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1. INTRODUCTION

Text compression is vital in data management and 
transmission since efficient storage and high-speed 
communication are critical concerns in the digital era [1,2]. It 
can be said that text compression aims to transform textual 
data into the most compact form possible with fewer bits 
to store or transfer information without compromising the 
authenticity of  a message. While there is an exponential 
increase in the volume of  digital text generated across web 
content, scientific data, and communications, among others, 

the need for effective compression also increases [3,4]. In 
addition to saving storage space, efficient methods of  text 
compression enhance the rates of  data transmission  [4], 
becoming extremely important to a wide range of  
applications, starting from telecommunications and file 
storage to Internet communications [5,6].

Traditional text compression, such as Huffman coding [7], 
LZW [8], and RLE [9], has been extensively applied due to 
their high ratios. However, these perform static, pre-defined 
encoding schemes that are not optimal for all data types. 
They often cannot adapt to different features of  the text; 
sometimes, they give abysmal performance in compressing 
highly variable or complex data [10,11]. Furthermore, with 
the ever-growing diversity of  formats for information 
exchange and the growing complexity of  modern digital 
content, the need is for far more adaptive and intelligent 
methods of  text compression [12,13].
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Within the framework of  evolutionary algorithms, robust 
methods for solving, such as Genetic Algorithms (GAs) [14] 
and Particle Swarm Optimization (PSO) [15], have emerged 
as quite useful [16]. GAs draw inspiration from natural 
evolution, with the primary vehicle of  evolving solutions 
provided by mechanisms of  selection, crossover, and 
mutation across successive generations. GAs were effective 
in text compression since encoding schemes can be generated 
dynamically to better adapt to the compressed text structure 
and characteristics. However, a common issue with GAs is the 
difficulty posed by the convergence problem, mainly when 
dealing with large search spaces or complex optimization 
problems [17]. Contrary to this, PSO draws inspiration from 
the social behavior of  animals in a population, such as birds 
flocking or fish schooling. PSO works on the premise of  
candidate solutions, exploring the solution space in search of  
the best solution [11,18]. A good share of  success has been 
realized where PSO has been applied toward a near-optimum 
convergence rate in many optimization tasks. However, like 
GAs, PSO also has one major drawback: the propensity of  the 
algorithm to converge prematurely to a suboptimal solution 
due to the lack of  diversity within the population [19,20].

In this paper, a hybrid approach is proposed for optimizing 
text compression using the strengths of  both GA and PSO. 
Our approach will try to achieve a better compression ratio 
with the integrity of  the original text by jointly utilizing the 
exploration capabilities of  GAs and the fast convergence 
properties of  PSO. In this hybrid approach, the algorithm 
based on GA-PSO dynamically adjusts the encoding scheme 
of  each character in the text. Therefore, it can optimize 
the real-time compression process about the nature of  the 
input data. The hybrid approach obviates the deficiencies of  
standalone algorithms by leveraging GA’s broad exploration 
capability and the fast convergence capability of  PSO to refine 
the best candidates. Its synergy provides a more adaptive 
and efficient solution for text compression, especially when 
dealing with diverse and complex datasets. In this context, 
the main contributions of  this paper are as follows:
•	 A novel hybrid algorithm was introduced that combines 

GA and PSO for text compression, achieving superior 
compression ratios while preserving text integrity.

•	 A comprehensive analysis of  the proposed GA-PSO 
algorithm is conducted, benchmarking its performance 
against established techniques such as Grey Wolf  
Optimization (GWO), Whale Optimization Algorithm 
(WOA), African Vulture Optimization Algorithm 
(AVOA), PSO, and GA.

•	 The trade-off  between compression efficiency and 
computational complexity across various datasets was 

analyzed, offering insights into the algorithm’s resource 
usage and performance balance.

•	 The study includes an assessment of  the GA-PSO 
algorithm’s adaptability to different text characteristics, 
demonstrating its robustness and flexibility in handling 
diverse text formats.

•	 A dynamic encoding scheme that adjusts based on the 
characteristics of  the input data was proposed, further 
optimizing the compression process and enhancing 
efficiency for real-time applications.

The rest of  the paper is organized in the following fashion. 
Section 2 reviews the related text compression work and 
highlights the classical approaches’ limitations. Section 3 
presents the proposed hybrid GA-PSO algorithm with 
sufficient details about the designs, implementations, and 
optimizations. Section 4 presents the experimental results 
and performance evaluation of  the proposed hybrid method 
compared to existing methods. Finally, the paper is concluded 
in Section 5 with future research directions.

2. RELATED WORKS

Text compression, the focal point of  many research studies 
for enhancing data processing and storage efficiency, has 
received extensive theoretical and practical investigation. 
The continuous search for new means for even better 
compression efficiency, the need to balance between speed 
and accuracy requirements, and specific challenges related 
to particular languages and contexts have driven much of  
this exploration. This continuous development is driven by 
continuously increasing demands of  applications for speedier 
transmission, affordable storage, and better integrity of  
data, among other requirements in telecommunications and 
artificial intelligence, to name a few.

