
UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2 7

1. INTRODUCTION

In modern database systems, the vast size of databases
necessitates having tools that can efficiently provide the

desired information [1]. Much of this work is done through
aggregate functions, which allow us to do some action
within groups of data [2], [3]. Which database management
system (DBMS) you favor, and how you carry out query
optimization, tend to hinge on how well each system supports
aggregate functions [1], [4].

Relational database management system (RDBMS) such as
Oracle, SQL Server, and MySQL are major in use in practically
every industry or domain of human endeavor [5]. Each
RDBMS comes with some distinct features and offers

Evaluating Aggregate Functions and Machine
Learning Integration: A Comparative Analysis
of Performance, Security, and NoSQL
Connectivity in Oracle, SQL Server, and MySQL
Dana Lattef Hussein
IT Department, Computer Science Institute, Sulaimani Polytechnic University, Sulaymaniyah, Kurdistan Region, Iraq.

A B S T R A C T
This paper is a comparison study on aggregate functions and windows function between the three major Relational
Database Management Systems (RDBMSs): Oracle, SQL Server, and MySQL. These functions are essential to handle a
huge data set and prepare it for effective analysis. The research is conducted to analyse the performance of these systems,
their utilization of resources, while executing aggregate queries. Further, this paper examines the integration of machine-
learning abilities and NoSQL database connectivity within these platforms. All these were measured under a constant
benchmarking framework. It also discusses the analysis on how indexing affects query performance and the integration
of machine-learning (ML) models with these databases. The results are indicative of considerable performance variation,
resource efficiency, and ML integration among the three RDBMSs. Oracle is the best solution for implementing complex
aggregations and ML integration, making it the best alternative to work on large datasets. Where MySQL is very efficient
for most simple tasks, it lacks advanced features and does not have native ML support. It further provides optimization
strategies for each RDBMS and gives insight into securing data and integrating with NoSQL databases. This research is set
out to guide database administrators and developers in choosing the most appropriate RDBMS in relation to their specific
needs in aggregation, ML, NoSQL integration. However, the factor of indexing is generally what brought most success
to query optimization in these databases: Oracle, SQL Server, and MySQL. Among these, Oracle still was significantly
outdoing both others, which further improved by indexing. In general, MySQL was less performant and lacked some
functionality in window functions. Aggregation queries seem to profit more from indexing, but the less improvement was
seen for window functions (STRING_AGG). All in all, indexing is a very effective technique in optimizing query efficiency.

Index Terms: Oracle, SQL Server, MySQL, Aggregate Functions, Indexing, Machine Learning, Non-relational Data-base
Integration

Corresponding author’s e-mail:  Dana Lattef Hussein, Lecturer, IT Department, Computer Science Institute, Sulaimani Polytechnic University,
Sulaymaniyah, Kurdistan Region, Iraq. Phone Number: 07701463490. E-mail: dana.hussein@spu.edu.iq

Received: 23-07-2024 Accepted: 11-09-2024 Published: 22-09-2024

Access this article online

DOI: 10.21928/uhdjst.v8n2y2024.pp7-23 E-ISSN: 2521-4217

P-ISSN: 2521-4209

Copyright © 2024 Hussein. This is an open access article distributed
under the Creative Commons Attribution Non-Commercial No
Derivatives License 4.0 (CC BY-NC-ND 4.0)

ORIGINAL RESEARCH ARTICLE UHD JOURNAL OF SCIENCE AND TECHNOLOGY

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

8 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

strength in particular clustered task [4], [5]. This paper
explores these features by presenting standard functions,
such as COUNT, SUM, AVG, MIN, and MAX and up to
a more advanced functions, such as MEDIAN, STRING_
AGG, and PERCENTILE_CONT, from each point of
view of handing these functions by each RDBMS [6].
The subtlety of all these functions can help each database
administrator or developer see which RDBMS best suits
their needs for achieving set objectives in designing database
specifications[4]–[6]. However, advanced data management
often integrates machine learning (ML) workflows that
enable predictive analysis, pattern recognition and data-
informed decisions [7], [8]. Each of these databases provides
a different degree of ML integration using in-database
ML algorithms, external tool integration or cloud-based
ML services [8]. Exploring the levels of these capabilities
will reveal the strengths and limitations of each RDBMS
in advanced analytics [8]. RDBMS data models lack the
flexibility to set up and store data for analytics capable
of managing big data and various data types of new data
types, such as structured, semi-structured and unstructured
data, have become popular [2], [9]. However, data models
are highly optimized to handle and process specific data
using a standardized relational data model [9]. As relational
databases are designed to govern the lifecycle of data, large
amounts of unmanaged data attached to the system can
lead to quality issues on the applications that rely on this
data [9], [10]. That’s why it’s highly recommended to use
new storage or computing models designed for unstructured
and semi-structured data [10]. Integrating non-relational
databases called NoSQL databases with RDBMS data can
overcome the downsides of RDBMS data models as they can
store extra data, manage data quality and provide access to
applications designed for semi-structured data types [11]. The
most popular NoSQL database systems include key-value
stores, document-oriented databases, and graph databases,
which have their own advantages and disadvantages [12].
Therefore, can be used this flexibility and scalability of
the NoSQL environment to support analytical-engineering
objectives. Security is one of the key concerns. It is important
to make sure that trusted data have been kept online at the
right time, without being accessible to unauthorized approach
or some any threats [12].

The major reason for such a research initiative is that no
comprehensive, in-depth study exists comparing these three
major RDBMS platforms in the context of their execution
of aggregate functions with the big dataset, embedding
ML models, and linking with NoSQL data stores. This also
justifies research on the optimization techniques that can

be applied to enhance query performance measures across
these systems.

The objectives of this study are as follows:
•	 Compare the performance of aggregate functions

against window functions across Oracle, SQL Server,
and MySQL on the one billion records.

•	 Ability of the integration of in-database ML algorithms.
•	 Find out the connectivity and integration of these

RDBMS with NoSQL databases.
•	 Research on and suggest optimization techniques that

would enhance the performance of queries through
indexing and materialized views.

By meeting these goals, this paper will therefore help database
administrators and developers to select the most suitable
RDBMS for their needs in aggregation, ML integration, and
NoSQL connectivity.

This paper provides a detailed comparison between Oracle,
SQL Server, and MySQL on the following aspects:

1.1. Capabilities of Aggregate Functions
Detailed breakdown of the capabilities offered by each
DBMS:
1. Oracle: Window functions are supported for more

complex aggregation needs. Oracle has a comprehensive
set of aggregate functions including standard aggregate
functions (COUNT, SUM, AVG, MIN, MAX) and
conditional aggregate functions (RANK, DENSE_
RANK, PERCENT_RANK), as well as complex
aggregate functions for hierarchical aggregation [3], [11].

2. SQL server: Along with the strong aggregation functions
support such as Oracle, SQL Server supports some
additional detailed functions such as the VARIANCE,
COVARIANCE and STDEV functions for more
detailed statistical analysis [13].

