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1. INTRODUCTION

In modern database systems, the vast size of  databases 
necessitates having tools that can efficiently provide the 

desired information [1]. Much of  this work is done through 
aggregate functions, which allow us to do some action 
within groups of  data [2], [3]. Which database management 
system (DBMS) you favor, and how you carry out query 
optimization, tend to hinge on how well each system supports 
aggregate functions [1], [4].

Relational database management system (RDBMS) such as 
Oracle, SQL Server, and MySQL are major in use in practically 
every industry or domain of  human endeavor [5]. Each 
RDBMS comes with some distinct features and offers 
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strength in particular clustered task [4], [5]. This paper 
explores these features by presenting standard functions, 
such as COUNT, SUM, AVG, MIN, and MAX and up to 
a more advanced functions, such as MEDIAN, STRING_
AGG, and PERCENTILE_CONT, from each point of  
view of  handing these functions by each RDBMS [6]. 
The subtlety of  all these functions can help each database 
administrator or developer see which RDBMS best suits 
their needs for achieving set objectives in designing database 
specifications[4]–[6]. However, advanced data management 
often integrates machine learning (ML) workflows that 
enable predictive analysis, pattern recognition and data-
informed decisions [7], [8]. Each of  these databases provides 
a different degree of  ML integration using in-database 
ML algorithms, external tool integration or cloud-based 
ML services [8]. Exploring the levels of  these capabilities 
will reveal the strengths and limitations of  each RDBMS 
in advanced analytics [8]. RDBMS data models lack the 
flexibility to set up and store data for analytics capable 
of  managing big data and various data types of  new data 
types, such as structured, semi-structured and unstructured 
data, have become popular [2], [9]. However, data models 
are highly optimized to handle and process specific data 
using a standardized relational data model [9]. As relational 
databases are designed to govern the lifecycle of  data, large 
amounts of  unmanaged data attached to the system can 
lead to quality issues on the applications that rely on this 
data [9], [10]. That’s why it’s highly recommended to use 
new storage or computing models designed for unstructured 
and semi-structured data [10]. Integrating non-relational 
databases called NoSQL databases with RDBMS data can 
overcome the downsides of  RDBMS data models as they can 
store extra data, manage data quality and provide access to 
applications designed for semi-structured data types [11]. The 
most popular NoSQL database systems include key-value 
stores, document-oriented databases, and graph databases, 
which have their own advantages and disadvantages [12]. 
Therefore, can be used this flexibility and scalability of  
the NoSQL environment to support analytical-engineering 
objectives. Security is one of  the key concerns. It is important 
to make sure that trusted data have been kept online at the 
right time, without being accessible to unauthorized approach 
or some any threats [12].

The major reason for such a research initiative is that no 
comprehensive, in-depth study exists comparing these three 
major RDBMS platforms in the context of  their execution 
of  aggregate functions with the big dataset, embedding 
ML models, and linking with NoSQL data stores. This also 
justifies research on the optimization techniques that can 

be applied to enhance query performance measures across 
these systems.

The objectives of  this study are as follows:
•	 Compare the performance of  aggregate functions 

against window functions across Oracle, SQL Server, 
and MySQL on the one billion records.

•	 Ability of  the integration of  in-database ML algorithms.
•	 Find out the connectivity and integration of  these 

RDBMS with NoSQL databases.
•	 Research on and suggest optimization techniques that 

would enhance the performance of  queries through 
indexing and materialized views.

By meeting these goals, this paper will therefore help database 
administrators and developers to select the most suitable 
RDBMS for their needs in aggregation, ML integration, and 
NoSQL connectivity.

This paper provides a detailed comparison between Oracle, 
SQL Server, and MySQL on the following aspects:

1.1. Capabilities of Aggregate Functions
Detailed breakdown of  the capabilities offered by each 
DBMS:
1. Oracle: Window functions are supported for more 

complex aggregation needs. Oracle has a comprehensive 
set of  aggregate functions including standard aggregate 
functions (COUNT, SUM, AVG, MIN, MAX) and 
conditional aggregate functions (RANK, DENSE_
RANK, PERCENT_RANK), as well as complex 
aggregate functions for hierarchical aggregation [3], [11].

2. SQL server: Along with the strong aggregation functions 
support such as Oracle, SQL Server supports some 
additional detailed functions such as the VARIANCE, 
COVARIANCE and STDEV functions for more 
detailed statistical analysis [13].

3. MySQL: It also provides a wide range of  standard 
aggregate functions. However, its window functions 
are lacking and do not have the advanced functionality 
present in Oracle and SQL server [3], [14].

1.2. Performance Comparison
Evaluating the performance aspects of  aggregate functions:
1. Benchmarking: Identical aggregate queries will be 

performed over the three DBMS executed on tables 
with similar data structures. A comparison of  the time 
and number of  consumed resources (CPU, memory) 
will be made to provide a report and assessment of  
performance [15].
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2. Performance variables: To measure the performance 
of  each DBMS, factors such as the amount of  data 
processed, utilization of  indexes, and the nature of  the 
aggregation metric (simple metrics vs. window functions) 
will be considered [15].

1.3. Optimization Techniques
Exploring optimization techniques for improving aggregate 
function performance:
1. Indexing: Utilizing appropriate indexes on columns 

involved in aggregate operations can significantly 
improve query execution speed. Each DBMS-specific 
indexing strategy will be discussed [5], [16].

2. Materialized views: Pre-aggregation and initial storage 
of  results for queries materializing in views can provide 
substantial boosts for queries that run frequently. 
Feasibility and bound on materialized views are. 
Materialized views in each DBMS will be examined [16].

3. Partitioning: Partitioning tables can optimize queries 
targeting specific subsets of  data, potentially boosting 
performance for aggregate operations [17], [18].