It is observed that in a recent survey about adaptive modeling 
strategies in text compression, the authors, in Bell et al. [21], 
classify approaches into three types: Finite-context modeling, 
finite-state modeling, and dictionary-based modeling. 
Finite-context modeling estimates the probability of  a 
character given the preceding ones. Finite-state modeling 
generalizes this by condition upon state. In dictionary 
modeling, strings of  characters are replaced by references 
to an adaptive dictionary. Here, the paper discusses the 
adaptation of  methods to text types. It starts with reviewing 
the performance of  these algorithms on various samples 
then goes over some of  the directions for future research 
that this paper has taken in adaptive text compression. 
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Similarly, there have been developed practical algorithms 
for arithmetic coding in Moffat [22]. The authors further 
show that advanced models, such as move-to-the-front and 
variable-order Markov, apply to text compression. These 
word-matching and word-recording algorithms can exhibit 
text compression to an optimized rate of  <2.2 bits per 
character for English text, with added fast-encoding and 
fast-decoding procedures to make them practical for real-
life applications.

One of  the critical challenges in the field of  text compression 
is what is known as the zero-frequency problem, where novel 
events and, hence, new, never-previously-encountered events 
are challenging to encode efficiently. Witten and Bell [23] 
tries to solve the problem using a Poisson process model 
for the adaptive text compression system to predict new, 
unseen tokens. This theoretically sound model outperforms 
traditional empirical techniques and improves compression 
efficiency through predictive modeling that reduces the 
zero-frequency problem. In Brisaboa et al. [24], the authors 
review the recent word-based text compression techniques 
by proposing two new variants of  Huffman encoding: 
End-Tagged Dense Code and (s, c)-Dense Code, which 
attempts to compress the natural language text effectively. 
There is a significantly improved compression ratio and 
speed when words instead of  single characters are used as 
symbols. This study offers near-optimal compression, with a 
minor overhead due to the dense codes, and gains in search 
and access efficiency, so it is suitable for large-scale data-
processing applications.

The next explores another approach toward text compression 
within a natural language processing (NLP) context, proposed 
by Li et al. [25]. The authors integrate explicit and implicit text 
compression into the Transformer encoder, a fundamental 
building block of  modern NLP models. By centering 
around core or “backbone” information in the text, this 
research illustrates how compression can improve language 
representation, especially in deep understanding tasks. They 
show that compressor-enhanced models outperform the 
class of  traditional transformer-based models in several 
NLP benchmarks, while compression is critical to improving 
efficiency and performance.

Apart from that, Sarker and Rahman [26] propose a new 
method of  compressing Bengali text transliterated into 
English. The authors combine Huffman coding and an 
adjacent distance array using the transliterated text to 
minimize symbol counts, thus ensuring proper compression 
efficiency. The proposed technique can boast very promising 

compression ratios, especially in processing transliterated 
Bengali text; therefore, it may be a promising way of  
applying adaptive compression techniques in multilingual data 
processing environments. In Priyono and Mustafidah [27], 
one can compare popular data compression algorithms: 
Huffman, Shannon-Fano, and Half-Byte. The text data 
focused on Indonesian texts. Based on the results of  applying 
the algorithm to the abstract of  scientific research articles, 
Huffman is still better than other algorithms in terms of  
its compression ratio, making it suitable for Indonesian 
text compression. This work points out the importance of  
algorithm choice when compressing text, mainly based on 
language characteristics.

Gilbert et al. [28] discussed how large language models, 
such as GPT-4, are used in approximate text compression. 
It modifies the relevant treatment of  the exact recovery to 
result in a new metric toward the evaluation of  the goodness 
of  the compressed text that allows it to maintain the intended 
meaning of  the original. Results indicate the promising use 
of  LLMs for compressing texts, especially in tasks that 
advocate content sense rather than recovery. Adeniji et al. [29] 
incorporate security into text compression by integrating 
Huffman coding with cryptographic algorithms that will 
counter the vulnerabilities in the data transmission, using 
RFID technology. This approach not only improves data 
compression efficiency but also strengths the protection of  
compressed data through encryption. Hence, this approach 
is relevant in those scenarios where data security and 
compression go hand in glove.

It finally presents the dynamic algorithm [30] for choosing 
the best compression technique suitable for steganography, 
whereby compressing texts is vital in placing secret 
information inside cover images. An adaptive algorithm 
increases performance in steganographic encoding by 
selecting the compression techniques that result in the 
smallest embedding space relative to the hidden message 
and characteristics of  the cover image. These works together 
testify to the broad range of  applications that involve text 
compression techniques for the benefit of  machine learning 
models, protection of  sensitive data, reduction of  large data 
sets in storage, and optimization of  big data. The domain 
further evolves with new models, algorithms, and integration 
technique proposals for fending off  specific challenges 
regarding linguistic diversity, real-time data processing, and 
security in data transmission.