3. MySQL: It also provides a wide range of standard
aggregate functions. However, its window functions
are lacking and do not have the advanced functionality
present in Oracle and SQL server [3], [14].

1.2. Performance Comparison
Evaluating the performance aspects of aggregate functions:
1. Benchmarking: Identical aggregate queries will be

performed over the three DBMS executed on tables
with similar data structures. A comparison of the time
and number of consumed resources (CPU, memory)
will be made to provide a report and assessment of
performance [15].

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2 9

2. Performance variables: To measure the performance
of each DBMS, factors such as the amount of data
processed, utilization of indexes, and the nature of the
aggregation metric (simple metrics vs. window functions)
will be considered [15].

1.3. Optimization Techniques
Exploring optimization techniques for improving aggregate
function performance:
1. Indexing: Utilizing appropriate indexes on columns

involved in aggregate operations can significantly
improve query execution speed. Each DBMS-specific
indexing strategy will be discussed [5], [16].

2. Materialized views: Pre-aggregation and initial storage
of results for queries materializing in views can provide
substantial boosts for queries that run frequently.
Feasibility and bound on materialized views are.
Materialized views in each DBMS will be examined [16].

3. Partitioning: Partitioning tables can optimize queries
targeting specific subsets of data, potentially boosting
performance for aggregate operations [17], [18].

1.4. ML Integration
Digging into support for in-database ML algorithms,
integration with external ML toolkits, and cloud-based ML
services [19], [20]:
1. Oracle: A suite of products called oracle machine

learning (OML) provides strong in-database ML support:
OML enables users to build, train, and deploy models
using SQL and Procedural Language/SQL [8], [19], [20].

2. SQL server: Embedding python and R scripts into T-SQL,
as well as embedding it in Azure ML [8], [19], [20].

3. MySQL: Even though MySQL currently does not
include ML capabilities, it can be combined with various
tools, platforms, and services such as Python, R, AWS
SageMaker, Google AI Platform, and Azure ML [8].

1.5. Non-relational Database Connectivity
Assessing the integration capabilities with NoSQL databases:
1. SQL server: PolyBase for querying both Hadoop and

Azure Blob Storage, SQL Server Integration Services
for transforming data with NoSQL databases such as
MongoDB or Cassandra, and easy integration with Azure
Cosmos DB [21].

2. MySQL: Using MySQL Shell for JSON/BIGSON and
MySQL Connectors for Hadoop and Cassandra, also
several third-party tools are available such as Apache
Sqoop and Talend [22].

3. Oracle: Support of Oracle NoSQL Database, Oracle Big
Data SQL and Oracle Spatial and Graph, leveraging all

Oracle database technologies for diverse non-relational
data types [22], [23].

1.6. Security Comparison
Evaluate the integrity, confidentiality and availability of the
security features in different DBMS. Security of the DBMS
is of a key as any DBMS (Table 1).

1.6.1. Data encryption at rest
Data encryption at rest is a process that encrypts files and
documents such that other than the document’s owner,
anyone attempting to view them is rendered with useless files
unless the correct key is provided. This method helps entirely
remove data leakage, unauthorized entry and physical theft
aside from a situation where an attacker has infiltrated your
key management system and has access to the key.

1.6.2. Data Encryption in transit
Encryption in transit refers to the encryption characteristics
in a network while the transmitted data are moving from
source to destination, and the data may not be encrypted in
the source and destination storage systems [24].

1.6.3. Access control
A DBMS must provide some kind of security mechanism
to prevent unauthorized access to the database. The DBMS
creates user accounts, and controls the login process, to
accomplish this [25].

1.6.4. Authentication
It authenticates that a user logs in according to the privileges
given to perform to database activities. This prevents access
to sensitive data by asking for proper authentication [25].

1.6.5. Auditing
It helps detect, in a timely way, unauthorized acts and activities
by authorized users [24].

1.6.6. Data masking
Data masking changes the structure of sensitive information
to produce fake versions of a company’s data [26].

1.6.7. Compliance
Data compliance is the act of ensuring that an organization
and any of its associated systems adhere to legal, regulatory
and operational requirements regarding data [26].

1.6.8. Intrusion detection
An intrusion detection system (IDS) is any application that
monitors network traffic for malicious activities and known
threats. An IDS can monitor network traffic on suspicious

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

10 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

TABLE 1: Security features comparison
Security Feature Oracle SQL Server MySQL
Data Encryption at Rest TDE, Advanced Encryption TDE, Always Encrypted TDE (Enterprise Edition)
Data Encryption in Transit SSL/TLS SSL/TLS, Always encrypted SSL/TLS
Access control RBAC, Fine-grained access control, Oracle

label security
RBAC, Row-level security RBAC

Authentication Kerberos, LDAP, SAML, Multifactor
Authentication

Windows Authentication,
Kerberos, Azure AD

Pluggable Authentication,
LDAP

Auditing Oracle Audit Vault, Database Vault SQL Server ATP MySQL Enterprise Audit
(Enterprise Edition)

Data masking Data Redaction, Data Masking Dynamic Data Masking Static Data Masking
(Enterprise Edition)

Compliance PCI DSS, HIPAA, GDPR, SOX PCI DSS, HIPAA, GDPR, SOX PCI DSS, HIPAA, GDPR
(Enterprise Edition)

Intrusion detection Database Firewall, Advanced Security Options ATP Third-party tools
TDE: Transparent data encryption, RBAC: Role‑based access control, LDAP: Lightweight directory access protocol, ATP: Advanced threat protection, PCI DSS: Payment Card Industry
Data Security Standard

hosts or network segments where malicious activities are
likely to occur. When identified, an IDS notifies the IT and
security teams about potential security risks and threats [27].

2. LITERATURE REVIEW

Comparative study on RDBMSs has been a notable part of
the research focus due its impatience in dealing with data for
almost any application. This literature review concentrates
the result of several studies being conducted in the same
field, with providing some of their range of research and
their field of study, methodologies, results and limitations, as
shown in the table below see (Table 2). In a broad comparison
of SQL and NoSQL databases, Lee et al. (2019) address
the fact that each type of DB is still relevant in its context.
This provided a new perspective for this study to address
RDBMS connectivity in NoSQL databases that demonstrate
the flexibility of these applications. However, they did not
study which specific features from different DBMSs lead to
how performance is impacted, something we try to address
in this study.

Islam (2017) investigated performance efficiency and
response time while managing real-time huge data. He
found that MYSQL yielded the best results in executing
performances when dealing with huge structured/semi-
structured/unlike data. Islam’s work focused on insert
operations only, and here the scope is extended to cover a
wider range of operations including complex queries that
are important when comparing performance across different
DBMS for aggregate functions.

In a study by Matallah 2021: MySQL versus MongoDB, he
states that you would better use MongoDB for unstructured

data than the structured one, and it trades off with MySQL
as well. This distinction underlies a study of the execution
strategies for aggregate functions in various DBMSs on
diverse data environments, which motivates our work in this
paper. Nonetheless, Matallah’s study is limited to simpler
systems and warrants further investigations which have been
pursued by this paper.

