
UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2	 63

1. INTRODUCTION

Text compression is vital in data management and
transmission since efficient storage and high-speed
communication are critical concerns in the digital era [1,2]. It
can be said that text compression aims to transform textual
data into the most compact form possible with fewer bits
to store or transfer information without compromising the
authenticity of a message. While there is an exponential
increase in the volume of digital text generated across web
content, scientific data, and communications, among others,

the need for effective compression also increases [3,4]. In
addition to saving storage space, efficient methods of text
compression enhance the rates of data transmission [4],
becoming extremely important to a wide range of
applications, starting from telecommunications and file
storage to Internet communications [5,6].

Traditional text compression, such as Huffman coding [7],
LZW [8], and RLE [9], has been extensively applied due to
their high ratios. However, these perform static, pre-defined
encoding schemes that are not optimal for all data types.
They often cannot adapt to different features of the text;
sometimes, they give abysmal performance in compressing
highly variable or complex data [10,11]. Furthermore, with
the ever-growing diversity of formats for information
exchange and the growing complexity of modern digital
content, the need is for far more adaptive and intelligent
methods of text compression [12,13].

A Hybrid Genetic Algorithm-Particle Swarm
Optimization Approach for Enhanced Text
Compression
Tara Nawzad Ahmad Al Attar*
Department of Computer Science, College of Science, University of Sulaimani, Iraq

A B S T R A C T
Text compression is a necessity for efficient data storage and transmission. Especially in the digital era, volumes of digital
text have increased incredibly. Traditional text compression methods, including Huffman coding and Lempel-Ziv-Welch,
have certain limitations regarding their adaptability and efficiency in dealing with such complexity and diversity of data.
In this paper, we propose a hybrid method that combines Genetic Algorithm (GA) with Particle Swarm Optimization (PSO)
to optimize the compression of text using the broad exploration capabilities of GA and fast convergence properties of
PSO. The experimental results reflect that the proposed hybrid approach of GA-PSO yields much better performance in
compression ratio than the standalone methods by reducing the size to about 65% while retaining integrity in the original
content. The proposed method is also highly adaptable to various text forms and outperformed other state-of-the-art
methods such as the Grey Wolf Optimizer, the Whale Optimization Algorithm, and the African Vulture Optimization
Algorithm. These results support that the hybrid method GA-PSO seems promising for modern text compression.

Index Terms: Text Compression, Genetic Algorithm, Particle Swarm Optimization, Hybrid Algorithm, Data Storage
Efficiency

Corresponding author’s e-mail: Tara Nawzad Ahmad Al Attar, Department of Computer Science, College of Science, University of Sulaimani,
Iraq. E-mail: tara.ahmad@univsul.edu.iq

Received: 17-09-2024	 Accepted: 27-10-2024	 Published: 13-11-2024

Access this article online

DOI: 10.21928/uhdjst.v8n2y2024.pp63-74 E-ISSN: 2521-4217

P-ISSN: 2521-4209

Copyright © 2024 Tara Nawzad Ahmad Al Attar. This is an open access
article distributed under the Creative Commons Attribution Non-
Commercial No Derivatives License 4.0 (CC BY-NC-ND 4.0)

ORIGINAL RESEARCH ARTICLE UHD JOURNAL OF SCIENCE AND TECHNOLOGY

Al Attar: Text Compression based on Optimization Approach

64	 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

Within the framework of evolutionary algorithms, robust
methods for solving, such as Genetic Algorithms (GAs) [14]
and Particle Swarm Optimization (PSO) [15], have emerged
as quite useful [16]. GAs draw inspiration from natural
evolution, with the primary vehicle of evolving solutions
provided by mechanisms of selection, crossover, and
mutation across successive generations. GAs were effective
in text compression since encoding schemes can be generated
dynamically to better adapt to the compressed text structure
and characteristics. However, a common issue with GAs is the
difficulty posed by the convergence problem, mainly when
dealing with large search spaces or complex optimization
problems [17]. Contrary to this, PSO draws inspiration from
the social behavior of animals in a population, such as birds
flocking or fish schooling. PSO works on the premise of
candidate solutions, exploring the solution space in search of
the best solution [11,18]. A good share of success has been
realized where PSO has been applied toward a near-optimum
convergence rate in many optimization tasks. However, like
GAs, PSO also has one major drawback: the propensity of the
algorithm to converge prematurely to a suboptimal solution
due to the lack of diversity within the population [19,20].