1.4. ML Integration
Digging into support for in-database ML algorithms, 
integration with external ML toolkits, and cloud-based ML 
services [19], [20]:
1. Oracle: A suite of  products called oracle machine 

learning (OML) provides strong in-database ML support: 
OML enables users to build, train, and deploy models 
using SQL and Procedural Language/SQL [8], [19], [20].

2. SQL server: Embedding python and R scripts into T-SQL, 
as well as embedding it in Azure ML [8], [19], [20].

3. MySQL: Even though MySQL currently does not 
include ML capabilities, it can be combined with various 
tools, platforms, and services such as Python, R, AWS 
SageMaker, Google AI Platform, and Azure ML [8].

1.5. Non-relational Database Connectivity
Assessing the integration capabilities with NoSQL databases:
1. SQL server: PolyBase for querying both Hadoop and 

Azure Blob Storage, SQL Server Integration Services 
for transforming data with NoSQL databases such as 
MongoDB or Cassandra, and easy integration with Azure 
Cosmos DB [21].

2. MySQL: Using MySQL Shell for JSON/BIGSON and 
MySQL Connectors for Hadoop and Cassandra, also 
several third-party tools are available such as Apache 
Sqoop and Talend [22].

3. Oracle: Support of  Oracle NoSQL Database, Oracle Big 
Data SQL and Oracle Spatial and Graph, leveraging all 

Oracle database technologies for diverse non-relational 
data types [22], [23].

1.6. Security Comparison
Evaluate the integrity, confidentiality and availability of  the 
security features in different DBMS. Security of  the DBMS 
is of  a key as any DBMS (Table 1).

1.6.1. Data encryption at rest
Data encryption at rest is a process that encrypts files and 
documents such that other than the document’s owner, 
anyone attempting to view them is rendered with useless files 
unless the correct key is provided. This method helps entirely 
remove data leakage, unauthorized entry and physical theft 
aside from a situation where an attacker has infiltrated your 
key management system and has access to the key.

1.6.2. Data Encryption in transit
Encryption in transit refers to the encryption characteristics 
in a network while the transmitted data are moving from 
source to destination, and the data may not be encrypted in 
the source and destination storage systems [24].

1.6.3. Access control
A DBMS must provide some kind of  security mechanism 
to prevent unauthorized access to the database. The DBMS 
creates user accounts, and controls the login process, to 
accomplish this [25].

1.6.4. Authentication
It authenticates that a user logs in according to the privileges 
given to perform to database activities. This prevents access 
to sensitive data by asking for proper authentication [25].

1.6.5. Auditing
It helps detect, in a timely way, unauthorized acts and activities 
by authorized users [24].

1.6.6. Data masking
Data masking changes the structure of  sensitive information 
to produce fake versions of  a company’s data [26].

1.6.7. Compliance
Data compliance is the act of  ensuring that an organization 
and any of  its associated systems adhere to legal, regulatory 
and operational requirements regarding data [26].

1.6.8. Intrusion detection
An intrusion detection system (IDS) is any application that 
monitors network traffic for malicious activities and known 
threats. An IDS can monitor network traffic on suspicious 
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TABLE 1: Security features comparison
Security Feature Oracle SQL Server MySQL
Data Encryption at Rest TDE, Advanced Encryption TDE, Always Encrypted TDE (Enterprise Edition)
Data Encryption in Transit SSL/TLS SSL/TLS, Always encrypted SSL/TLS
Access control RBAC, Fine-grained access control, Oracle 

label security
RBAC, Row-level security RBAC

Authentication Kerberos, LDAP, SAML, Multifactor 
Authentication

Windows Authentication, 
Kerberos, Azure AD

Pluggable Authentication, 
LDAP

Auditing Oracle Audit Vault, Database Vault SQL Server ATP MySQL Enterprise Audit 
(Enterprise Edition)

Data masking Data Redaction, Data Masking Dynamic Data Masking Static Data Masking 
(Enterprise Edition)

Compliance PCI DSS, HIPAA, GDPR, SOX PCI DSS, HIPAA, GDPR, SOX PCI DSS, HIPAA, GDPR 
(Enterprise Edition)

Intrusion detection Database Firewall, Advanced Security Options ATP Third-party tools
TDE: Transparent data encryption, RBAC: Role‑based access control, LDAP: Lightweight directory access protocol, ATP: Advanced threat protection, PCI DSS: Payment Card Industry 
Data Security Standard

hosts or network segments where malicious activities are 
likely to occur. When identified, an IDS notifies the IT and 
security teams about potential security risks and threats [27].

2. LITERATURE REVIEW

Comparative study on RDBMSs has been a notable part of  
the research focus due its impatience in dealing with data for 
almost any application. This literature review concentrates 
the result of  several studies being conducted in the same 
field, with providing some of  their range of  research and 
their field of  study, methodologies, results and limitations, as 
shown in the table below see (Table 2). In a broad comparison 
of  SQL and NoSQL databases, Lee et al. (2019) address 
the fact that each type of  DB is still relevant in its context. 
This provided a new perspective for this study to address 
RDBMS connectivity in NoSQL databases that demonstrate 
the flexibility of  these applications. However, they did not 
study which specific features from different DBMSs lead to 
how performance is impacted, something we try to address 
in this study.

Islam (2017) investigated performance efficiency and 
response time while managing real-time huge data. He 
found that MYSQL yielded the best results in executing 
performances when dealing with huge structured/semi-
structured/unlike data. Islam’s work focused on insert 
operations only, and here the scope is extended to cover a 
wider range of  operations including complex queries that 
are important when comparing performance across different 
DBMS for aggregate functions.