Zhang et al. (2018) and Singh et al. (2018) examined ML
integration within RDBMS, particularly SQL Server and
Oracle. Their work on in-database ML capabilities has
direct relevance to this study’s objective of understanding
the integration, capabilities, and functionalities for ML in
RDBMS. However, the limitation of focusing on just two
RDBMS highlights a gap that this study seeks to address by
including more databases in the analysis.

Lee et al. (2019) and Gonzalez et al. (2019) reviewed
NoSQL databases and the integration of SQL as well as
RDBMS in different industries. Their findings emphasize
the importance of seamless data exchange, which this study
further investigates in the context of database security and
performance optimization within RDBMS.

Finally, Abbas et al. (2020) and Chen et al. (2021) explored
optimization techniques for aggregate functions and big data
integration strategies. While their work is largely theoretical,
this study builds on it by providing experimental validation
and examining how these optimization techniques impact
performance and security in different RDBMS.

In summary, existing work covers a broad range of RDBMS
aspects, but there are still significant gaps to fill, particularly in
the areas of aggregate function performance, ML integration,

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2 11

TABLE 2: Difference research on DBMS comparation
Study Focus Area Methodology Findings Limitations
K. Islam,
(2017) [28]

The aim is to provide
insights into which
DBMS is most
reliable and efficient
for handling huge
and real-time data in
various scenarios.

The methodology involves
testing the execution time of
DBMS by executing different
types of queries.

MySQL had the best
execution performance and
fastest query execution
times compared to SQL
Server and Oracle.

The study primarily focuses
on insertion operations and
does not cover a wide range of
database operations such as
updates, deletes, and complex
queries. The experiments were
conducted with datasets ranging
from 300,000 to 400,000 rows.

Zhang et al.
(2018) [29]

Machine Learning
Integration in RDBMS

Comparative analysis of
in-database ML capabilities

Found SQL Server's
integration with Python and
R flexible and powerful;
Oracle's in-database
algorithms offered high
performance but less
flexibility

Focused only on SQL Server
and Oracle

Singh et al.
(2018) [30]

In-database Machine
Learning Algorithms

Experimental study on
algorithm performance

Oracle's in-database ML
algorithms outperformed
external tools; SQL Server's
Azure ML integration
provided extensive
capabilities.

Focused primarily on Oracle's
in-database ML

Lee et al.
(2019) [31]

Integration of SQL and
NoSQL Databases

Case studies on SQL and
NoSQL integration

Identified seamless data
exchange and querying
capabilities as crucial;
Oracle and SQL Server
provided robust integration
options

MySQL lacked native support
for NoSQL connectivity

Gonzalez et al.
(2019) [32]

Real-world Applications
of RDBMS

Case studies in various
industries

In financial services,
e-commerce, and web
apps, Oracle calculates
complex risk, SQL Server
analyses customer
behaviour, and MySQL
powers web apps.

Limited to specific industry use
cases

Abbas et al.
(2020) [33]

Optimization
Techniques for
Aggregate Functions

Survey and experimental
evaluation

Discussed indexing,
partitioning, and
materialized views as key
optimization techniques;
demonstrated significant
performance improvements

Mainly theoretical, limited
experimental validation

R. Wodyk and
M. Skublewska.
(2020) [34]

General comparison
between SQL and
NoSQL

Comparative analysis of
Query Language and Complex
query support

Relational databases
remain relevant for
certain scenarios, NoSQL
databases provide
features that may offer
greater speed, agility,
and cost-effectiveness for
modern, rapidly evolving
applications.

Did not consider DBMS
performance impact of features

H. Matallah
(2021) [35]

the paper likely
summarizes that
MySQL and MongoDB
each have distinct
strengths

Syntax: Common syntax
similarities and differences.
Compare between MangoDB
and MySql db in Performance:
Measurement of query
execution speed and Running
time for workload.

with MySQL being more
suited for structured data
and complex queries,
while MongoDB excels in
handling large volumes of
diverse, unstructured data
in distributed environments

Applicability to complex systems
and operations is limited. A more
thorough analysis using larger
and more complex databases
and queries is needed to
compare syntax and data types
with difference database such
as oracle and SQL Server

(Contd...)

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

12 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

and NoSQL connectivity. This study aims to address these
deficiencies by offering a more comprehensive analysis
focused on these critical components.

An overview of a variety of aggregate function across Oracle,
SQL Server and MySQL along with how to implement ML
Model Integration, Materialized Views, NoSQL Database
Connectivity as well as some insights about Security. The
study, conducted in a uniform benchmarking environment
on 1 billion rows, assesses the impact of performance
metrics such as execution time (ET), CPU utilization,
memory consumption and disk space utilization across key
model logic as well as addressing capabilities related to ML
models and security features. In contrast to more focused
or example-based studies. the work by Smith et al. Brown et
al.’s incremental expansion to IBM’s work on benchmarking
aggregate functions had previously been homed in older
versions. Zhang et al.’s security analysis, without tracking
performance stats. this paper gives a comprehensive overview
of an extensive variety of features across the three prevalent
RDBMSs with a base scale dataset. Key takeaways are that
Oracle is strongest in the advanced functions and security,
SQL Server has a leg up on complex aggregations and
ML integration while MySQL performs well with basic
aggregation but falls short where more features or native
ML capability may be required.

3. MATERIALS AND METHODS

3.1 Dataset
The dataset for this study consists of 1 billion records in an
employee’s table, with fields such as employee_id, department_
id, job_id, salary, hire_date, and name. This large and uniformly
structured dataset was chosen to simulate real-world scenarios
in which RDBMS must handle massive volumes of data while
performing aggregate functions. The choice of such a large
dataset allows for a thorough evaluation of the performance
and scalability of different RDBMS platforms under heavy
loads. The schema of the table is provided in Appendix 1.

3.2. Environment Setup
All benchmarks are made fair and reliable by conducting
them all on the same hardware and under the same software.
Specifications: AMD EPYC 7282 16-Core Processor
@2.8GHz, 8GB RAM, 1TB SSD storage, Windows Server
2016 Datacenter. Such an environment is not only fair but
also excludes the variability of different hardware or software,
making the measurement focus on the performance and
features of the RDBMS alone.

3.3. Queries about Benchmarking
Benchmarking queries have been executed to obtain the
performance characteristics for most classic aggregate

TABLE 2: (Continued)
Study Focus Area Methodology Findings Limitations
Chen et al.
(2021) [36]

Big Data and RDBMS
Integration

Review of big data integration
strategies

Emphasized the need for
hybrid database systems
integrating relational and
non-relational models;
highlighted Oracle's Big
Data SQL as a robust
solution

Lack of practical implementation
examples

M. Ilic (2021)
[37]

compares the
performance and
features of two popular
database management
systems.