In this paper, a hybrid approach is proposed for optimizing
text compression using the strengths of both GA and PSO.
Our approach will try to achieve a better compression ratio
with the integrity of the original text by jointly utilizing the
exploration capabilities of GAs and the fast convergence
properties of PSO. In this hybrid approach, the algorithm
based on GA-PSO dynamically adjusts the encoding scheme
of each character in the text. Therefore, it can optimize
the real-time compression process about the nature of the
input data. The hybrid approach obviates the deficiencies of
standalone algorithms by leveraging GA’s broad exploration
capability and the fast convergence capability of PSO to refine
the best candidates. Its synergy provides a more adaptive
and efficient solution for text compression, especially when
dealing with diverse and complex datasets. In this context,
the main contributions of this paper are as follows:
•	 A novel hybrid algorithm was introduced that combines

GA and PSO for text compression, achieving superior
compression ratios while preserving text integrity.

•	 A comprehensive analysis of the proposed GA-PSO
algorithm is conducted, benchmarking its performance
against established techniques such as Grey Wolf
Optimization (GWO), Whale Optimization Algorithm
(WOA), African Vulture Optimization Algorithm
(AVOA), PSO, and GA.

•	 The trade-off between compression efficiency and
computational complexity across various datasets was

analyzed, offering insights into the algorithm’s resource
usage and performance balance.

•	 The study includes an assessment of the GA-PSO
algorithm’s adaptability to different text characteristics,
demonstrating its robustness and flexibility in handling
diverse text formats.

•	 A dynamic encoding scheme that adjusts based on the
characteristics of the input data was proposed, further
optimizing the compression process and enhancing
efficiency for real-time applications.

The rest of the paper is organized in the following fashion.
Section 2 reviews the related text compression work and
highlights the classical approaches’ limitations. Section 3
presents the proposed hybrid GA-PSO algorithm with
sufficient details about the designs, implementations, and
optimizations. Section 4 presents the experimental results
and performance evaluation of the proposed hybrid method
compared to existing methods. Finally, the paper is concluded
in Section 5 with future research directions.

2. RELATED WORKS

Text compression, the focal point of many research studies
for enhancing data processing and storage efficiency, has
received extensive theoretical and practical investigation.
The continuous search for new means for even better
compression efficiency, the need to balance between speed
and accuracy requirements, and specific challenges related
to particular languages and contexts have driven much of
this exploration. This continuous development is driven by
continuously increasing demands of applications for speedier
transmission, affordable storage, and better integrity of
data, among other requirements in telecommunications and
artificial intelligence, to name a few.

It is observed that in a recent survey about adaptive modeling
strategies in text compression, the authors, in Bell et al. [21],
classify approaches into three types: Finite-context modeling,
finite-state modeling, and dictionary-based modeling.
Finite-context modeling estimates the probability of a
character given the preceding ones. Finite-state modeling
generalizes this by condition upon state. In dictionary
modeling, strings of characters are replaced by references
to an adaptive dictionary. Here, the paper discusses the
adaptation of methods to text types. It starts with reviewing
the performance of these algorithms on various samples
then goes over some of the directions for future research
that this paper has taken in adaptive text compression.

Al Attar: Text Compression based on Optimization Approach

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2	 65

Similarly, there have been developed practical algorithms
for arithmetic coding in Moffat [22]. The authors further
show that advanced models, such as move-to-the-front and
variable-order Markov, apply to text compression. These
word-matching and word-recording algorithms can exhibit
text compression to an optimized rate of <2.2 bits per
character for English text, with added fast-encoding and
fast-decoding procedures to make them practical for real-
life applications.

One of the critical challenges in the field of text compression
is what is known as the zero-frequency problem, where novel
events and, hence, new, never-previously-encountered events
are challenging to encode efficiently. Witten and Bell [23]
tries to solve the problem using a Poisson process model
for the adaptive text compression system to predict new,
unseen tokens. This theoretically sound model outperforms
traditional empirical techniques and improves compression
efficiency through predictive modeling that reduces the
zero-frequency problem. In Brisaboa et al. [24], the authors
review the recent word-based text compression techniques
by proposing two new variants of Huffman encoding:
End-Tagged Dense Code and (s, c)-Dense Code, which
attempts to compress the natural language text effectively.
There is a significantly improved compression ratio and
speed when words instead of single characters are used as
symbols. This study offers near-optimal compression, with a
minor overhead due to the dense codes, and gains in search
and access efficiency, so it is suitable for large-scale data-
processing applications.

The next explores another approach toward text compression
within a natural language processing (NLP) context, proposed
by Li et al. [25]. The authors integrate explicit and implicit text
compression into the Transformer encoder, a fundamental
building block of modern NLP models. By centering
around core or “backbone” information in the text, this
research illustrates how compression can improve language
representation, especially in deep understanding tasks. They
show that compressor-enhanced models outperform the
class of traditional transformer-based models in several
NLP benchmarks, while compression is critical to improving
efficiency and performance.