In a study by Matallah 2021: MySQL versus MongoDB, he 
states that you would better use MongoDB for unstructured 

data than the structured one, and it trades off  with MySQL 
as well. This distinction underlies a study of  the execution 
strategies for aggregate functions in various DBMSs on 
diverse data environments, which motivates our work in this 
paper. Nonetheless, Matallah’s study is limited to simpler 
systems and warrants further investigations which have been 
pursued by this paper.

Zhang et al. (2018) and Singh et al. (2018) examined ML 
integration within RDBMS, particularly SQL Server and 
Oracle. Their work on in-database ML capabilities has 
direct relevance to this study’s objective of  understanding 
the integration, capabilities, and functionalities for ML in 
RDBMS. However, the limitation of  focusing on just two 
RDBMS highlights a gap that this study seeks to address by 
including more databases in the analysis.

Lee et al. (2019) and Gonzalez et al. (2019) reviewed 
NoSQL databases and the integration of  SQL as well as 
RDBMS in different industries. Their findings emphasize 
the importance of  seamless data exchange, which this study 
further investigates in the context of  database security and 
performance optimization within RDBMS.

Finally, Abbas et al. (2020) and Chen et al. (2021) explored 
optimization techniques for aggregate functions and big data 
integration strategies. While their work is largely theoretical, 
this study builds on it by providing experimental validation 
and examining how these optimization techniques impact 
performance and security in different RDBMS.

In summary, existing work covers a broad range of  RDBMS 
aspects, but there are still significant gaps to fill, particularly in 
the areas of  aggregate function performance, ML integration, 
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TABLE 2: Difference research on DBMS comparation
Study Focus Area Methodology Findings Limitations
K. Islam,  
(2017) [28]

The aim is to provide 
insights into which 
DBMS is most 
reliable and efficient 
for handling huge 
and real-time data in 
various scenarios.

The methodology involves 
testing the execution time of 
DBMS by executing different 
types of queries. 

MySQL had the best 
execution performance and 
fastest query execution 
times compared to SQL 
Server and Oracle.

The study primarily focuses 
on insertion operations and 
does not cover a wide range of 
database operations such as 
updates, deletes, and complex 
queries. The experiments were 
conducted with datasets ranging 
from 300,000 to 400,000 rows.

Zhang et al. 
(2018) [29]

Machine Learning 
Integration in RDBMS

Comparative analysis of 
in-database ML capabilities

Found SQL Server's 
integration with Python and 
R flexible and powerful; 
Oracle's in-database 
algorithms offered high 
performance but less 
flexibility

Focused only on SQL Server 
and Oracle

Singh et al. 
(2018) [30]

In-database Machine 
Learning Algorithms

Experimental study on 
algorithm performance

Oracle's in-database ML 
algorithms outperformed 
external tools; SQL Server's 
Azure ML integration 
provided extensive 
capabilities.

Focused primarily on Oracle's 
in-database ML

Lee et al. 
(2019) [31]

Integration of SQL and 
NoSQL Databases

Case studies on SQL and 
NoSQL integration

Identified seamless data 
exchange and querying 
capabilities as crucial; 
Oracle and SQL Server 
provided robust integration 
options

MySQL lacked native support 
for NoSQL connectivity

Gonzalez et al. 
(2019) [32]

Real-world Applications 
of RDBMS

Case studies in various 
industries

In financial services, 
e-commerce, and web 
apps, Oracle calculates 
complex risk, SQL Server 
analyses customer 
behaviour, and MySQL 
powers web apps.

Limited to specific industry use 
cases

Abbas et al. 
(2020) [33]

Optimization 
Techniques for 
Aggregate Functions

Survey and experimental 
evaluation

Discussed indexing, 
partitioning, and 
materialized views as key 
optimization techniques; 
demonstrated significant 
performance improvements

Mainly theoretical, limited 
experimental validation

R. Wodyk and 
M. Skublewska. 
(2020) [34]

General comparison 
between SQL and 
NoSQL

Comparative analysis of 
Query Language and Complex 
query support

Relational databases 
remain relevant for 
certain scenarios, NoSQL 
databases provide 
features that may offer 
greater speed, agility, 
and cost-effectiveness for 
modern, rapidly evolving 
applications.

Did not consider DBMS 
performance impact of features

H. Matallah 
(2021) [35]

the paper likely 
summarizes that 
MySQL and MongoDB 
each have distinct 
strengths

Syntax: Common syntax 
similarities and differences. 
Compare between MangoDB 
and MySql db in Performance: 
Measurement of query 
execution speed and Running 
time for workload.

with MySQL being more 
suited for structured data 
and complex queries, 
while MongoDB excels in 
handling large volumes of 
diverse, unstructured data 
in distributed environments

Applicability to complex systems 
and operations is limited. A more 
thorough analysis using larger 
and more complex databases 
and queries is needed to 
compare syntax and data types 
with difference database such 
as oracle and SQL Server

(Contd...)
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and NoSQL connectivity. This study aims to address these 
deficiencies by offering a more comprehensive analysis 
focused on these critical components.

An overview of  a variety of  aggregate function across Oracle, 
SQL Server and MySQL along with how to implement ML 
Model Integration, Materialized Views, NoSQL Database 
Connectivity as well as some insights about Security. The 
study, conducted in a uniform benchmarking environment 
on 1 billion rows, assesses the impact of  performance 
metrics such as execution time (ET), CPU utilization, 
memory consumption and disk space utilization across key 
model logic as well as addressing capabilities related to ML 
models and security features. In contrast to more focused 
or example-based studies. the work by Smith et al. Brown et 
al.’s incremental expansion to IBM’s work on benchmarking 
aggregate functions had previously been homed in older 
versions. Zhang et al.’s security analysis, without tracking 
performance stats. this paper gives a comprehensive overview 
of  an extensive variety of  features across the three prevalent 
RDBMSs with a base scale dataset. Key takeaways are that 
Oracle is strongest in the advanced functions and security, 
SQL Server has a leg up on complex aggregations and 
ML integration while MySQL performs well with basic 
aggregation but falls short where more features or native 
ML capability may be required.