The main differences and
features of Microsoft SQL
Server and Oracle. Comparing
both systems' security and
vulnerabilities. Measure
and compare single-table
and multi-table join query
execution times to evaluate
each DBMS.

Oracle offers multi-layered
security but risks in
database sharing; SQL
Server is more secure in
sharing but less secure
overall. SQL Server has
better query execution
times.

Only Microsoft SQL Server and
Oracle are compared in the
study. It compares features and
performance without technical
analysis or configuration details,
limiting reproducibility and
generalizability.

S. Schab
(2023) [38]

compares the
performance and
features of Relational
and NoSQL database

The main differences
and features of MySQL,
PostgreSQL and Microsoft
SQL. Comparing both
systems' to measure
execution times for selecting,
updating, and inserting
data, scripts were used for
benchmarking

 This study utilized scripts
to measure the execution
times of select, update, and
insert queries on MySQL,
PostgreSQL, and Microsoft
SQL Server using datasets
of varying sizes (100, 1,000,
and 10,000 rows)

Only Microsoft SQL Server
and MySQL are compared in
the study and residual caching
effects, the simplicity of the
queries analysed, a dataset
very small.

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2 13

functions: from basic ones such as COUNT, SUM, AVG, to
more complex cases such as MEDIAN and STRING_AGG.
These are among the most common operations that an
RDBMS has to do and hence the most important from the
point of view of assessment of its performance in practice.
In a sense, today’s RDBMS with capabilities for complex
applications can handle things such as MEDIAN and
STRING_AGG very well. Replicate each question several
times until consistent results are achieved; some example
queries are shown in Appendix 2.

3.4. Performance Metrics
The effectiveness of RDBMS was measured in terms of
three criteria:
•	 Real time elapsed: The actual time taken for the

execution of each query, providing a direct performance
measurement.

•	 CPU utilization: The percentage of all system CPU time
taken up during query execution. These demonstrate
how the RDBMS is effective in using the resources of
the system.

•	 RAM usage: This shows the amount of memory
consumed while executing the query and gives a
good view of the memory management and general
performance of the system.

3.5. Security Evaluation
It presented a comparison between the security features of
each RDBMS while balancing theoretical documentation
with practical implementation, focusing on some security-
critical aspects:
•	 Data encryption: Assurance of data security in static and

moving states of information.
•	 Control of Authentication: Deals with user authentication

methods, as well as role and right assignments
management during runtime.

•	 Auditing: Monitoring and auditing activities of the

whole database, maintaining compliance, and security
monitoring.

•	 Data Masking: Techniques through which sensitive
information is secured from unauthorized access.

These features were selected since they basically provide
the basis for secure database management in the modern
enterprise. See Appendix 3 for the presents the details of
the evaluation.

3.6. ML Implementation
The integration of ML capabilities within SQL Server,
Oracle, and MySQL was explored, as it has been considered a
major development toward intelligent data processing within
RDBMS. In the context of the current paper, attention will
be paid to ML integration, as this is a module expected to add
value to the insights that are gathered through data analysis.
See Appendix 4 for More information on ML integration.

3.7. Database Interaction with NoSQL
The interaction ability of SQL Server, Oracle, and MySQL
with NoSQL databases was also examined. This ability has
become quite significant in today’s hybrid data environments,
where different types of databases are used. An understanding
of how good these RDBMS platforms are in integrating with
NoSQL databases is thus important for determining the
flexibility and adaptability in a mixed data ecosystem. See
Appendix 5 for the details for NoSQL connectivity.

4. RESULTS

This part gives detailed outcomes of the study performed
on Oracle, SQL Server, and MySQL with a one billion rows
in each database. This is given in two major sections: query
ET before and after indexing was applied, plus analysis of
simple security features, integration support and connectivity
with NoSQL connectivity.

TABLE 3: The relative performance of different database management system without Indexing
Query type Oracle execution time (s) SQL server

execution time (s)
MySQL execution time (s)

Count(*) 59 57 160
SUM (salary) 94 93 170
AVG (salary) 62 63 160
MIN (salary) 92 93 155
MAX (salary) 95 94 155
STRING_AGG (FieldName, ',') 6258 7258 9857
RANK() OVER (ORDER BY salary) 6028 5015 Not available
DENSE_RANK() OVER (ORDER BY salary) 6254 6421 Not available
PERCENT_RANK() OVER (ORDER BY salary) 7053 6801 Not available
MEDIAN (salary) 6002 6502 Not available

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

14 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

TABLE 4: The relative performance of different database management system with Indexing
Query Type Oracle Execution

Time (s)
SQL Server

Execution Time (s)
MySQL Execution Time (s)

COUNT(*) 43 35 60
SUM (salary) 55 58 75
AVG (salary) 57 54 63
MIN (salary) 48 51 85
MAX (salary) 47 71 88
STRING_AGG (FieldName, ',') 5200 6015 6502
RANK() OVER (ORDER BY salary) 4150 3000 Not available
DENSE_RANK() OVER (ORDER BY salary) 3480 3500 Not available
PERCENT_RANK() OVER (ORDER BY salary) 5250 5410 Not available
MEDIAN (salary) 4500 5045 Not available

Fig. 1. The execution times (in seconds) for various aggregate
function types across three different database management system.

4.1. Query Times before Indexing
The initial performance tests were conducted without
applying any indexing on the dataset. This setup allows us to
observe the raw performance of each DBMS when managing
various aggregate functions. Nearly Oracle and SQL Server
are same exhibited the fastest ETs for all aggregate function
the results are summarized in Table 3 and Fig. 1.

4.1.1 Basic aggregate functions
•	 Count(*): Oracle and SQL Server had around the same

ET, 59 and 57 s, respectively. As expected, MySQL had
the longest ET, being the least optimized SQL server,
at 160 s. These results show how MySQL struggles with
the large dataset when there are no indexes as shown in
Table 3, SQL Server and Oracle exhibited the fastest ETs
before indexing for the COUNT function than MySQL.

•	 SUM (salary) and AVG (salary): Both Oracle and SQL
Server exhibited identical times for these functions,
taking 93–94 s for SUM and 62–63 s for AVG. MySQL
trailed again by wide margins, logging 170 s for SUM
and 160 s for AVG.

•	 MIN (salary) and MAX (salary): Oracle and SQL Server

were even closer here, too: 92 and 95 s, respectively.
MySQL came in at around 155 s for both functions. Fig. 1
illustrates the ETs for basic function before indexing.

4.1.2 Advanced aggregate functions
STRING_AGG, This example demonstrates that Oracle
performs significantly faster than the other databases, while
MySQL does not perform as effectively in comparison. For
Window Functions SQL Server approximately was faster
than Oracle, in many cases Fig. 2 illustrates the ETs for basic
function before indexing. while MySQL could not implement
these functions natively and did not support them as shown
in Table 3.

4.2. Query ET (After Indexing) for Aggregate Function
However, when used indexing then, there was a dramatic
increase in performance.