Apart from that, Sarker and Rahman [26] propose a new
method of compressing Bengali text transliterated into
English. The authors combine Huffman coding and an
adjacent distance array using the transliterated text to
minimize symbol counts, thus ensuring proper compression
efficiency. The proposed technique can boast very promising

compression ratios, especially in processing transliterated
Bengali text; therefore, it may be a promising way of
applying adaptive compression techniques in multilingual data
processing environments. In Priyono and Mustafidah [27],
one can compare popular data compression algorithms:
Huffman, Shannon-Fano, and Half-Byte. The text data
focused on Indonesian texts. Based on the results of applying
the algorithm to the abstract of scientific research articles,
Huffman is still better than other algorithms in terms of
its compression ratio, making it suitable for Indonesian
text compression. This work points out the importance of
algorithm choice when compressing text, mainly based on
language characteristics.

Gilbert et al. [28] discussed how large language models,
such as GPT-4, are used in approximate text compression.
It modifies the relevant treatment of the exact recovery to
result in a new metric toward the evaluation of the goodness
of the compressed text that allows it to maintain the intended
meaning of the original. Results indicate the promising use
of LLMs for compressing texts, especially in tasks that
advocate content sense rather than recovery. Adeniji et al. [29]
incorporate security into text compression by integrating
Huffman coding with cryptographic algorithms that will
counter the vulnerabilities in the data transmission, using
RFID technology. This approach not only improves data
compression efficiency but also strengths the protection of
compressed data through encryption. Hence, this approach
is relevant in those scenarios where data security and
compression go hand in glove.

It finally presents the dynamic algorithm [30] for choosing
the best compression technique suitable for steganography,
whereby compressing texts is vital in placing secret
information inside cover images. An adaptive algorithm
increases performance in steganographic encoding by
selecting the compression techniques that result in the
smallest embedding space relative to the hidden message
and characteristics of the cover image. These works together
testify to the broad range of applications that involve text
compression techniques for the benefit of machine learning
models, protection of sensitive data, reduction of large data
sets in storage, and optimization of big data. The domain
further evolves with new models, algorithms, and integration
technique proposals for fending off specific challenges
regarding linguistic diversity, real-time data processing, and
security in data transmission.

In recent years, numerous studies have explored hybrid
techniques combining PSO and GA for various optimization

Al Attar: Text Compression based on Optimization Approach

66	 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

challenges. For instance, in Garg [31], a PSO-GA hybrid
approach addresses constrained optimization problems,
effectively balancing exploration and exploitation through
genetic operators while achieving superior solutions
compared to traditional methods. Similarly, in Zhang
et al. [32], the authors demonstrate the efficacy of a
hybrid PSO-GA method in optimizing engine parameters,
showcasing improved performance and emissions outcomes
over conventional GA approaches. In addition, in Li et al. [33],
a hybrid PSO-GA is utilized for optimizing heliostat fields,
significantly enhancing daily energy collection during seasonal
benchmarks. Furthermore, Sheikhalishahi et al. [34] present
a hybrid GA-PSO method for Reliability Redundancy
Allocation Problems, which enhance computational
efficiency and reliability across various system architectures.

In this work, a novel approach was adopted by partitioning
the population: half of the candidates are processed using
GA for decision vector modifications, while the other half
employs PSO to refine the solution vector. This strategy not
only maintains computational efficiency but also prevents
an increase in complexity, ensuring optimal performance.
Notably, this study is the first to apply this hybrid algorithm
specifically to text compression, contributing a unique
perspective to the existing body of literature on PSO-GA
techniques.

3. MATERIALS AND METHODS

In the following, we describe the materials and methods
adopted in implementing and testing our study’s hybrid text
compression approach, which involves the integration of
GA and PSO. We outline herein the basic principles of GA
and PSO, including how these methods could be hybridized
to improve performance. Further, this section will describe
the datasets used for experiments, the evaluation metrics,
and the computational setup. This section should, therefore,
be utterly informative on what techniques and resources are
available for the proposed solution.

3.1. Problem Formulation
This problem uses a GA-PSO to design an almost optimal
encoding scheme for text compression. In the critical
aspects of data storage and transmission, text compression
makes one of the significant objectives to reduce the size
of the text without losing information in it. Each text
character will be encoded in this formulation using a binary
string of variable length. The problem is formulated as an
optimization problem that aims to minimize the total length

of the compressed text by optimizing the encoding for each
character.

That is, let T be a source text formed by a set of characters
C = {c1,c2,…,cn} with frequencies f(ci) respectively. The task
is to assign a unique binary string e(ci) to each character ci in
such a way, the total length of encoded text would be the
least. In mathematical terms, the length L(E) of encoded
text using encoding E can be written as:

L E f c e c
i

n

i i� � � � � �
�
�
1

() � (1)

where |e(ci)| is the length of the binary string assigned to
character ci, and f(ci) is the frequency of ci in the text. The
objective is to minimize L(E).