In recent years, numerous studies have explored hybrid 
techniques combining PSO and GA for various optimization 
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challenges. For instance, in Garg [31], a PSO-GA hybrid 
approach addresses constrained optimization problems, 
effectively balancing exploration and exploitation through 
genetic operators while achieving superior solutions 
compared to traditional methods. Similarly, in Zhang 
et  al.  [32], the authors demonstrate the efficacy of  a 
hybrid PSO-GA method in optimizing engine parameters, 
showcasing improved performance and emissions outcomes 
over conventional GA approaches. In addition, in Li et al. [33], 
a hybrid PSO-GA is utilized for optimizing heliostat fields, 
significantly enhancing daily energy collection during seasonal 
benchmarks. Furthermore, Sheikhalishahi et al. [34] present 
a hybrid GA-PSO method for Reliability Redundancy 
Allocation Problems, which enhance computational 
efficiency and reliability across various system architectures.

In this work, a novel approach was adopted by partitioning 
the population: half  of  the candidates are processed using 
GA for decision vector modifications, while the other half  
employs PSO to refine the solution vector. This strategy not 
only maintains computational efficiency but also prevents 
an increase in complexity, ensuring optimal performance. 
Notably, this study is the first to apply this hybrid algorithm 
specifically to text compression, contributing a unique 
perspective to the existing body of  literature on PSO-GA 
techniques.

3. MATERIALS AND METHODS

In the following, we describe the materials and methods 
adopted in implementing and testing our study’s hybrid text 
compression approach, which involves the integration of  
GA and PSO. We outline herein the basic principles of  GA 
and PSO, including how these methods could be hybridized 
to improve performance. Further, this section will describe 
the datasets used for experiments, the evaluation metrics, 
and the computational setup. This section should, therefore, 
be utterly informative on what techniques and resources are 
available for the proposed solution.

3.1. Problem Formulation
This problem uses a GA-PSO to design an almost optimal 
encoding scheme for text compression. In the critical 
aspects of  data storage and transmission, text compression 
makes one of  the significant objectives to reduce the size 
of  the text without losing information in it. Each text 
character will be encoded in this formulation using a binary 
string of  variable length. The problem is formulated as an 
optimization problem that aims to minimize the total length 

of  the compressed text by optimizing the encoding for each 
character.

That is, let T be a source text formed by a set of  characters 
C = {c1,c2,…,cn} with frequencies f(ci ) respectively. The task 
is to assign a unique binary string e(ci ) to each character ci in 
such a way, the total length of  encoded text would be the 
least. In mathematical terms, the length L(E) of  encoded 
text using encoding E can be written as:

L E f c e c
i

n
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�
�
1

( ) � (1)

where |e(ci)| is the length of  the binary string assigned to 
character ci, and f(ci ) is the frequency of  ci in the text. The 
objective is to minimize L(E).

The proposed method searches for the encoding scheme E* 
that minimizes L(E) by evolving a population of  candidate 
encoding over successive generations. Each character’s 
encoding is represented as a random binary string of  length 
from 2 to 5 bits. The population’s encoding has undergone 
evolution through various genetic operations such as 
selection, crossover, mutation, and PSO operators.

3.2. Fitness Function
The fitness function is designed to minimize the total length 
of  the encoded text. For a given encoding E, the fitness 
function F(E) is defined as:

F(E) = L(E)� (2)

Thus, a lower F(E) value corresponds to a better encoding 
scheme.

3.3. GA
The GA [35] is a robust search heuristic inspired by natural 
selection and genetic principles. This algorithm represents 
potential solutions to a problem as individuals within a 
population. These individuals evolve over generations to 
find the optimal solution to a given problem. In this study, 
the GA is applied to text compression by optimizing binary 
encodings for characters, aiming to reduce the overall size 
of  the compressed text.

The GA begins by initializing a population of  random 
encodings, where each encoding represents a binary string of  
variable length for each character in the text. This population 
represents potential solutions to the problem, and each 
individual (or solution) is evaluated using a fitness function. 
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The fitness function is a critical component of  the GA, 
guiding the selection of  the best individuals. In this case, 
the fitness function f(E) is defined as the total length of  the 
compressed text:

f E f c E c
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n
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�
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1
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where E(ci) is the binary encoding for character ci E(ci) is 
the length of  the binary string, and f(ci) is the frequency of  
occurrence of  the character ciin the original text. In this way, 
the goal of  the GA will be the minimization of  this fitness 
function, which directly reduces the size of  the encoded text.

The algorithm only proceeds to execute selection after 
evaluating the fitness of  every individual within the 
population. Often, roulette wheel selection is used to 
apply selection within GAs, where selection happens with 
probabilities proportional to their fitness. Thus, better 
solutions are more likely to be selected to contribute to the 
next generation. In contrast, less optimal solutions also get 
a chance, and the diversity in the population is preserved.