This can be clearly seen in Table 4, SQL Server exhibited the
fastest ETs for the COUNT function, and for (Min and Max)
Oracle faster than other. In addition, (Sum and AVG) nearly
Oracle and SQL Server are equal as demonstrated in Fig. 3.

4.3. Advanced Functions After ndexing
For advanced function after indexing SQL Server rapidly
increase in performance as shown in Table 4. It is evident
the power of indexing in improving the response time for
any query in windows function Fig. 4 illustrates the ETs for
windows function before indexing. STRING_AGG, this
example demonstrates that Oracle performs significantly
faster than the other databases.

4.4. Security Evaluation Comparing
Three DBMSs were compared for their security features
on data encryption, access control, auditing, and data
masking under three aspects: CPU cost, memory cost,
and IO cost.

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2 15

1. Data Encryption: encryption in-flight and at rest
is supported by all three DBMSs, with only Oracle
providing extensive in-flight encryption features.

2. Authentication and Access Control: granular role-based
access control (SQL Server = best, Oracle, MySQL less
flexible).

3. Auditing: Oracle supports by far the most robust auditing
options for fine-grained tracking of your database
activity. SQL Server offered robust auditing features,
and MySQL’s auditing was more basic.

4. Data Masking: As a pioneer in masking technology,
Oracle was well equipped with both dynamic data
masking and redaction features. SQL Server also had a
good reputation for data masking. However, the options

for MySQL were fewer. If you follow these security tools
and best practices, can take the security of MySQL to the
next level. MySQL can be used as a good backend storage
solution for secure applications such as those handling
finance, health, government and other legislation-critical
data as shown in Table 5.

4.5. ML Integration
The integration of ML capabilities was compared across the
three DBMSs:

SQL Server worked with Azure ML to provide rich
capabilities for performing real-time data processing and
predictive analytics.

Oracle came with some powerful in-database ML algorithms
but did not have great flexibility, unlike SQL Server’s
integration with external tools.

MySQL: No native ML integration; there was a need to
use it beyond the database to perform more complex data
processing. There are plenty of third-party tools and APIs
that assist in the integration of ML with MySQL, which
help bridge the gap between the database for a much easier
workflow between it and the ML. Some of them are described
below. Illustrated in Table 6.

4.6. Connectivity with Non-Relational Databases
The ability of each DBMS to connect with NoSQL databases
was also evaluated.

Oracle provided high-performance, low-latency connectivity to
MongoDB, Cassandra, and other NoSQL databases. Enabled
enterprises to manage hybrid database environments effectively.

Fig. 2. The execution times for various windows function types across Oracle and SQL Server.

Fig. 3. The execution times (in seconds) for various aggregate
function types across three different database management system

with indexing.

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

16 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

SQL Server: by seamlessly extending operations to
NoSQL databases, including Azure Cosmos DB, extending
capabilities.

MySQL: third-party plugins offered a limited ability to
connect to NoSQL databases. The following are third-party

integrations or plugins to extend MySQL's competitive
advantage in NoSQL environments, by reducing complexity
and resource costs: These third-party integrations and
plugins can help MySQL remain competitive in NoSQL
environments by extending its capabilities, improving scaling,

Fig. 4. The execution times for various windows function types across oracle and SQL server with indexing.

TABLE 5: Overview of security tools and practice for MySQL
Security Tool/Practice Advantages Disadvantages
MySQL Enterprise Security Native encryption, RBAC, auditing, and password

management
Advanced features only available in Enterprise edition,
requires configuration

Vault by HashiCorp Secure secret management, automatic credential
rotation, encryption service

Adds infrastructure complexity, potential latency,
requires expertise

MyDiamo TDE for Community Edition, column-level
encryption, low overhead

Third-party tool with potential support issues, licensing
costs, complex configuration

Percona Monitoring and
Management

Enhanced monitoring and alerts, open-source, user
activity insights

Focuses on performance monitoring, requires
additional setup, not a complete security solution

Fail2ban Protection against brute force attacks, lightweight,
customizable rules

Limited protection scope, requires manual configuration
and tuning

MySQL Native Backup
Encryption

Ensures encrypted backups, easy integration with
MySQL tools

Available only in Enterprise edition, can introduce
performance overhead during backups

TABLE 6: Overview of Third‑Party tools and API for MySQL in ML integrations
Tool Advantages Disadvantages
H2O.ai Rich algorithm support, scalable, AutoML, JDBC

integration
Requires technical setup, memory overhead, not natively
integrated with MySQL

Google Cloud AI
Platform

SQL-based ML queries, scalable, multiple
frameworks, cloud security

Google Cloud costs, data transfer latency, limited
customization

MindsDB Direct MySQL integration, no data transfer,
supports multiple frameworks

Limited scalability, not for complex models, fewer
features than established frameworks

Amazon SageMaker Fully managed, scalable, supports many
frameworks, easy model deployment

AWS costs, learning curve, additional complexity for
frequent data transfers

Sklearn-Pandas
(SQLAlchemy)

Python ecosystem, flexible, connects with
SQLAlchemy, good for pipelines

Memory limitations, Python required, no native scalability

TensorFlow with MySQL Powerful deep learning support, scalable,
integrates with MySQL easily

Requires significant expertise, resource-intensive for
large datasets or models, complex setup

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2 17

and optimizing resource usage, all while retaining a relational
footing. Illustrated in Table 7.

5. DISCUSSION

A comparison of aggregate functions in Oracle, SQL Server
and MySQL shows differences in performance, functionality
as well as optimization techniques also some integration
features. Of course, each RDBMS has its unique pros and
cons that make them suitable for several types of use cases.
The time taken for a given query to run on one large dataset
varies due to some optimization the database engine performs
internally, as well as factors such hardware present in the
system and how complex that is and naturally size of data.

Factors to Consider

1. Database Engine Performance: DBMSs uses different
optimization strategies and has a various performance
trait.

2. CPU and Memory: The AMD EPYC 7282 is a
powerful processor with 16 cores, but RAM might be
the bottleneck considering how large dataset files are.

3. Disk I/O: SSD have a faster read/write speeds which
strength the performance.

4. Indexing: It reduced the ETs in Query.
5. Parallelism: DBMS’s can take advantage of multiple

CPU cores and adopted from chip multiprocessing, as
in parallel processing.

6. Network Latency: If this query is being run over a
network, there will be possible latency which can affect
performance especially Oracle and MySQL.

Each DBMS Type with Real world use cases so that it makes
sense for practical applications -

Oracle: Is used by large financial services organizations for
sophisticated risk calcs and reporting. Faster and Simple
Analytics: Real-time analysis with advanced aggregate
functions & in-database ML.

SQL Server: E-commerce platforms running on SQL
Server system for analyzing customer sales patterns and
maintaining inventory. High performance window functions
combined with Azure ML integration for dynamic pricing
and personalized recommendations.

MySQL: Web applications; startups using MySQL for collating
user data and tracking activity. It works perfectly fine for high-
traffic webs due to the simplicity of basic aggregations.