The proposed method searches for the encoding scheme E*
that minimizes L(E) by evolving a population of candidate
encoding over successive generations. Each character’s
encoding is represented as a random binary string of length
from 2 to 5 bits. The population’s encoding has undergone
evolution through various genetic operations such as
selection, crossover, mutation, and PSO operators.

3.2. Fitness Function
The fitness function is designed to minimize the total length
of the encoded text. For a given encoding E, the fitness
function F(E) is defined as:

F(E) = L(E)� (2)

Thus, a lower F(E) value corresponds to a better encoding
scheme.

3.3. GA
The GA [35] is a robust search heuristic inspired by natural
selection and genetic principles. This algorithm represents
potential solutions to a problem as individuals within a
population. These individuals evolve over generations to
find the optimal solution to a given problem. In this study,
the GA is applied to text compression by optimizing binary
encodings for characters, aiming to reduce the overall size
of the compressed text.

The GA begins by initializing a population of random
encodings, where each encoding represents a binary string of
variable length for each character in the text. This population
represents potential solutions to the problem, and each
individual (or solution) is evaluated using a fitness function.

Al Attar: Text Compression based on Optimization Approach

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2	 67

The fitness function is a critical component of the GA,
guiding the selection of the best individuals. In this case,
the fitness function f(E) is defined as the total length of the
compressed text:

f E f c E c
i

n

i i� � � � � �
�
�
1

() � (3)

where E(ci) is the binary encoding for character ci E(ci) is
the length of the binary string, and f(ci) is the frequency of
occurrence of the character ciin the original text. In this way,
the goal of the GA will be the minimization of this fitness
function, which directly reduces the size of the encoded text.

The algorithm only proceeds to execute selection after
evaluating the fitness of every individual within the
population. Often, roulette wheel selection is used to
apply selection within GAs, where selection happens with
probabilities proportional to their fitness. Thus, better
solutions are more likely to be selected to contribute to the
next generation. In contrast, less optimal solutions also get
a chance, and the diversity in the population is preserved.

After selection, the crossover can generate new individuals,
called offspring, resulting from the combination of the
encoding of two-parent individuals. In this paper, the
single-point crossover is adopted. The crossover point is
randomly chosen, and the segments of the binary strings
are exchanged between two parents. This approach thus
generates new individuals with mixed features from both
parents, attempting to explore new areas in the solution
space. The second step in GA is provided by mutation, where
random changes within the binary encoding of the offspring
are performed. This is done by flipping a bit in the encoding
string with some probability, which is said to be a mutation
rate. Mutation prevents a population from becoming too
homogeneous and allows the algorithm to avoid local optima
because it maintains genetic variation. Elitism is incorporated
in the algorithm, ensuring that the fittest members of each
generation are passed on to the next generation without any
modification. This will maintain reasonable solutions and
accelerate convergence toward the optimal or near-optimal
solution.

The GA iterates for a fixed number of generations. It
applies to all operators in every generation, namely selection,
crossover, mutation, and elitism. Eventually, the population
evolves while the algorithm converges to the best binary
encoding that minimizes the size of the compressed text. This

evolutionary process lets the GA discover efficient encodings,
balancing exploring the solution space with exploiting the
best solutions.

3.4. PSO
PSO [15] is an optimization in which inspiration for the
algorithm was obtained from the collective behavior of
swarms. Swarms refer generally to flocks of birds or schools
of fish. Each particle of the swarm represents a solution
to the problem; therefore, all the particles move within the
solution space due to their own best-known position and the
entire swarm best known. PSO can be powerful in solving
optimization problems, such as text compression because it
can efficiently explore large search spaces.

Every particle in the swarm computes the new position and
the velocity using the formulas:

vi(t+1) = wvi(t)+c1r1(pi−xi(t))+c2r2 (g−xi (t))� (4)

xi(t+1) = xi(t)+vi(t+1)� (5)

In the formulas below, vi(t) denotes the velocity of particle i
at step t, xi(t) is the position of particle i, pi does that particle
find the personal best position so far, and g represents the
global best position the swarm has found. Parameters w, c1,
and c2 are the weights for inertia, personal influence, and
social influence correspondingly, and r1 and r2 are random
variates introducing diversity.

Due to the variation in their velocities and positions, particles
move toward the optimal solution through every iteration.
PSO can efficiently search for the best compressive settings
in text compression, obtaining a minimum file size while
retaining text quality. The algorithm is said to terminate at
the swarm’s convergence point to an optimal or near-optimal
solution.