3. MATERIALS AND METHODS

3.1 Dataset
The dataset for this study consists of  1 billion records in an 
employee’s table, with fields such as employee_id, department_
id, job_id, salary, hire_date, and name. This large and uniformly 
structured dataset was chosen to simulate real-world scenarios 
in which RDBMS must handle massive volumes of  data while 
performing aggregate functions. The choice of  such a large 
dataset allows for a thorough evaluation of  the performance 
and scalability of  different RDBMS platforms under heavy 
loads. The schema of  the table is provided in Appendix 1.

3.2. Environment Setup
All benchmarks are made fair and reliable by conducting 
them all on the same hardware and under the same software. 
Specifications: AMD EPYC 7282 16-Core Processor 
@2.8GHz, 8GB RAM, 1TB SSD storage, Windows Server 
2016 Datacenter. Such an environment is not only fair but 
also excludes the variability of  different hardware or software, 
making the measurement focus on the performance and 
features of  the RDBMS alone.

3.3. Queries about Benchmarking
Benchmarking queries have been executed to obtain the 
performance characteristics for most classic aggregate 

TABLE 2: (Continued)
Study Focus Area Methodology Findings Limitations
Chen et al. 
(2021) [36]

Big Data and RDBMS 
Integration

Review of big data integration 
strategies

Emphasized the need for 
hybrid database systems 
integrating relational and 
non-relational models; 
highlighted Oracle's Big 
Data SQL as a robust 
solution

Lack of practical implementation 
examples

M. Ilic (2021) 
[37]

compares the 
performance and 
features of two popular 
database management 
systems.

The main differences and 
features of Microsoft SQL 
Server and Oracle. Comparing 
both systems' security and 
vulnerabilities. Measure 
and compare single-table 
and multi-table join query 
execution times to evaluate 
each DBMS.

Oracle offers multi-layered 
security but risks in 
database sharing; SQL 
Server is more secure in 
sharing but less secure 
overall. SQL Server has 
better query execution 
times.

Only Microsoft SQL Server and 
Oracle are compared in the 
study. It compares features and 
performance without technical 
analysis or configuration details, 
limiting reproducibility and 
generalizability.

S. Schab 
(2023) [38]

compares the 
performance and 
features of Relational 
and NoSQL database

The main differences 
and features of MySQL, 
PostgreSQL and Microsoft 
SQL. Comparing both 
systems' to measure 
execution times for selecting, 
updating, and inserting 
data, scripts were used for 
benchmarking

 This study utilized scripts 
to measure the execution 
times of select, update, and 
insert queries on MySQL, 
PostgreSQL, and Microsoft 
SQL Server using datasets 
of varying sizes (100, 1,000, 
and 10,000 rows)

Only Microsoft SQL Server 
and MySQL are compared in 
the study and residual caching 
effects, the simplicity of the 
queries analysed, a dataset 
very small.
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functions: from basic ones such as COUNT, SUM, AVG, to 
more complex cases such as MEDIAN and STRING_AGG. 
These are among the most common operations that an 
RDBMS has to do and hence the most important from the 
point of  view of  assessment of  its performance in practice. 
In a sense, today’s RDBMS with capabilities for complex 
applications can handle things such as MEDIAN and 
STRING_AGG very well. Replicate each question several 
times until consistent results are achieved; some example 
queries are shown in Appendix 2.

3.4. Performance Metrics
The effectiveness of  RDBMS was measured in terms of  
three criteria:
•	 Real time elapsed: The actual time taken for the 

execution of  each query, providing a direct performance 
measurement.

•	 CPU utilization: The percentage of  all system CPU time 
taken up during query execution. These demonstrate 
how the RDBMS is effective in using the resources of  
the system.

•	 RAM usage: This shows the amount of  memory 
consumed while executing the query and gives a 
good view of  the memory management and general 
performance of  the system.

3.5. Security Evaluation
It presented a comparison between the security features of  
each RDBMS while balancing theoretical documentation 
with practical implementation, focusing on some security-
critical aspects:
•	 Data encryption: Assurance of  data security in static and 

moving states of  information.
•	 Control of  Authentication: Deals with user authentication 

methods, as well as role and right assignments 
management during runtime.

•	 Auditing: Monitoring and auditing activities of  the 

whole database, maintaining compliance, and security 
monitoring.

•	 Data Masking: Techniques through which sensitive 
information is secured from unauthorized access.

These features were selected since they basically provide 
the basis for secure database management in the modern 
enterprise. See Appendix 3 for the presents the details of  
the evaluation.

3.6. ML Implementation
The integration of  ML capabilities within SQL Server, 
Oracle, and MySQL was explored, as it has been considered a 
major development toward intelligent data processing within 
RDBMS. In the context of  the current paper, attention will 
be paid to ML integration, as this is a module expected to add 
value to the insights that are gathered through data analysis. 
See Appendix 4 for More information on ML integration.

3.7. Database Interaction with NoSQL
The interaction ability of  SQL Server, Oracle, and MySQL 
with NoSQL databases was also examined. This ability has 
become quite significant in today’s hybrid data environments, 
where different types of  databases are used. An understanding 
of  how good these RDBMS platforms are in integrating with 
NoSQL databases is thus important for determining the 
flexibility and adaptability in a mixed data ecosystem. See 
Appendix 5 for the details for NoSQL connectivity.

4. RESULTS

This part gives detailed outcomes of  the study performed 
on Oracle, SQL Server, and MySQL with a one billion rows 
in each database. This is given in two major sections: query 
ET before and after indexing was applied, plus analysis of  
simple security features, integration support and connectivity 
with NoSQL connectivity.