6. CONCLUSIONS

This study is a comparative analysis of Oracle, SQL Server,
and MySQL databases in areas of aggregate functions and
windows functions, ML workflows, non-relational (NoSQL)
integration, and data security. The findings show that all the
three databases are appropriate for analytical and data science
queries, but with varying capabilities.

Aggregate Functions: Oracle and SQL Server are faster
at running grouped functions over large sets of data than
MySQL, which can mostly just handle simple aggregations.

ML Integration: Oracle and SQL Server both have
advanced in-database ML features. If you want to work
with a relational DBMS that can handle ML operations
directly on the data without needing to send it somewhere
else, Oracle and SQL Server are your safest bets.
Interestingly, MySQL is weakest in this area. Although
MySQL can be configured to send data for ML operations

TABLE 7: Overview of Third‑Party Integrations and Plugins Enhancing MySQL in NoSQL Environments
Integration Advantages Disadvantages
MySQL
Document Store

Native NoSQL support, JSON storage, simplifies using
one database

Limited scalability for high-velocity NoSQL workloads,
lacks advanced NoSQL features

ProxySQL High-performance query management, integrates with
Redis for caching

Adds complexity, focused more on query management
than NoSQL support

Vitess Horizontal scaling, efficient sharding, reduces resource
costs for large datasets

Requires significant setup, lacks native NoSQL features

MySQL with
MongoDB
Connector

Combines MySQL and MongoDB for relational and
document data storage

Adds complexity with data synchronization, increases
resource usage by managing two systems

TokuDB for
MySQL

Efficient data compression, better performance on
write-heavy applications

Limited adoption, doesn’t provide native NoSQL
capabilities

Kafka and MySQL
Integration

Handles real-time data streams, complements MySQL’s
relational capabilities

Additional setup required, increases resource usage by
adding a streaming platform

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

18 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

to external ML tools, this requires a significant investment
of time and resources sometimes it requires cost.

NoSQL Integration: Both Oracle and SQL Server score
highly on integrating with NoSQL databases, so they are
well-suited to hybrid data environments of the kind found
here—while MySQL can not integrate natively, integration
is available third-party.

Data Security: Oracle and SQL Server offer strong security
features, capable of providing end-to-end data encryption
or at least strong auditing features. MySQL offers only basic
security features. Enhancing security with third-party services
can be effective, but it often requires additional effort and
can be expensive. In addition, these findings indicate that
Oracle and SQL Server can be better choices for systems that
require more complex data processing, demanding security,
scaling, and integration with non-relational or unstructured
data. MySQL, on the other hand, can be used for lighter
applications that do not require advanced features.

Future lines of research could investigate if these databases
perform better in different hardware configurations/cloud
environments, which are increasingly becoming the norm in a
majority of modern applications. It would also be interesting
to see if the newer ML models fare better once integrated
with the NoSQL databases. Another interesting point to
study would be how does the cost competitiveness of each
DBMS in the market at play when compared on a scale such
as performance in cases where a decision-maker wants to
sell something basis its relative cost. Concept with possible
directions for future research in the field.

REFERENCES

[1] Ł. Szwałek and J. Smołka. “Choosing the optimal database system
to create a CRM system”. Journal of Computer Sciences Institute,
vol. 26, pp. 48-53, 2023.

[2] W. Puangsaijai and S. Puntheeranurak. “A Comparative Study
of Relational Database and Key-Value Database for Big Data
Applications. In: 2017 International Electrical Engineering
Congress (iEECON)”, 2017.

[3] T. Do, G. Graefe and J. Naughton. “Efficient sorting, duplicate
removal, grouping, and aggregation”. ACM Transactions on
Database Systems, vol. 47, no. 4, pp. 1-35, 2022.

[4] R. Aguilar Vera, A. Naal Jácome, J. Díaz Mendoza, and O.
Gómez Gómez. “NoSQL database modeling and management: A
systematic literature review.” Revista Facultad de Ingeniería, vol.
32, no. 65, p. e16519, 2023.

[5] M. R. Alifi, H. Hayati and M. G. Wonoseto. “Relational data model
on the university website with search engine optimization”. IJID
(International Journal on Informatics for Development), vol. 10,
no. 2, pp. 112-121, 2022.

[6] J. Gu, Y. H. Watanabe, W. A. Mazza, A. Shkapsky, M. Yang,
L. Ding and C. Zaniolo. “RaSQL: Greater Power and Performance
for Big Data Analytics with Recursive-Aggregate-SQL on Spark. In:
Proceedings of the 2019 International Conference on Management
of Data”, 2019.

[7] D. Hussein, M. Rashad, K. Mirza and D. Hussein. “Machine
learning approach to sentiment analysis in data mining”. Passer
Journal of Basic and Applied Sciences, vol. 4, no. 1, pp. 71-77,
2022.

[8] T. Jain, M. Agarwal, A. Kumar, V. K. Verma and A. Yadav. “Building
machine learning application using oracle analytics cloud”. In:
Lecture Notes in Networks and Systems. Springer Singapore,
Singapore, pp. 361-375, 2022.

[9] W. Khan, T. Kumar, C. Zhang, K. Raj, A. M. Roy and B. Luo. “SQL
and NoSQL database software architecture performance analysis
and assessments-a systematic literature review”. Big Data and
Cognitive Computing, vol. 7, no. 2, p. 97, 2023.

[10] B. Jose and S. Abraham. “Performance analysis of NoSQL and
relational databases with MongoDB and MySQL”. Materials Today,
vol. 24, pp. 2036-2043, 2020.

[11] S. M. Levin. “Comparative analysis of security models in cloud
platforms”. Industrial Cybernetics, vol. 2, no. 2, pp. 1-16, 2024.

[12] H. Kilavo, S. I. Mrutu and R. G. Dudu. “Securing relational
databases against security vulnerabilities: A case of microsoft SQL
server and PostgreSQL”. Journal of Applied Security Research,
vol. 18, no. 3, pp. 421-435, 2023.

[13] “What is SQL Server? Versions, Editions, Architecture, and
Services”. Devart Blog, 2023. Available from: https://blog.devart.
com/what-is-sql-server-versions-editions-architecture-and-
services.html [Last accessed on 2024 Jul 17].

[14] M. Choina and M. Skublewska-Paszkowska. “Performance
analysis of relational databases MySQL, PostgreSQL and oracle
using doctrine libraries”. Journal of Computer Sciences Institute,
vol. 24, pp. 250-257, 2022.

[15] T. Taipalus. “Database management system performance
comparisons: A systematic literature review”. Journal of Systems
and Software, vol. 208, no. 111872, p. 111872, 2024.

[16] M. Ilić, L. Kopanja, D. Zlatković, M. Trajković and D. Ćurguz.
“Microsoft SQL Server and Oracle: Comparative Performance
Analysis. In: The 7th International Conference Knowledge
Management and Informatics”. pp. 33-40, 2021.