3.5. Proposed Method
This work presents a hybrid algorithm incorporating a GA
with PSO for optimal text compression. The proposed hybrid
algorithm splits the population into two groups at every
iteration. Half of the population undergoes the evolutionary
process of GA, while the other half is optimized using PSO.
This approach represents an effort to combine the strengths
of two optimization techniques: One is GA, which effectively
explores the diverse solutions space through mutation and
crossover operators, and the other is PSO, which converges
well in refining solutions with its velocity and position
updates. The hybrid method starts with creating random

Al Attar: Text Compression based on Optimization Approach

68	 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

encoding schemes using the GA component. Each scheme
here will map characters into a unique bitstring of variable
lengths. These encoding schemes then evolve generation
by generation through selection, cross-over, and mutation
operations to reduce the size of the compressed text. The
fitness function ranks each encoding scheme according to
the compactness of a given text that it manages to achieve.
The best encoding schemes are carried over to the next
generation; genetic operations generate newer candidates.

In contrast, the PSO component views the encoding scheme
as a particle in a search space. Every particle’s position
represents a solution, while its velocity describes the amount
of movement in the search space. PSO updates each particle’s
position through its personal and global best positions found
by the swarm. This, in turn, allows PSO to converge very fast
onto promising solutions using efficient exploitation of the
search space. It initializes a population of encoding schemes
and splits them into one for the GA algorithm to process and
the other sub-population for PSO to optimize. After every
iteration, the best solutions from both groups are pooled into
a new population for the next iteration. This hybrid ensures
that, through GA, the algorithm explores many possible
solutions and then refines the best ones with PSO. It checks
the balance between exploration and exploitation by dividing
the population to find the optimal text compression scheme.
This approach allows the algorithm to balance exploration and
exploitation in finding the optimal text compression scheme.

The flow of the algorithm can be briefed as follows:
1.	 Initialize the population with random encoding schemes.
2.	 Divide the population into two groups, one for GA and

the other for PSO
3.	 Apply GA operations selection, crossover, and mutation

among the individuals in one group.
4.	 Perform PSO updates on the other group.
5.	 Combine the best individuals of both groups.
6.	 Perform the above processes for a fixed number of

generations or till convergence.
7.	 Return the best encoding scheme using the smallest size

compressed text.

This hybrid method is quite suitable for text compression
problems, as it efficiently investigates the large and
complicated solution space of possible encoding schemes.
A combination of GA with PSO may provide solutions to
the algorithm such that the obtained solution reduces the
length of the compressed text and does so efficiently over
multiple iterations. Fig. 1 illustrates the overall process of
the proposed method.

4. RESULTS AND DISCUSSION

Testing the proposed hybrid GA-PSO algorithm showed
good performance with a different number of text lengths
and even impressively performed well in the metrics derived
from compression and processing, showing its strength and
adaptability for various text data.

4.1. System Specification
The methods are executed on Google Colab Pro, a cloud
environment offering powerful computational facilities to
implement the proposed method. It entertains Colab Pro
with GPU and TPU resources, among other benefits, with
enhanced RAM and higher execution speed than basic Colab.
The advantages derived from this environment are rather
attractive for optimization algorithms such as GA-PSO, which
deal with massive population sizes and multiple generations.

The virtual machine applied in Colab Pro uses an Intel Xeon
processor running at 2.20GHz, with 25GB of RAM and an
NVIDIA Tesla P100 or V100 GPU, whichever is available.
With this configuration, the hybrid algorithm will have
enough processing power to handle large datasets and iterate
over many generations within reasonable time limits. Besides,
the available disk space is 166 GB; thus, there is ample room
to store intermediate results or log experimental data.

Besides that, Google Colab Pro supports Python libraries such
as Numpy and Scipy, which provide support for effectively
handling data structures and the mathematical operations at
the heart of both components of the hybrid algorithm.

4.2. Dataset
GPT-4 has prepared a dataset with four different contexts to
assess the hybrid GA-PSO algorithm’s performance. These
contexts targeted testing the algorithm on each text length,
which could range from very short to very long texts. Each
context represents another challenge for the compression
algorithm, enabling us to establish how well it can adapt to
different compression scenarios.
•	 Context 1 (medium-length sentence)

•	 Text: “The golden rays of the setting sun bathed the
city in a warm, peaceful glow.”

•	 Character Count: 77 characters (including spaces
and punctuation)

•	 Bit Size: 616 bits (assuming 8 bits per character).

•	 Context 2 (paragraph)
•	 Text: “In a small village at the edge of a great forest,

people lived simple lives, working the land and

Al Attar: Text Compression based on Optimization Approach

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2	 69

raising their families. The sun would rise daily over
the mountains, casting a golden light over the fields.
Life was peaceful and predictable, with the rhythms
of nature guiding the villagers’ every action.”

•	 Character Count: 343 characters
•	 Bit Size: 2,744 bits.

•	 Context 3 (more extended passage)
•	 Text: “The world has changed dramatically over the

past century. What was once a planet dominated
by sprawling cities and bustling industries had now
returned to quiet solitude. The forests had regrown,
reclaiming much of the land cleared for agriculture.
Rivers ran clear again, and animals roamed freely
without fear of human interference. Those
who remained lived in harmony with the Earth,
understanding that balance was key to survival.”