TABLE 3: The relative performance of different database management system without Indexing
Query type Oracle execution time (s) SQL server 

execution time (s)
MySQL execution time (s)

Count(*) 59 57 160
SUM (salary) 94 93 170
AVG (salary) 62 63 160
MIN (salary) 92 93 155
MAX (salary) 95 94 155
STRING_AGG (FieldName, ',') 6258 7258 9857
RANK() OVER (ORDER BY salary) 6028 5015 Not available
DENSE_RANK() OVER (ORDER BY salary) 6254 6421 Not available
PERCENT_RANK() OVER (ORDER BY salary) 7053 6801 Not available
MEDIAN (salary) 6002 6502 Not available
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TABLE 4: The relative performance of different database management system with Indexing
Query Type Oracle Execution 

Time (s)
SQL Server 

Execution Time (s)
MySQL Execution Time (s)

COUNT(*) 43 35 60
SUM (salary) 55 58 75
AVG (salary) 57 54 63
MIN (salary) 48 51 85
MAX (salary) 47 71 88
STRING_AGG (FieldName, ',') 5200 6015 6502
RANK() OVER (ORDER BY salary) 4150 3000 Not available
DENSE_RANK() OVER (ORDER BY salary) 3480 3500 Not available
PERCENT_RANK() OVER (ORDER BY salary) 5250 5410 Not available
MEDIAN (salary) 4500 5045 Not available

Fig. 1. The execution times (in seconds) for various aggregate 
function types across three different database management system.

4.1. Query Times before Indexing
The initial performance tests were conducted without 
applying any indexing on the dataset. This setup allows us to 
observe the raw performance of  each DBMS when managing 
various aggregate functions. Nearly Oracle and SQL Server 
are same exhibited the fastest ETs for all aggregate function 
the results are summarized in Table 3 and Fig. 1.

4.1.1 Basic aggregate functions
•	 Count(*): Oracle and SQL Server had around the same 

ET, 59 and 57 s, respectively. As expected, MySQL had 
the longest ET, being the least optimized SQL server, 
at 160 s. These results show how MySQL struggles with 
the large dataset when there are no indexes as shown in 
Table 3, SQL Server and Oracle exhibited the fastest ETs 
before indexing for the COUNT function than MySQL.

•	 SUM (salary) and AVG (salary): Both Oracle and SQL 
Server exhibited identical times for these functions, 
taking 93–94 s for SUM and 62–63 s for AVG. MySQL 
trailed again by wide margins, logging 170 s for SUM 
and 160 s for AVG.

•	 MIN (salary) and MAX (salary): Oracle and SQL Server 

were even closer here, too: 92 and 95 s, respectively. 
MySQL came in at around 155 s for both functions. Fig. 1 
illustrates the ETs for basic function before indexing.

4.1.2 Advanced aggregate functions
STRING_AGG, This example demonstrates that Oracle 
performs significantly faster than the other databases, while 
MySQL does not perform as effectively in comparison. For 
Window Functions SQL Server approximately was faster 
than Oracle, in many cases Fig. 2 illustrates the ETs for basic 
function before indexing. while MySQL could not implement 
these functions natively and did not support them as shown 
in Table 3.

4.2. Query ET (After Indexing) for Aggregate Function
However, when used indexing then, there was a dramatic 
increase in performance.

This can be clearly seen in Table 4, SQL Server exhibited the 
fastest ETs for the COUNT function, and for (Min and Max) 
Oracle faster than other. In addition, (Sum and AVG) nearly 
Oracle and SQL Server are equal as demonstrated in Fig. 3.

4.3. Advanced Functions After ndexing
For advanced function after indexing SQL Server rapidly 
increase in performance as shown in Table 4. It is evident 
the power of  indexing in improving the response time for 
any query in windows function Fig. 4 illustrates the ETs for 
windows function before indexing. STRING_AGG, this 
example demonstrates that Oracle performs significantly 
faster than the other databases.

4.4. Security Evaluation Comparing
Three DBMSs were compared for their security features 
on data encryption, access control, auditing, and data 
masking under three aspects: CPU cost, memory cost, 
and IO cost.
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1. Data Encryption: encryption in-flight and at rest 
is supported by all three DBMSs, with only Oracle 
providing extensive in-flight encryption features.

2. Authentication and Access Control: granular role-based 
access control (SQL Server = best, Oracle, MySQL less 
flexible).

3. Auditing: Oracle supports by far the most robust auditing 
options for fine-grained tracking of  your database 
activity. SQL Server offered robust auditing features, 
and MySQL’s auditing was more basic.

4. Data Masking: As a pioneer in masking technology, 
Oracle was well equipped with both dynamic data 
masking and redaction features. SQL Server also had a 
good reputation for data masking. However, the options 

for MySQL were fewer. If  you follow these security tools 
and best practices, can take the security of  MySQL to the 
next level. MySQL can be used as a good backend storage 
solution for secure applications such as those handling 
finance, health, government and other legislation-critical 
data as shown in Table 5.

4.5. ML Integration
The integration of  ML capabilities was compared across the 
three DBMSs:

SQL Server worked with Azure ML to provide rich 
capabilities for performing real-time data processing and 
predictive analytics.

Oracle came with some powerful in-database ML algorithms 
but did not have great flexibility, unlike SQL Server’s 
integration with external tools.

MySQL: No native ML integration; there was a need to 
use it beyond the database to perform more complex data 
processing. There are plenty of  third-party tools and APIs 
that assist in the integration of  ML with MySQL, which 
help bridge the gap between the database for a much easier 
workflow between it and the ML. Some of  them are described 
below. Illustrated in Table 6.

4.6. Connectivity with Non-Relational Databases
The ability of  each DBMS to connect with NoSQL databases 
was also evaluated.