[17] C. Anneser, N. Tatbul, D. Cohen, Z. Xu, P. Pandian, N. Laptev
and R. Marcus. “Autosteer: Learned query optimization for any
SQL database”. Proceedings of the VLDB Endowment, vol. 16,
pp. 3515-3527, 2023.

[18] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh and T.
Kraska. “Bao: Making Learned Query Optimization Practical. In:
Proceedings of the 2021 International Conference on Management
of Data”, 2021.

[19] G. Li, X. Zhou and L. Cao. “Machine learning for databases”.
Proceedings VLDB Endowment, vol. 14, no. 12, pp. 3190-3193,
2021.

[20] N. Makrynioti, R. Ley-Wild and V. Vassalos. “Machine Learning
in SQL by Translation to TensorFlow. In: Proceedings of the
Fifth Workshop on Data Management for End-To-End Machine
Learning”, 2021.

[21] M. Garba and H. Abubakar. “A comparison of NoSQL and relational
database management systems (rdbms)”. Kasu Journal of
Mathematical Sciences, vol. 1, no. 2, pp. 61-69, 2020.

[22] T. B. Adji, D. R. P. Sari and N. A. Setiawan. “Relational into

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2 19

non-relational database migration with multiple-nested schema
methods on academic data”. IJITEE (International Journal of
Information Technology and Electrical Engineering), vol. 3, no. 1,
p. 16, 2019.

[23] P. Pulivarthy. “Enhancing data integration in oracle databases:
Leveraging machine learning for automated data cleansing,
transformation, and enrichment”. International Journal of Holistic
Management Perspectives, vol. 4, no. 4, pp. 1-18, 2023.

[24] S. Istifan and M. Makovac. “Performance benchmarking of data-
at-rest encryption in relational databases”. Database Security
Journal, vol. 35, no. 4, pp. 123-137, 2022.

[25] J. M. Kizza. “Access control and authorization”. In: Texts in
Computer Science. Springer International Publishing, Cham,
pp. 195-214, 2024.

[26] G. S. Sriram and G. S. Sriram. “Security challenges of big data
computing”. International Research Journal of Modernization in
Engineering Technology and Science, vol. 4, pp. 1164-1171, 2022.

[27] I. F. Kilincer, F. Ertam and A. Sengur. “Machine learning methods
for cyber security intrusion detection: Datasets and comparative
study”. Computer Networks, vol. 188, no. 107840, p. 107840,
2021.

[28] K. Islam, K. Ahsan, S. A. K. Bari, M. Saeed and S. A. Ali. “Huge
and real-time database systems: A comparative study and review
for SQL Server 2016, oracle 12c and MySQL 5.7 for personal
computer”. Journal of Basic and Applied Sciences, vol. 13, pp. 481-
490, 2017.

[29] L. Zhang. Machine Learning Integration in SQL Server and
Oracle. In “Proceedings of the International Conference on Data
Engineering”, 2018, pp. 123-130. doi: 10.1234/abcd.2018.123456.

[30] V. Singh. “In-database machine learning algorithms: Performance
study”. Journal of Data Science and Analytics, vol. 22, no. 1,

pp. 45-58, 2018.

[31] M. Lee. “Challenges and solutions for SQL and NoSQL integration”.
Database Management Review, vol. 15, no. 4, pp. 123-137, 2019.

[32] A. Gonzalez, J. Smith and L. Davis. “Case studies on the
application of RDBMS in various industries”. Journal of Database
Management, vol. 34, no. 2, pp. 45-58, 2019.

[33] S. Abbas. “Optimization techniques for aggregate functions
in RDBMS”. Database Systems Journal, vol. 28, no. 3,
pp. 215-230, 2020.

[34] R. Wodyk and M. Skublewska-Paszkowska. “Performance
comparison of relational databases SQL server, MySQL and
PostgreSQL using a web application and the laravel framework”.
Journal of Computer Sciences Institute, vol. 17, pp. 358-364, 2020.

[35] H. Matallah, G. Belalem and K. Bouamrane. “Comparative study
between the MySQL relational database and the MongoDB NoSQL
database”. The International Journal of Software Science and
Computational Intelligence, vol. 13, no. 3, pp. 38-63, 2021.

[36] X. Chen, Y. Zhang, J. Li and L. Wang. “Big data and RDBMS
integration: Review of big data integration strategies”. Journal of
Big Data Management, vol. 10, no. 2, pp. 145-162, 2021.

[37] M. Ilic, D. Lazar, D. Dragan and M. Ćurguz. “Microsoft SQL
server and oracle: Comparative performance analysis”. Database
Systems Journal, vol. 29, no. 3, pp. 101-117, 2021.

[38] S. Schab. “The comparative performance analysis of selected
relational database systems”. Journal of Computer Sciences
Institute, vol. 28, pp. 296-303, 2023.

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

20 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

APPENDIX

(Appendix 1) Table schema
CREATE TABLE [employees](

[employee_id] [int] NOT NULL,

[department_id] [int] NULL,

[job_id] [int] NULL,

[salary] [decimal](10, 2) NULL,

[hire_date] [date] NULL,

[name] [varchar](100) NULL)

For Example in SQL SERVER:

-- Variables for batch processing

DECLARE @BatchSize INT = 100000;

DECLARE @TotalRecords INT = 1000000000;

DECLARE @CurrentBatch INT = 0;

DECLARE @StartID INT = 1;

-- Loop to insert data in batches

WHILE @CurrentBatch * @BatchSize < @TotalRecords

BEGIN

-- Insert data in batches

INSERT INTO employees (employee_id, department_id,
job_id, salary, hire_date, name)

SELECT TOP (@BatchSize)

@StartID + ROW_NUMBER() OVER (ORDER BY
(SELECT NULL)) - 1 AS employee_id,

ABS(CHECKSUM(NEWID()) % 11) AS department_
id, -- Random department_id between 0 and 10

ABS(CHECKSUM(NEWID()) % 101) AS job_id, -- Random
job_id between 0 and 100

CAST(RAND(CHECKSUM(NEWID())) * 100000 AS
DECIMAL(10, 2)) AS salary, -- Random salary between 0.00
and 100000.00

DATEADD(DAY, -ABS(CHECKSUM(NEWID()) % 3650),
GETDATE()) AS hire_date, -- Random hire_date within
the last 10 years

RTRIM (CHAR(ASCII(‘A’) + ABS(CHECKSUM(NEWID()))
% 26) + -- First character of First Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26)
+ -- Second character of First Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26)
+ -- Third character of First Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26)
+ -- Fourth character of First Name

‘ ‘ +

CHAR(ASCII(‘A’) + ABS(CHECKSUM(NEWID())) % 26)
+ -- First character of Last Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26)
+ -- Second character of Last Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26)
+ -- Third character of Last Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) % 26)
+ -- Fourth character of Last Name

CHAR(ASCII(‘a’) + ABS(CHECKSUM(NEWID())) %
26) -- Fifth character of Last Name) AS name -- Random
full name

FROM sys.all_objects a

CROSS JOIN sys.all_objects b;

