-96.

[13]	 Y. Liu, B. Schmidt and D. L. Maskell. “Msaprobs: Multiple sequence
alignment based on pair hidden markov models and partition
function posterior probabilities.” Bioinformatics, vol. 26, no. 16,
pp. 1958-1964, 2010.

[14]	 J. D. Thompson, B. Linard, O. Lecompte and O. Poch. “A
comprehensive benchmark study of multiple sequence alignment
methods: Current challenges and future perspectives.” Plosone,
vol. 6, no. 3, pp. 2101-2113, 2011.

[15]	 J. Daugelaite, A. O. Driscoll and R. D. Sleator. “An overview
of multiple sequence alignments and cloud computing in
bioinformatics,” ISRN Biomathematics, 2013.

[16]	 J. R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J.
Farris, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, T. Marsh,
G. M. Garrity and J. M. Tiedje. “The ribosomal database project:
improved alignments and new tools for rRNA analysis.” Nucleic
Acids Research, vol. 37, no. 1, pp. D141-D145, 2009.

[17].	Z. Ying., X. Lin., S. C. W. See and M. Li. “GPU-accelerated DNA
distance matrix computation,” in Proc. ChinaGrid 2011, Dalian,
Liaoning, China, 2011, pp. 42-47.

[18].	A. Wirawan, C. K. Kwoh and B. Schmidt. “Multi threaded
vectorized distance matrix computation on the Cell/BE and x86/
SSE2 architectures.” Bioinformatics Advance, vol. 26, no. 10,
pp. 1368-1369, 2010.

[19].	M. W. Al-Neama, N. M. Reda and F. F. Ghaleb. “Multiple sequence
alignment on multi-cores.” International Journal of Biomathematics,
vol. 8, no. 6, p. 1550084, 2015.

[20].	National Center for Biotechnology Information (NCBI); 2017.
Available: https://www.ncbi.nlm.nih.gov/. [Last Accessed on 2017
Aug 24].

[21].	G. Hager and G. Wellein. Introduction to High Performance
Computing for Scientists and Engineers. Boca Raton, FL: CRC
Press, 2010.