After selection, the crossover can generate new individuals, 
called offspring, resulting from the combination of  the 
encoding of  two-parent individuals. In this paper, the 
single-point crossover is adopted. The crossover point is 
randomly chosen, and the segments of  the binary strings 
are exchanged between two parents. This approach thus 
generates new individuals with mixed features from both 
parents, attempting to explore new areas in the solution 
space. The second step in GA is provided by mutation, where 
random changes within the binary encoding of  the offspring 
are performed. This is done by flipping a bit in the encoding 
string with some probability, which is said to be a mutation 
rate. Mutation prevents a population from becoming too 
homogeneous and allows the algorithm to avoid local optima 
because it maintains genetic variation. Elitism is incorporated 
in the algorithm, ensuring that the fittest members of  each 
generation are passed on to the next generation without any 
modification. This will maintain reasonable solutions and 
accelerate convergence toward the optimal or near-optimal 
solution.

The GA iterates for a fixed number of  generations. It 
applies to all operators in every generation, namely selection, 
crossover, mutation, and elitism. Eventually, the population 
evolves while the algorithm converges to the best binary 
encoding that minimizes the size of  the compressed text. This 

evolutionary process lets the GA discover efficient encodings, 
balancing exploring the solution space with exploiting the 
best solutions.

3.4. PSO
PSO [15] is an optimization in which inspiration for the 
algorithm was obtained from the collective behavior of  
swarms. Swarms refer generally to flocks of  birds or schools 
of  fish. Each particle of  the swarm represents a solution 
to the problem; therefore, all the particles move within the 
solution space due to their own best-known position and the 
entire swarm best known. PSO can be powerful in solving 
optimization problems, such as text compression because it 
can efficiently explore large search spaces.

Every particle in the swarm computes the new position and 
the velocity using the formulas:

vi(t+1) = wvi(t)+c1r1(pi−xi(t))+c2r2 (g−xi (t))� (4)

xi(t+1) = xi(t)+vi(t+1)� (5)

In the formulas below, vi(t) denotes the velocity of  particle i 
at step t, xi(t) is the position of  particle i, pi does that particle 
find the personal best position so far, and g represents the 
global best position the swarm has found. Parameters w, c1, 
and c2 are the weights for inertia, personal influence, and 
social influence correspondingly, and r1 and r2 are random 
variates introducing diversity.

Due to the variation in their velocities and positions, particles 
move toward the optimal solution through every iteration. 
PSO can efficiently search for the best compressive settings 
in text compression, obtaining a minimum file size while 
retaining text quality. The algorithm is said to terminate at 
the swarm’s convergence point to an optimal or near-optimal 
solution.

3.5. Proposed Method
This work presents a hybrid algorithm incorporating a GA 
with PSO for optimal text compression. The proposed hybrid 
algorithm splits the population into two groups at every 
iteration. Half  of  the population undergoes the evolutionary 
process of  GA, while the other half  is optimized using PSO. 
This approach represents an effort to combine the strengths 
of  two optimization techniques: One is GA, which effectively 
explores the diverse solutions space through mutation and 
crossover operators, and the other is PSO, which converges 
well in refining solutions with its velocity and position 
updates. The hybrid method starts with creating random 
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encoding schemes using the GA component. Each scheme 
here will map characters into a unique bitstring of  variable 
lengths. These encoding schemes then evolve generation 
by generation through selection, cross-over, and mutation 
operations to reduce the size of  the compressed text. The 
fitness function ranks each encoding scheme according to 
the compactness of  a given text that it manages to achieve. 
The best encoding schemes are carried over to the next 
generation; genetic operations generate newer candidates.

In contrast, the PSO component views the encoding scheme 
as a particle in a search space. Every particle’s position 
represents a solution, while its velocity describes the amount 
of  movement in the search space. PSO updates each particle’s 
position through its personal and global best positions found 
by the swarm. This, in turn, allows PSO to converge very fast 
onto promising solutions using efficient exploitation of  the 
search space. It initializes a population of  encoding schemes 
and splits them into one for the GA algorithm to process and 
the other sub-population for PSO to optimize. After every 
iteration, the best solutions from both groups are pooled into 
a new population for the next iteration. This hybrid ensures 
that, through GA, the algorithm explores many possible 
solutions and then refines the best ones with PSO. It checks 
the balance between exploration and exploitation by dividing 
the population to find the optimal text compression scheme. 
This approach allows the algorithm to balance exploration and 
exploitation in finding the optimal text compression scheme.

The flow of  the algorithm can be briefed as follows:
1.	 Initialize the population with random encoding schemes.
2.	 Divide the population into two groups, one for GA and 

the other for PSO
3.	 Apply GA operations selection, crossover, and mutation 

among the individuals in one group.
4.	 Perform PSO updates on the other group.
5.	 Combine the best individuals of  both groups.
6.	 Perform the above processes for a fixed number of  

generations or till convergence.
7.	 Return the best encoding scheme using the smallest size 

compressed text.

This hybrid method is quite suitable for text compression 
problems, as it efficiently investigates the large and 
complicated solution space of  possible encoding schemes. 
A combination of  GA with PSO may provide solutions to 
the algorithm such that the obtained solution reduces the 
length of  the compressed text and does so efficiently over 
multiple iterations. Fig. 1 illustrates the overall process of  
the proposed method.