Oracle provided high-performance, low-latency connectivity to 
MongoDB, Cassandra, and other NoSQL databases. Enabled 
enterprises to manage hybrid database environments effectively.

Fig. 2. The execution times for various windows function types across Oracle and SQL Server.

Fig. 3. The execution times (in seconds) for various aggregate 
function types across three different database management system 

with indexing.
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SQL Server: by seamlessly extending operations to 
NoSQL databases, including Azure Cosmos DB, extending 
capabilities.

MySQL: third-party plugins offered a limited ability to 
connect to NoSQL databases. The following are third-party 

integrations or plugins to extend MySQL's competitive 
advantage in NoSQL environments, by reducing complexity 
and resource costs: These third-party integrations and 
plugins can help MySQL remain competitive in NoSQL 
environments by extending its capabilities, improving scaling, 

Fig. 4. The execution times for various windows function types across oracle and SQL server with indexing.

TABLE 5: Overview of security tools and practice for MySQL
Security Tool/Practice Advantages Disadvantages
MySQL Enterprise Security Native encryption, RBAC, auditing, and password 

management
Advanced features only available in Enterprise edition, 
requires configuration

Vault by HashiCorp Secure secret management, automatic credential 
rotation, encryption service

Adds infrastructure complexity, potential latency, 
requires expertise

MyDiamo TDE for Community Edition, column-level 
encryption, low overhead

Third-party tool with potential support issues, licensing 
costs, complex configuration

Percona Monitoring and 
Management

Enhanced monitoring and alerts, open-source, user 
activity insights

Focuses on performance monitoring, requires 
additional setup, not a complete security solution

Fail2ban Protection against brute force attacks, lightweight, 
customizable rules

Limited protection scope, requires manual configuration 
and tuning

MySQL Native Backup 
Encryption

Ensures encrypted backups, easy integration with 
MySQL tools

Available only in Enterprise edition, can introduce 
performance overhead during backups

TABLE 6: Overview of Third‑Party tools and API for MySQL in ML integrations
Tool Advantages Disadvantages
H2O.ai Rich algorithm support, scalable, AutoML, JDBC 

integration
Requires technical setup, memory overhead, not natively 
integrated with MySQL

Google Cloud AI 
Platform

SQL-based ML queries, scalable, multiple 
frameworks, cloud security

Google Cloud costs, data transfer latency, limited 
customization

MindsDB Direct MySQL integration, no data transfer, 
supports multiple frameworks

Limited scalability, not for complex models, fewer 
features than established frameworks

Amazon SageMaker Fully managed, scalable, supports many 
frameworks, easy model deployment

AWS costs, learning curve, additional complexity for 
frequent data transfers

Sklearn-Pandas 
(SQLAlchemy)

Python ecosystem, flexible, connects with 
SQLAlchemy, good for pipelines

Memory limitations, Python required, no native scalability

TensorFlow with MySQL Powerful deep learning support, scalable, 
integrates with MySQL easily

Requires significant expertise, resource-intensive for 
large datasets or models, complex setup
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and optimizing resource usage, all while retaining a relational 
footing. Illustrated in Table 7.

5. DISCUSSION

A comparison of  aggregate functions in Oracle, SQL Server 
and MySQL shows differences in performance, functionality 
as well as optimization techniques also some integration 
features. Of  course, each RDBMS has its unique pros and 
cons that make them suitable for several types of  use cases. 
The time taken for a given query to run on one large dataset 
varies due to some optimization the database engine performs 
internally, as well as factors such hardware present in the 
system and how complex that is and naturally size of  data.

Factors to Consider

1. Database Engine Performance: DBMSs uses different 
optimization strategies and has a various performance 
trait.

2. CPU and Memory: The AMD EPYC 7282 is a 
powerful processor with 16 cores, but RAM might be 
the bottleneck considering how large dataset files are.

3. Disk I/O: SSD have a faster read/write speeds which 
strength the performance.

4. Indexing: It reduced the ETs in Query.
5. Parallelism: DBMS’s can take advantage of  multiple 

CPU cores and adopted from chip multiprocessing, as 
in parallel processing.

6. Network Latency: If  this query is being run over a 
network, there will be possible latency which can affect 
performance especially Oracle and MySQL.

Each DBMS Type with Real world use cases so that it makes 
sense for practical applications -

Oracle: Is used by large financial services organizations for 
sophisticated risk calcs and reporting. Faster and Simple 
Analytics: Real-time analysis with advanced aggregate 
functions & in-database ML.

SQL Server: E-commerce platforms running on SQL 
Server system for analyzing customer sales patterns and 
maintaining inventory. High performance window functions 
combined with Azure ML integration for dynamic pricing 
and personalized recommendations.

MySQL: Web applications; startups using MySQL for collating 
user data and tracking activity. It works perfectly fine for high-
traffic webs due to the simplicity of  basic aggregations.

6. CONCLUSIONS

This study is a comparative analysis of  Oracle, SQL Server, 
and MySQL databases in areas of  aggregate functions and 
windows functions, ML workflows, non-relational (NoSQL) 
integration, and data security. The findings show that all the 
three databases are appropriate for analytical and data science 
queries, but with varying capabilities.

Aggregate Functions: Oracle and SQL Server are faster 
at running grouped functions over large sets of  data than 
MySQL, which can mostly just handle simple aggregations.