•	 Character Count: 453 characters
•	 Bit Size: 3624 bits.

•	 Context 4 (full-text sample)
•	 Text: “In the early days of the new era, when

humanity first began to understand the true cost of

its actions, many doubted that change was possible.
But over time, as ecosystems began to collapse
and resources grew scarcer, people were forced
to confront the reality of their situation. A global
movement arose, driven to preserve the planet for
future generations. It wasn’t easy, and many sacrifices
were made, but eventually, a new equilibrium was
reached, one in which nature and human society
coexisted in harmony.”

•	 Character Count: 451 characters
•	 Bit Size: 3608 bits.

These contexts provide a comprehensive range of text
lengths, from short phrases to entire passages, allowing us to
evaluate the hybrid algorithm’s compression ratio, encoding
time, and decoding accuracy.

4.3. Evaluated Algorithms
Besides the proposed hybrid GA-PSO, we test five more
algorithms to compare with. These include nature-inspired
and conventional optimization algorithms, providing a broad
set of algorithms for text compression. The WOA [36] is a
metaheuristic inspired by the hunting strategy of humpback

Fig. 1. General process of the proposed method.

Al Attar: Text Compression based on Optimization Approach

70	 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

whales using bubble nets. It is a practical algorithm for
searching for global optima in various optimization problems,
including text compression. GWO [37] has been inspired
by the leadership hierarchy and hunting strategy of grey
wolves. This algorithm fulfilled the requirement for the
proper balance between exploration and exploitation in the
search space.

The AVOA [38] is one of the newer nature-inspired
algorithms that model the movement characteristics of
vultures when foraging for food. AVOA performed better
than some state-of-the-art algorithms in significant, multi-
dimensional optimization problems. Along with the nature-
driven approaches, two classical algorithms are introduced: a
standard GA, which is very popular in optimization problems
because it searches a vast solution space using crossover
and mutation, and PSO, known as an efficient fine-tuning
optimizer in the search space. These two algorithms form
the basis for comparing with the hybrid approach.

4.4. Computational Complexity
The time complexity of a proposed algorithm can be
expressed in terms of key components such as population
size, number of iteration, and the complexity of individual
operations such as fitness evaluation, selection, crossover, and
mutation. Initially, population generation incurs a complexity
of O(P), where P is the population size. Fitness evaluation,
applied to each individual in the population, has a complexity
of O(G×P×F), where G is the number of generations and
F is the time required for the fitness function. The selection
process, involving sorting based on fitness, adds O(G×P log P)
to the overall complexity. Crossover and mutation operations,
with their respective complexities O(C) and O(M), further
contribute O(G×P×[C+M]). Combining these factors, the
total time complexity T is expressed as O(G×[P×(F+log
P+C+M)]). This formula encapsulates the computational
costs across all generations and operations involved in the
optimization process.

4.5. Numerical Results
This section discusses how we applied the hybrid GA-
PSO algorithm to our developed dataset, which includes

all text types, from few-word phrases to longer texts. Our
evaluation is directed at critical metrics such as compression
ratio, encoding time, and decoding accuracy. We assess the
algorithm’s effectiveness in diverse text handling with these
metrics and deduce its performance levels across different
contexts. This work investigates the performance of various
algorithms on several datasets, all of which provided
different results concerning the size at which data were finally
compressed when using a particular method. Further, the
subsequent sections compare these methods, clearly defining
the best and worst performers regarding compression
efficiency. The baseline size of every dataset represents
the original size against which the reduction attained by an
algorithm will be measured. These results are presented as
tables and figures to achieve numeric and visual insights into
algorithm performance. The key results are summarized for
each table and figure, outlining the difference between the
original and compressed size.

Table 1 presents the performance results of different
algorithms concerning their performance for compressing an
original size of 616 bits. Indeed, the results indicate significant
gaps in the compression efficiency of the method proposed
here compared to the others. The current paper will present
the best compression performance that can get as low as
184 bits; thus, it is the most effective in this context. Other
approaches such as GWO and WOA resulted in sizes of 204
bits and 195 bits, respectively, where the poorest performance
was given by PSO and GA to sizes of 208 and 209 bits,
respectively. For this case, the proposed method performed
better; it achieved a minimum compressed size compared
to other methods. The compressed sizes of the two differ
because of the variation in algorithmic strategies to recognize
the patterns and optimize accordingly. Overall, the proposed
method performs better than all of these. In contrast, others
have very significant size reduction compared to the original,
GA and PSO being the worst in this particular context.