4. RESULTS AND DISCUSSION

Testing the proposed hybrid GA-PSO algorithm showed 
good performance with a different number of  text lengths 
and even impressively performed well in the metrics derived 
from compression and processing, showing its strength and 
adaptability for various text data.

4.1. System Specification
The methods are executed on Google Colab Pro, a cloud 
environment offering powerful computational facilities to 
implement the proposed method. It entertains Colab Pro 
with GPU and TPU resources, among other benefits, with 
enhanced RAM and higher execution speed than basic Colab. 
The advantages derived from this environment are rather 
attractive for optimization algorithms such as GA-PSO, which 
deal with massive population sizes and multiple generations.

The virtual machine applied in Colab Pro uses an Intel Xeon 
processor running at 2.20GHz, with 25GB of  RAM and an 
NVIDIA Tesla P100 or V100 GPU, whichever is available. 
With this configuration, the hybrid algorithm will have 
enough processing power to handle large datasets and iterate 
over many generations within reasonable time limits. Besides, 
the available disk space is 166 GB; thus, there is ample room 
to store intermediate results or log experimental data.

Besides that, Google Colab Pro supports Python libraries such 
as Numpy and Scipy, which provide support for effectively 
handling data structures and the mathematical operations at 
the heart of  both components of  the hybrid algorithm.

4.2. Dataset
GPT-4 has prepared a dataset with four different contexts to 
assess the hybrid GA-PSO algorithm’s performance. These 
contexts targeted testing the algorithm on each text length, 
which could range from very short to very long texts. Each 
context represents another challenge for the compression 
algorithm, enabling us to establish how well it can adapt to 
different compression scenarios.
•	 Context 1 (medium-length sentence)

•	 Text: “The golden rays of  the setting sun bathed the 
city in a warm, peaceful glow.”

•	 Character Count: 77 characters (including spaces 
and punctuation)

•	 Bit Size: 616 bits (assuming 8 bits per character).

•	 Context 2 (paragraph)
•	 Text: “In a small village at the edge of  a great forest, 

people lived simple lives, working the land and 
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raising their families. The sun would rise daily over 
the mountains, casting a golden light over the fields. 
Life was peaceful and predictable, with the rhythms 
of  nature guiding the villagers’ every action.”

•	 Character Count: 343 characters
•	 Bit Size: 2,744 bits.

•	 Context 3 (more extended passage)
•	 Text: “The world has changed dramatically over the 

past century. What was once a planet dominated 
by sprawling cities and bustling industries had now 
returned to quiet solitude. The forests had regrown, 
reclaiming much of  the land cleared for agriculture. 
Rivers ran clear again, and animals roamed freely 
without fear of  human interference. Those 
who remained lived in harmony with the Earth, 
understanding that balance was key to survival.”

•	 Character Count: 453 characters
•	 Bit Size: 3624 bits.

•	 Context 4 (full-text sample)
•	 Text: “In the early days of  the new era, when 

humanity first began to understand the true cost of  

its actions, many doubted that change was possible. 
But over time, as ecosystems began to collapse 
and resources grew scarcer, people were forced 
to confront the reality of  their situation. A global 
movement arose, driven to preserve the planet for 
future generations. It wasn’t easy, and many sacrifices 
were made, but eventually, a new equilibrium was 
reached, one in which nature and human society 
coexisted in harmony.”

•	 Character Count: 451 characters
•	 Bit Size: 3608 bits.

These contexts provide a comprehensive range of  text 
lengths, from short phrases to entire passages, allowing us to 
evaluate the hybrid algorithm’s compression ratio, encoding 
time, and decoding accuracy.

4.3. Evaluated Algorithms
Besides the proposed hybrid GA-PSO, we test five more 
algorithms to compare with. These include nature-inspired 
and conventional optimization algorithms, providing a broad 
set of  algorithms for text compression. The WOA [36] is a 
metaheuristic inspired by the hunting strategy of  humpback 

Fig. 1. General process of the proposed method.



Al Attar: Text Compression based on Optimization Approach

70	 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

whales using bubble nets. It is a practical algorithm for 
searching for global optima in various optimization problems, 
including text compression. GWO [37] has been inspired 
by the leadership hierarchy and hunting strategy of  grey 
wolves. This algorithm fulfilled the requirement for the 
proper balance between exploration and exploitation in the 
search space.

The AVOA [38] is one of  the newer nature-inspired 
algorithms that model the movement characteristics of  
vultures when foraging for food. AVOA performed better 
than some state-of-the-art algorithms in significant, multi-
dimensional optimization problems. Along with the nature-
driven approaches, two classical algorithms are introduced: a 
standard GA, which is very popular in optimization problems 
because it searches a vast solution space using crossover 
and mutation, and PSO, known as an efficient fine-tuning 
optimizer in the search space. These two algorithms form 
the basis for comparing with the hybrid approach.