ML Integration: Oracle and SQL Server both have 
advanced in-database ML features. If  you want to work 
with a relational DBMS that can handle ML operations 
directly on the data without needing to send it somewhere 
else, Oracle and SQL Server are your safest bets. 
Interestingly, MySQL is weakest in this area. Although 
MySQL can be configured to send data for ML operations 

TABLE 7: Overview of Third‑Party Integrations and Plugins Enhancing MySQL in NoSQL Environments
Integration Advantages Disadvantages
MySQL 
Document Store

Native NoSQL support, JSON storage, simplifies using 
one database

Limited scalability for high-velocity NoSQL workloads, 
lacks advanced NoSQL features

ProxySQL High-performance query management, integrates with 
Redis for caching

Adds complexity, focused more on query management 
than NoSQL support

Vitess Horizontal scaling, efficient sharding, reduces resource 
costs for large datasets

Requires significant setup, lacks native NoSQL features

MySQL with 
MongoDB 
Connector

Combines MySQL and MongoDB for relational and 
document data storage

Adds complexity with data synchronization, increases 
resource usage by managing two systems

TokuDB for 
MySQL

Efficient data compression, better performance on 
write-heavy applications

Limited adoption, doesn’t provide native NoSQL 
capabilities

Kafka and MySQL 
Integration

Handles real-time data streams, complements MySQL’s 
relational capabilities

Additional setup required, increases resource usage by 
adding a streaming platform
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to external ML tools, this requires a significant investment 
of  time and resources sometimes it requires cost.

NoSQL Integration: Both Oracle and SQL Server score 
highly on integrating with NoSQL databases, so they are 
well-suited to hybrid data environments of  the kind found 
here—while MySQL can not integrate natively, integration 
is available third-party.

Data Security: Oracle and SQL Server offer strong security 
features, capable of  providing end-to-end data encryption 
or at least strong auditing features. MySQL offers only basic 
security features. Enhancing security with third-party services 
can be effective, but it often requires additional effort and 
can be expensive. In addition, these findings indicate that 
Oracle and SQL Server can be better choices for systems that 
require more complex data processing, demanding security, 
scaling, and integration with non-relational or unstructured 
data. MySQL, on the other hand, can be used for lighter 
applications that do not require advanced features.

Future lines of  research could investigate if  these databases 
perform better in different hardware configurations/cloud 
environments, which are increasingly becoming the norm in a 
majority of  modern applications. It would also be interesting 
to see if  the newer ML models fare better once integrated 
with the NoSQL databases. Another interesting point to 
study would be how does the cost competitiveness of  each 
DBMS in the market at play when compared on a scale such 
as performance in cases where a decision-maker wants to 
sell something basis its relative cost. Concept with possible 
directions for future research in the field.
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APPENDIX

(Appendix 1) Table schema
CREATE TABLE [employees](

[employee_id] [int] NOT NULL,

[department_id] [int] NULL,

[job_id] [int] NULL,

[salary] [decimal](10, 2) NULL,

[hire_date] [date] NULL,

[name] [varchar](100) NULL)

For Example in SQL SERVER:

-- Variables for batch processing

DECLARE @BatchSize INT = 100000;

DECLARE @TotalRecords INT = 1000000000;

DECLARE @CurrentBatch INT = 0;

DECLARE @StartID INT = 1;

-- Loop to insert data in batches

WHILE @CurrentBatch * @BatchSize < @TotalRecords

BEGIN

-- Insert data in batches

INSERT INTO employees (employee_id, department_id, 
job_id, salary, hire_date, name)

SELECT TOP (@BatchSize)

@StartID + ROW_NUMBER() OVER (ORDER BY 
(SELECT NULL)) - 1 AS employee_id,

ABS(CHECKSUM(NEWID()) % 11) AS department_
id, -- Random department_id between 0 and 10

ABS(CHECKSUM(NEWID()) % 101) AS job_id, -- Random 
job_id between 0 and 100

CAST(RAND(CHECKSUM(NEWID())) * 100000 AS 
DECIMAL(10, 2)) AS salary, -- Random salary between 0.00 
and 100000.00

DATEADD(DAY, -ABS(CHECKSUM(NEWID()) % 3650), 
GETDATE()) AS hire_date, -- Random hire_date within 
the last 10 years

RTRIM (CHAR(ASCII(‘A’) + ABS(CHECKSUM(NEWID())) 
% 26) + -- First character of  First Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26) 
+ -- Second character of  First Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26) 
+ -- Third character of  First Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26) 
+ -- Fourth character of  First Name

‘ ‘ +

CHAR(ASCII(‘A’) + ABS(CHECKSUM(NEWID())) % 26) 
+ -- First character of  Last Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26) 
+ -- Second character of  Last Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26) 
+ -- Third character of  Last Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26) 
+ -- Fourth character of  Last Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 
26) -- Fifth character of  Last Name) AS name -- Random 
full name

FROM sys.all_objects a

CROSS JOIN sys.all_objects b;

-- Update for the next batch

SET @StartID = @StartID + @BatchSize;

SET @CurrentBatch = @CurrentBatch + 1;

-- Print progress
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PRINT ‘Inserted ‘ + CAST(@CurrentBatch * @BatchSize 
AS VARCHAR(20)) + ‘ records so far.’;

END

(Appendix 2) Example Queries
1- COUNT(*):

SELECT COUNT(*) FROM employees;

2- SUM(salary):

SELECT SUM(salary) FROM employees;

3- AVG(salary):

SELECT AVG(salary) FROM employees;

4- MEDIAN(salary):

Oracle

SELECT MEDIAN(salary) FROM employees;

SQL Server

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP 
(ORDER BY salary)

OVER (PARTITION BY 1) AS MedianSalary FROM 
employees;

MySQL: Not available

5- STRING_AGG(name, ‘,’):

Oracle

SELECT LISTAGG(name, ‘,’) WITHIN GROUP (ORDER 
BY name) AS names FROM employees;

SQL Server

SELECT STRING_AGG(name, ‘,’) AS names FROM 
employees;

MySQL

SELECT GROUP_CONCAT(name ORDER BY name) AS 
names FROM employees;