Results across various algorithms for the original size of 2744
bits are tested and are shown in Table 2 again; the proposed
method shows the best compression performance, with the

TABLE 1: Algorithm Performance Outcomes for Context 1
Original size:
616 bits

Proposed
method

Grey Wolf
optimization

Whale optimization
algorithm

African vulture
optimization algorithm

Particle Swarm
optimization

Genetic
algorithm

Compressed size 184 bits 204 bits 195 bits 199 bits 208 bits 209 bits
Best Encoding {'T': '10', 'h': '01', 'e': '00', ' ': '11', 'g': '0011', 'o': '100', 'l': '10', 'd': '00', 'n': '11', 'r': '00', 'a': '0101', 'y': '11', 's': '10', 'f': '101', 't':

'11', 'i': '0000', 'u': '011', 'b': '000', 'c': '00', 'w': '10', 'm': '01', ',': '10', 'p': '011', '.': '000'}
Compressed Text 1001001100111001000001111000101111011100101111101001110001111000011001111100111111000010111010000111

101001100000011111100001111010111100101000110110110001010000101011101100111010010000

Al Attar: Text Compression based on Optimization Approach

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2	 71

data size being compressed to 744 bits, while GWO and
WOA managed to compress it only up to sizes of 847 and
808 bits, respectively. The most exciting thing is that while
AVOA and PSO could compress data to 811 and 847 bits,
GA could achieve a compressed size of 825 bits. These
compressed data size variations can increase these algorithms’
capacity to optimize the minimized data size. The proposed
method does the most prominent size reduction, which could
do with about a tenfold decrease compared to the original,
while the most minor reduction was by PSO and GWO.
Therefore, the proposed method has more power in dealing
with complicated patterns and redundancy inside big datasets.

Furthermore, in Table 3, with an original size of 3624 bits,
the best result using the proposed method compressed the
data into 1167 bits. Other methods using GWO and WOA
compressed the data into 1249 and 1291 bits, respectively,
while AVOA and PSO compressed the data into 1337
and 1304, respectively. In this regard, GA was relatively

better, compressing the size to 1240 bits. The ranges of
the compressed sizes indicate that the proposed method
outperforms the other optimization algorithms in terms of
efficiency. The performance differences among the methods
increase when the dataset size increases, showing that the
proposed method is particularly well suited for dealing with
significant or complicated data structures and reducing
redundancy. Although performing satisfactorily, the GA
and PSO are moderately efficient, while GWO and WOA
performed a little better but still lag significantly behind the
proposed method.

In Table 4, the original size of 3608 bits was compressed
using different methods; again, the proposed method
outperformed with a size reduction of 1404 bits. Other
compressed sizes by various algorithms are GWO-1562 bits,
WOA-1497 bits, PSO-1449 bits, and GA-1443 bits. Thus, GA
reduced the size by 6 bits, a minor enhancement given PSO’s
result. It showed that the proposed method had a significant

TABLE 2: Algorithm performance outcomes for context 2
Original size:
2,744 bits

Proposed
method

Grey Wolf
optimization

Whale optimization
algorithm

African vulture
optimization algorithm

Particle Swarm
optimization

Genetic
algorithm

Compressed size 744 Bits 847 Bits 808 Bits 811 Bits 847 Bits 825 Bits
Best Encoding {'I': '001', 'n': '10', ' ': '00', 'a': '00', 's': '10', 'm': '100', 'l': '10', 'v': '101', 'i': '1100', 'g': '0111', 'e': '11', 't': '00', 'h': '01', 'd': '10', 'o':

'011', 'f': '000', 'r': '00', ',': '00', 'p': '101', 'w': '0111', 'k': '1001', '.': '10', 'E': '00', 'y': '10', 'u': '101', 'c': '01', 'L': '100', 'b': '1110',
"'": '1101'}

Compressed Text 0011000000010100001010001011100101000011111000000000001110011100111110001100000000001110011000000000011
0011100000001011101110110110010110010111100010110010010110110010110010111100000011101100100111001001110

0000111001000101000001010000000110010110010011100000111110000000000010011001011001110100000101110010001
0001000000001110010101100001110111011010000011001011000111011100000001110010001110110000011001010000001
0010001100100111000000011101110101110001011000111010000011101110000000111000001100111010101000100110000
0110001110010001011100011100010110000010100010100111011000100001110101100000111110000010000011100000110
0001100100001100000100000101001100011110111001011001001110000011100101110010100001111100101101001110111

00100000010011000111010

TABLE 3: Algorithm performance outcomes for context 3
Original size:
3,624 bits

Proposed
method

Grey Wolf
optimization

Whale optimization
algorithm

African vulture
optimization algorithm

Particle Swarm
optimization

Genetic
algorithm

Compressed size 1167 Bits 1249 1291 Bits 1337 Bits 1304 Bits 1240 Bits
Best Encoding {'T': '10', 'h': '011', 'e': '10', ' ': '11', 'w': '0001', 'o': '10', 'r': '01', 'l': '00', 'd': '011', 'a': '010', 'c': '10', 'n': '11', 'g': '01011', 'm': '11',