4.4. Computational Complexity
The time complexity of  a proposed algorithm can be 
expressed in terms of  key components such as population 
size, number of  iteration, and the complexity of  individual 
operations such as fitness evaluation, selection, crossover, and 
mutation. Initially, population generation incurs a complexity 
of  O(P), where P is the population size. Fitness evaluation, 
applied to each individual in the population, has a complexity 
of  O(G×P×F), where G is the number of  generations and 
F is the time required for the fitness function. The selection 
process, involving sorting based on fitness, adds O(G×P log P) 
to the overall complexity. Crossover and mutation operations, 
with their respective complexities O(C) and O(M), further 
contribute O(G×P×[C+M]). Combining these factors, the 
total time complexity T is expressed as O(G×[P×(F+log 
P+C+M)]). This formula encapsulates the computational 
costs across all generations and operations involved in the 
optimization process.

4.5. Numerical Results
This section discusses how we applied the hybrid GA-
PSO algorithm to our developed dataset, which includes 

all text types, from few-word phrases to longer texts. Our 
evaluation is directed at critical metrics such as compression 
ratio, encoding time, and decoding accuracy. We assess the 
algorithm’s effectiveness in diverse text handling with these 
metrics and deduce its performance levels across different 
contexts. This work investigates the performance of  various 
algorithms on several datasets, all of  which provided 
different results concerning the size at which data were finally 
compressed when using a particular method. Further, the 
subsequent sections compare these methods, clearly defining 
the best and worst performers regarding compression 
efficiency. The baseline size of  every dataset represents 
the original size against which the reduction attained by an 
algorithm will be measured. These results are presented as 
tables and figures to achieve numeric and visual insights into 
algorithm performance. The key results are summarized for 
each table and figure, outlining the difference between the 
original and compressed size.

Table  1 presents the performance results of  different 
algorithms concerning their performance for compressing an 
original size of  616 bits. Indeed, the results indicate significant 
gaps in the compression efficiency of  the method proposed 
here compared to the others. The current paper will present 
the best compression performance that can get as low as 
184 bits; thus, it is the most effective in this context. Other 
approaches such as GWO and WOA resulted in sizes of  204 
bits and 195 bits, respectively, where the poorest performance 
was given by PSO and GA to sizes of  208 and 209 bits, 
respectively. For this case, the proposed method performed 
better; it achieved a minimum compressed size compared 
to other methods. The compressed sizes of  the two differ 
because of  the variation in algorithmic strategies to recognize 
the patterns and optimize accordingly. Overall, the proposed 
method performs better than all of  these. In contrast, others 
have very significant size reduction compared to the original, 
GA and PSO being the worst in this particular context.

Results across various algorithms for the original size of  2744 
bits are tested and are shown in Table 2 again; the proposed 
method shows the best compression performance, with the 

TABLE 1: Algorithm Performance Outcomes for Context 1
Original size: 
616 bits

Proposed 
method

Grey Wolf 
optimization

Whale optimization 
algorithm

African vulture 
optimization algorithm

Particle Swarm 
optimization

Genetic 
algorithm

Compressed size 184 bits 204 bits 195 bits 199 bits 208 bits 209 bits
Best Encoding {'T': '10', 'h': '01', 'e': '00', ' ': '11', 'g': '0011', 'o': '100', 'l': '10', 'd': '00', 'n': '11', 'r': '00', 'a': '0101', 'y': '11', 's': '10', 'f': '101', 't': 

'11', 'i': '0000', 'u': '011', 'b': '000', 'c': '00', 'w': '10', 'm': '01', ',': '10', 'p': '011', '.': '000'}
Compressed Text 1001001100111001000001111000101111011100101111101001110001111000011001111100111111000010111010000111

101001100000011111100001111010111100101000110110110001010000101011101100111010010000
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data size being compressed to 744 bits, while GWO and 
WOA managed to compress it only up to sizes of  847 and 
808 bits, respectively. The most exciting thing is that while 
AVOA and PSO could compress data to 811 and 847 bits, 
GA could achieve a compressed size of  825 bits. These 
compressed data size variations can increase these algorithms’ 
capacity to optimize the minimized data size. The proposed 
method does the most prominent size reduction, which could 
do with about a tenfold decrease compared to the original, 
while the most minor reduction was by PSO and GWO. 
Therefore, the proposed method has more power in dealing 
with complicated patterns and redundancy inside big datasets.

Furthermore, in Table 3, with an original size of  3624 bits, 
the best result using the proposed method compressed the 
data into 1167 bits. Other methods using GWO and WOA 
compressed the data into 1249 and 1291 bits, respectively, 
while AVOA and PSO compressed the data into 1337 
and 1304, respectively. In this regard, GA was relatively 

better, compressing the size to 1240 bits. The ranges of  
the compressed sizes indicate that the proposed method 
outperforms the other optimization algorithms in terms of  
efficiency. The performance differences among the methods 
increase when the dataset size increases, showing that the 
proposed method is particularly well suited for dealing with 
significant or complicated data structures and reducing 
redundancy. Although performing satisfactorily, the GA 
and PSO are moderately efficient, while GWO and WOA 
performed a little better but still lag significantly behind the 
proposed method.