INDEX

Oracle

CREATE INDEX idx_salary ON employees(salary);

CREATE INDEX idx_name ON employees(name);

SQL Server

CREATE INDEX idx_salary ON employees(salary);

CREATE INDEX idx_name ON employees(name);

MySQL

CREATE INDEX idx_salary ON employees(salary);

CREATE INDEX idx_name ON employees(name);

(Appendix 3) Security Evaluation
Oracle

1-Encryption

ALTER TABLE employees ADD (salary_encrypted 
RAW(2000));

CREATE OR REPLACE FUNCTION encrypt_salary 
(p_salary IN NUMBER) RETURN RAW IS

BEGIN

RETURN DBMS_CRYPTO.ENCRYPT (UTL_I18N.
STRING_TO_RAW(p_salary, ‘AL32UTF8’), DBMS_
CRYPTO.DES_CBC_PKCS5, UTL_I18N.STRING_TO_
RAW(‘encryption_key’, ‘AL32UTF8’));

END;

2-Access Control

CREATE USER secure_user IDENTIFIED BY password;

GRANT CONNECT, RESOURCE TO secure_user;

GRANT SELECT, INSERT ON employees TO secure_
user;

3-Auditing
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AUDIT SELECT, INSERT, UPDATE, DELETE ON 
employees BY secure_user;

SQL Server

Here is an example I used in my business project

1-Encryption

BEGIN

CREATE MASTER KEY ENCRYPTION

B Y  P A S S W O R D  = 
‘VqcSHmUUyifKNpoA4yhFnOJgpoX6kjhPK3’;

END;

CREATE CERTIFICATE [Dana_system_certname]

WITH SUBJECT = ‘DataSecurity Certificate’,

EXPIRY_DATE = ‘12/31/2024’;

CREATE SYMMETRIC KEY [Dana_system_keyname]

WITH ALGORITHM=AES_128

ENCRYPTION BY CERTIFICATE [Dana_system_
certname];

GO

DECLARE @DecryptedPassword NVARCHAR(255);

-- Open the symmetric key for decryption

OPEN SYMMETRIC KEY Dana_system_keyname 
DECRYPTION BY CERTIFICATE Dana_system_certname;

-- Decrypt the password and retrieve additional information 
by Advanced Encryption Standard (AES)

S E L E C T  @ D e c r y p t e d P a s s w o r d  = 
CONVERT(NVARCHAR(255), DecryptByKey(Password)),

@Permission = Permission,

@FullName = FullName,

@Email = Email

FROM dbo.Table_User

WHERE UserName = @UserName;

-- Close the symmetric key

CLOSE SYMMETRIC KEY Dana_system_keyname;

2-Access Control

CREATE LOGIN secure_user WITH PASSWORD = 
‘password’;

CREATE USER secure_user FOR LOGIN secure_user;

GRANT SELECT, INSERT ON employees TO secure_user;

3-Auditing

CREATE SERVER AUDIT Audit1 TO FILE (FILEPATH 
= ‘C: \AuditLogs\’);

CREATE SERVER AUDIT SPECIFICATION 
AuditSpecification1 FOR SERVER AUDIT Audit1

ADD (DATABASE_OBJECT_ACCESS_GROUP);

ALTER SERVER AUDIT Audit1 WITH (STATE = ON);

MySQL

1-Encryption

ALTER TABLE employees ADD COLUMN salary_
encrypted VARBINARY(255);

UPDATE employees SET salary_encrypted = AES_
ENCRYPT(salary, ‘encryption_key’);

2-Access Control

CREATE USER ‘secure_user’@’localhost’ IDENTIFIED 
BY ‘password’;

GRANT SELECT, INSERT ON employees TO ‘secure_
user’@’localhost’;

3-Auditing

INSTALL PLUGIN audit_log SONAME ‘audit_log.so’;
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SET GLOBAL audit_log_policy = ‘ALL’;

(Appendix 4) Example for ML Integration in SQL
SQL Server

EXEC sp_execute_external_script

@language = N’Python’,

@script = N’

import pandas as pd

from sklearn.linear_model import LinearRegression

model = LinearRegression()

model.fit(df[[column]], df[target])

df[“predictions”] = model.predict(df[[column]])

‘,

@input_data_1 = N’SELECT column, target FROM 
training_data’,

@input_data_1_name = N’df ’

WITH RESULT SETS ((predictions FLOAT));

Oracle

BEGIN

DBMS_DATA_MINING.CREATE_MODEL(

model_name => ‘my_model’,

mining_function => dbms_data_mining.classification,

data_table_name => ‘mining_data_build_v’,

case_id_column_name => ‘cust_id’,

target_column_name => ‘affinity_card’,

settings_table_name => ‘my_settings_table’);

END;

MySQL

MySQL does not have built-in ML capabilities,

but can integrate with external ML tools using connectors 
like MySQL Connector/Python

(Appendix 5)
8-Non-relational Database Connectivity Connecting with 
NoSQL:

Oracle

CREATE DATABASE LINK nosql_link CONNECT 
TO nosql_user IDENTIFIED BY password USING 
‘nosql_service’;

SELECT * FROM nosql_table@nosql_link;

SQL Server

--Example for PolyBase connecting to Hadoop

CREATE EXTERNAL DATA SOURCE HadoopData 
WITH (

TYPE = HADOOP,

LOCATION = ‘hdfs://hadoop-server:9000’);

CREATE EXTERNAL TABLE HadoopTable (

column1 INT,

column2 STRING)

WITH (

LOCATION = ‘/data/hadoop_table’,

DATA_SOURCE = HadoopData,

FILE_FORMAT = HadoopFileFormat

);

MySQL

\connect --mysql root@localhost:3308

\connect --mongo mongodb://localhost:27017

db.createCollection(“mysqlCollection”)