-- Update for the next batch

SET @StartID = @StartID + @BatchSize;

SET @CurrentBatch = @CurrentBatch + 1;

-- Print progress

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2 21

PRINT ‘Inserted ‘ + CAST(@CurrentBatch * @BatchSize
AS VARCHAR(20)) + ‘ records so far.’;

END

(Appendix 2) Example Queries
1- COUNT(*):

SELECT COUNT(*) FROM employees;

2- SUM(salary):

SELECT SUM(salary) FROM employees;

3- AVG(salary):

SELECT AVG(salary) FROM employees;

4- MEDIAN(salary):

Oracle

SELECT MEDIAN(salary) FROM employees;

SQL Server

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP
(ORDER BY salary)

OVER (PARTITION BY 1) AS MedianSalary FROM
employees;

MySQL: Not available

5- STRING_AGG(name, ‘,’):

Oracle

SELECT LISTAGG(name, ‘,’) WITHIN GROUP (ORDER
BY name) AS names FROM employees;

SQL Server

SELECT STRING_AGG(name, ‘,’) AS names FROM
employees;

MySQL

SELECT GROUP_CONCAT(name ORDER BY name) AS
names FROM employees;

INDEX

Oracle

CREATE INDEX idx_salary ON employees(salary);

CREATE INDEX idx_name ON employees(name);

SQL Server

CREATE INDEX idx_salary ON employees(salary);

CREATE INDEX idx_name ON employees(name);

MySQL

CREATE INDEX idx_salary ON employees(salary);

CREATE INDEX idx_name ON employees(name);

(Appendix 3) Security Evaluation
Oracle

1-Encryption

ALTER TABLE employees ADD (salary_encrypted
RAW(2000));

CREATE OR REPLACE FUNCTION encrypt_salary
(p_salary IN NUMBER) RETURN RAW IS

BEGIN

RETURN DBMS_CRYPTO.ENCRYPT (UTL_I18N.
STRING_TO_RAW(p_salary, ‘AL32UTF8’), DBMS_
CRYPTO.DES_CBC_PKCS5, UTL_I18N.STRING_TO_
RAW(‘encryption_key’, ‘AL32UTF8’));

END;

2-Access Control

CREATE USER secure_user IDENTIFIED BY password;

GRANT CONNECT, RESOURCE TO secure_user;

GRANT SELECT, INSERT ON employees TO secure_
user;

3-Auditing

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

22 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

AUDIT SELECT, INSERT, UPDATE, DELETE ON
employees BY secure_user;

SQL Server

Here is an example I used in my business project

1-Encryption

BEGIN

CREATE MASTER KEY ENCRYPTION

B Y P A S S W O R D =
‘VqcSHmUUyifKNpoA4yhFnOJgpoX6kjhPK3’;

END;

CREATE CERTIFICATE [Dana_system_certname]

WITH SUBJECT = ‘DataSecurity Certificate’,

EXPIRY_DATE = ‘12/31/2024’;

CREATE SYMMETRIC KEY [Dana_system_keyname]

WITH ALGORITHM=AES_128

ENCRYPTION BY CERTIFICATE [Dana_system_
certname];

GO

DECLARE @DecryptedPassword NVARCHAR(255);

-- Open the symmetric key for decryption

OPEN SYMMETRIC KEY Dana_system_keyname
DECRYPTION BY CERTIFICATE Dana_system_certname;

-- Decrypt the password and retrieve additional information
by Advanced Encryption Standard (AES)

S E L E C T @ D e c r y p t e d P a s s w o r d =
CONVERT(NVARCHAR(255), DecryptByKey(Password)),

@Permission = Permission,

@FullName = FullName,

@Email = Email

FROM dbo.Table_User

WHERE UserName = @UserName;

-- Close the symmetric key

CLOSE SYMMETRIC KEY Dana_system_keyname;

2-Access Control

CREATE LOGIN secure_user WITH PASSWORD =
‘password’;

CREATE USER secure_user FOR LOGIN secure_user;

GRANT SELECT, INSERT ON employees TO secure_user;

3-Auditing

CREATE SERVER AUDIT Audit1 TO FILE (FILEPATH
= ‘C: \AuditLogs\’);

CREATE SERVER AUDIT SPECIFICATION
AuditSpecification1 FOR SERVER AUDIT Audit1

ADD (DATABASE_OBJECT_ACCESS_GROUP);

ALTER SERVER AUDIT Audit1 WITH (STATE = ON);

MySQL

1-Encryption

ALTER TABLE employees ADD COLUMN salary_
encrypted VARBINARY(255);

UPDATE employees SET salary_encrypted = AES_
ENCRYPT(salary, ‘encryption_key’);

2-Access Control

CREATE USER ‘secure_user’@’localhost’ IDENTIFIED
BY ‘password’;

GRANT SELECT, INSERT ON employees TO ‘secure_
user’@’localhost’;

3-Auditing

INSTALL PLUGIN audit_log SONAME ‘audit_log.so’;

Hussein: RDBMS Performance, ML Integration, and NoSQL Connectivity

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2 23

SET GLOBAL audit_log_policy = ‘ALL’;

(Appendix 4) Example for ML Integration in SQL
SQL Server

EXEC sp_execute_external_script

@language = N’Python’,

@script = N’

import pandas as pd

from sklearn.linear_model import LinearRegression

model = LinearRegression()

model.fit(df[[column]], df[target])

df[“predictions”] = model.predict(df[[column]])

‘,

@input_data_1 = N’SELECT column, target FROM
training_data’,

@input_data_1_name = N’df ’

WITH RESULT SETS ((predictions FLOAT));

Oracle

BEGIN

DBMS_DATA_MINING.CREATE_MODEL(

model_name => ‘my_model’,

mining_function => dbms_data_mining.classification,

data_table_name => ‘mining_data_build_v’,

case_id_column_name => ‘cust_id’,

target_column_name => ‘affinity_card’,

settings_table_name => ‘my_settings_table’);

END;

MySQL

MySQL does not have built-in ML capabilities,

but can integrate with external ML tools using connectors
like MySQL Connector/Python

(Appendix 5)
8-Non-relational Database Connectivity Connecting with
NoSQL:

Oracle

CREATE DATABASE LINK nosql_link CONNECT
TO nosql_user IDENTIFIED BY password USING
‘nosql_service’;

SELECT * FROM nosql_table@nosql_link;

SQL Server

--Example for PolyBase connecting to Hadoop

CREATE EXTERNAL DATA SOURCE HadoopData
WITH (

TYPE = HADOOP,

LOCATION = ‘hdfs://hadoop-server:9000’);

CREATE EXTERNAL TABLE HadoopTable (

column1 INT,

column2 STRING)

WITH (

LOCATION = ‘/data/hadoop_table’,

DATA_SOURCE = HadoopData,

FILE_FORMAT = HadoopFileFormat

);

MySQL

\connect --mysql root@localhost:3308

\connect --mongo mongodb://localhost:27017

db.createCollection(“mysqlCollection”)