In Table 4, the original size of  3608 bits was compressed 
using different methods; again, the proposed method 
outperformed with a size reduction of  1404 bits. Other 
compressed sizes by various algorithms are GWO-1562 bits, 
WOA-1497 bits, PSO-1449 bits, and GA-1443 bits. Thus, GA 
reduced the size by 6 bits, a minor enhancement given PSO’s 
result. It showed that the proposed method had a significant 

TABLE 2: Algorithm performance outcomes for context 2
Original size: 
2,744 bits

Proposed 
method

Grey Wolf 
optimization

Whale optimization 
algorithm

African vulture 
optimization algorithm

Particle Swarm 
optimization

Genetic 
algorithm

Compressed size 744 Bits 847 Bits 808 Bits 811 Bits 847 Bits 825 Bits
Best Encoding {'I': '001', 'n': '10', ' ': '00', 'a': '00', 's': '10', 'm': '100', 'l': '10', 'v': '101', 'i': '1100', 'g': '0111', 'e': '11', 't': '00', 'h': '01', 'd': '10', 'o': 

'011', 'f': '000', 'r': '00', ',': '00', 'p': '101', 'w': '0111', 'k': '1001', '.': '10', 'E': '00', 'y': '10', 'u': '101', 'c': '01', 'L': '100', 'b': '1110', 
"'": '1101'}

Compressed Text 0011000000010100001010001011100101000011111000000000001110011100111110001100000000001110011000000000011
0011100000001011101110110110010110010111100010110010010110110010110010111100000011101100100111001001110

0000111001000101000001010000000110010110010011100000111110000000000010011001011001110100000101110010001
0001000000001110010101100001110111011010000011001011000111011100000001110010001110110000011001010000001
0010001100100111000000011101110101110001011000111010000011101110000000111000001100111010101000100110000
0110001110010001011100011100010110000010100010100111011000100001110101100000111110000010000011100000110
0001100100001100000100000101001100011110111001011001001110000011100101110010100001111100101101001110111

00100000010011000111010

TABLE 3: Algorithm performance outcomes for context 3
Original size: 
3,624 bits

Proposed 
method

Grey Wolf 
optimization

Whale optimization 
algorithm

African vulture 
optimization algorithm

Particle Swarm 
optimization

Genetic 
algorithm

Compressed size 1167 Bits 1249 1291 Bits 1337 Bits 1304 Bits 1240 Bits
Best Encoding {'T': '10', 'h': '011', 'e': '10', ' ': '11', 'w': '0001', 'o': '10', 'r': '01', 'l': '00', 'd': '011', 'a': '010', 'c': '10', 'n': '11', 'g': '01011', 'm': '11', 

't': '010', 'i': '111', 'y': '01', 'v': '00', 'p': '00101', 's': '0110', 'u': '00', '.': '00010', 'W': '0101', 'b': '01', 'f': '10', 'q': '11010', ',': '11', 
'R': '01', 'E': '000', 'k': '0000'}

Compressed Text 10011101100011001000111101101001111100110101101011100111101101010110100101111001000000111100010011101
00111011001010100110010111010110100001010001011010101101001011000101001101110111010110101100101000101

11001011011101111111010010100111101011101100010101010000100111110101111101110101111001101101011011110
10001100100011111010111111111011000110010011111001101101101001111111000011101100100001111001111010101

10101101100100100101011101011110100011110010110110100011101000011100001011100111011101001100110010011
01101101001111011001011011000011111110110100001011111111110101111110010011111010110100111011000101101

11101001101001011011010011110110101111100010010011001111101001110100101101111100000010000110000101101
11100100101101101010111110001001001110100101101011111111101011011110101111111010000110110110010111001
11110011010000111110001111010011100001011101001001111010110110011010111111111010100110100110111010000
10111001110011010110001011101101101101011111100111100111001001111111111101101001111011011100011110100

11110100111011000010010100111111001101110010110010010110111111101011110100110100101101010000101110101
10001010011011000010011101010110110000100111000100000010
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advantage in size reduction compared to the other algorithms; 
hence, it was the top-performing method for this dataset. 
The methods vary more subtly in this table compared to the 
previous ones. The proposed one is outstanding due to its 
ability to reduce size and retain key data elements. While the 
other algorithms also show different compression levels, the 
proposed method remains the most efficient.

Fig. 2 compares the original size with that compressed by 
various methods in a stacked bar plot. In all data sets, the 
original size is the same; this naturally serves as the apparent 
reference value against which the various compressed sizes 
achieved through different algorithms are compared. The 
stacked bars give evidence about the degree of  compression 
achieved effectively by the techniques, each showing the 

TABLE 4: Algorithm performance outcomes for context 4
Original size: 
3,608 bits

Proposed 
method

Grey Wolf 
optimization

Whale optimization 
algorithm

African vulture 
optimization algorithm

Particle Swarm 
optimization

Genetic 
algorithm

Compressed 
size:

1404 1562 1497 1448 1449 1443

Best Encoding: {'I': '11', 'n': '10', ' ': '001', 't': '00', 'h': '11', 'e': '00', 'a': '1101', 'r': '01', 'l': '11', 'y': '10', 'd': '01101', 's': '01', 'o': '011', 'f': '0100', 
'w': '100', ',': '001', 'u': '101', 'm': '110', 'i': '000', 'b': '111', 'g': '100', 'c': '010', 'p': '00', '.': '11', 'B': '0101', 'v': '10', 'A': '010', "'": 

'01', 'q': '001', 'x': '11'}
Compressed 
Text:

11100010011000010011010111100010110111011001001011010000100110000110001000010001110100100110011001000
11110111011011000000100010100000010100001111001001101100010001100110110011010001010011011001101001001
10000100011010000101001101000010110100001000000100111010100000001110010010011101101101000101101011101
11100000110100100111101000010101111011010000001100110101001000110101000111110011001010110100001011100
00100100000110000010011101010010001001101100100001100100111100100110110001000110010100111111110100010

00011101100110100101000101110101010000100110001001000010101011010101000010010010000011001100001100000
10000101000110101000011010010001100101001110010001011100000100110000101001101110000010001011010000100
11000000100101000001011101000000111011001010001100110111111101110011100111000110001000001110101011010

00010010110101000100010001111100010011000010110100010000100001000110010001000100011000001001100001001
11101100000001010001101001010010100101010000110000100001110100000011100111001110000110011010110010000
10011010110001001110110011010011101101101000101110101001000010000001000010011000001000011101101011010
00010011111010000100100010001011101111110001001110100110001000010000110100011000111010001011100011001
10101001010011010101100011010010010111000001000100011001100001011001101101001010100001110110011010011

1101110110110001010110100000000100010100110011000010000011010010001000111110101110011101011

Fig. 2. Stacked bar plot comparing original and compressed sizes across different methods.
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smallest compressed size across the datasets obtained by the 
proposed method. This visually evidences just how effective 
the method proposed herein was in outperforming the others 
such as GWO, WOA, AVOA, PSO, and GA, which show larger 
sizes. This is summarized in the relative performances of  each 
method in terms of  compression, as shown in Figure below, 
with the proposed method yielding almost always the best 
size reduction. The dispersion in the plot also makes clear the 
variability in the other methods’ performances, with GWO, 
WOA, and PSO falling behind the proposed method most of  
the time. GA sometimes yields competitive results but often 
ends up worse than the proposed method. The figure confirms 
the numerical data presented in the tables, showing the size 
difference between the original and each of  the methods’ 
compressed sizes, thereby reconfirming that the proposed 
method is the most efficient for any of  the datasets considered.

Table 5 shows the performance results of  six optimization 
algorithms, namely Proposed Method, GWO, WOA, AVOA, 
PSO, and GA, in terms of  time consumption in seconds for 
four different contexts. For Context 1, AVOA has the best 
performance with a time of  2.25 s, but GWO is at 2.68 s, 
the worst. The performance of  the Proposed Method was 
faster than GWO, WOA, and GA, taking 2.45 s but slower 
compared to AVOA and PSO.

Context 2: The Proposed Method consumed 3.17 s, which 
defeated GWO, WOA, and GA, with performances over 4 s, 
whereas AVOA outperformed it at 2.94 s. In Context 3, the 
Proposed Method again was competitive at 4.27 s, behind only 
AVOA at 4.00 s yet faster than all other algorithms. Finally, 
for Context 4, the Proposed Method completed its process in 
5.95 s, ranking above all except AVOA, which finished in 5.47 
s. GWO was generally the slowest algorithm in most contexts. 
In general, the Proposed Method did a great job in various 
contexts and generally came up among the best algorithms 
when taking into consideration the consumption of  time.

5. CONCLUSION AND FUTURE WORKS

Better text compression methods will be required due to the 
ever-growing rate at which the digital world produces text data. 

This work considers a hybrid Genetic-PSO technique for solving 
common issues related to text compression, primarily when 
highly variable or complex data is handled. It can be inferred 
that the proposed method has successfully implemented a 
combination that provided a robust, adaptive, and efficient 
text compression algorithm by considering the exploratory 
advantages of  GA with the rapid convergence attributes of  
PSO. Experimental results indicate that the hybrid GA-PSO 
outperforms the traditional algorithms by a large margin in 
terms of  achieving better compression ratios without losing the 
integrity of  the original text. Moreover, the hybrid has proven its 
strength on quite good performance on various datasets, proving 
its ability to adapt to multiple natures and formats of  text.

The hybrid GA-PSO algorithm will be further invested 
with advanced adaptive techniques to maintain the balance 
between exploration and exploitation for better performance. 
Using machine learning models to predict the optimum 
parameters of  compression based on the features of  the 
text is likely to enhance compression efficiency further. 
More evaluation of  the proposed approach with real-time 
applications and larger datasets is needed for deeper insight 
into its scalability and effectiveness in diverse contexts. 
Further research on the integrated approach of  the GA-PSO 
with the encryption algorithms may open new avenues in 
those scenarios where integrity and security both become 
critical issues in front of  compressed data. Combining 
adaptive optimization techniques can set new standards for 
future text compression methods and show a way for more 
intelligent and responsive data management methods.
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