't': '010', 'i': '111', 'y': '01', 'v': '00', 'p': '00101', 's': '0110', 'u': '00', '.': '00010', 'W': '0101', 'b': '01', 'f': '10', 'q': '11010', ',': '11',
'R': '01', 'E': '000', 'k': '0000'}

Compressed Text 10011101100011001000111101101001111100110101101011100111101101010110100101111001000000111100010011101
00111011001010100110010111010110100001010001011010101101001011000101001101110111010110101100101000101

11001011011101111111010010100111101011101100010101010000100111110101111101110101111001101101011011110
10001100100011111010111111111011000110010011111001101101101001111111000011101100100001111001111010101

10101101100100100101011101011110100011110010110110100011101000011100001011100111011101001100110010011
01101101001111011001011011000011111110110100001011111111110101111110010011111010110100111011000101101

11101001101001011011010011110110101111100010010011001111101001110100101101111100000010000110000101101
11100100101101101010111110001001001110100101101011111111101011011110101111111010000110110110010111001
11110011010000111110001111010011100001011101001001111010110110011010111111111010100110100110111010000
10111001110011010110001011101101101101011111100111100111001001111111111101101001111011011100011110100

11110100111011000010010100111111001101110010110010010110111111101011110100110100101101010000101110101
10001010011011000010011101010110110000100111000100000010

Al Attar: Text Compression based on Optimization Approach

72	 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

advantage in size reduction compared to the other algorithms;
hence, it was the top-performing method for this dataset.
The methods vary more subtly in this table compared to the
previous ones. The proposed one is outstanding due to its
ability to reduce size and retain key data elements. While the
other algorithms also show different compression levels, the
proposed method remains the most efficient.

Fig. 2 compares the original size with that compressed by
various methods in a stacked bar plot. In all data sets, the
original size is the same; this naturally serves as the apparent
reference value against which the various compressed sizes
achieved through different algorithms are compared. The
stacked bars give evidence about the degree of compression
achieved effectively by the techniques, each showing the

TABLE 4: Algorithm performance outcomes for context 4
Original size:
3,608 bits

Proposed
method

Grey Wolf
optimization

Whale optimization
algorithm

African vulture
optimization algorithm

Particle Swarm
optimization

Genetic
algorithm

Compressed
size:

1404 1562 1497 1448 1449 1443

Best Encoding: {'I': '11', 'n': '10', ' ': '001', 't': '00', 'h': '11', 'e': '00', 'a': '1101', 'r': '01', 'l': '11', 'y': '10', 'd': '01101', 's': '01', 'o': '011', 'f': '0100',
'w': '100', ',': '001', 'u': '101', 'm': '110', 'i': '000', 'b': '111', 'g': '100', 'c': '010', 'p': '00', '.': '11', 'B': '0101', 'v': '10', 'A': '010', "'":

'01', 'q': '001', 'x': '11'}
Compressed
Text:

11100010011000010011010111100010110111011001001011010000100110000110001000010001110100100110011001000
11110111011011000000100010100000010100001111001001101100010001100110110011010001010011011001101001001
10000100011010000101001101000010110100001000000100111010100000001110010010011101101101000101101011101
11100000110100100111101000010101111011010000001100110101001000110101000111110011001010110100001011100
00100100000110000010011101010010001001101100100001100100111100100110110001000110010100111111110100010

00011101100110100101000101110101010000100110001001000010101011010101000010010010000011001100001100000
10000101000110101000011010010001100101001110010001011100000100110000101001101110000010001011010000100
11000000100101000001011101000000111011001010001100110111111101110011100111000110001000001110101011010

00010010110101000100010001111100010011000010110100010000100001000110010001000100011000001001100001001
11101100000001010001101001010010100101010000110000100001110100000011100111001110000110011010110010000
10011010110001001110110011010011101101101000101110101001000010000001000010011000001000011101101011010
00010011111010000100100010001011101111110001001110100110001000010000110100011000111010001011100011001
10101001010011010101100011010010010111000001000100011001100001011001101101001010100001110110011010011

1101110110110001010110100000000100010100110011000010000011010010001000111110101110011101011

Fig. 2. Stacked bar plot comparing original and compressed sizes across different methods.

Al Attar: Text Compression based on Optimization Approach

UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2	 73

smallest compressed size across the datasets obtained by the
proposed method. This visually evidences just how effective
the method proposed herein was in outperforming the others
such as GWO, WOA, AVOA, PSO, and GA, which show larger
sizes. This is summarized in the relative performances of each
method in terms of compression, as shown in Figure below,
with the proposed method yielding almost always the best
size reduction. The dispersion in the plot also makes clear the
variability in the other methods’ performances, with GWO,
WOA, and PSO falling behind the proposed method most of
the time. GA sometimes yields competitive results but often
ends up worse than the proposed method. The figure confirms
the numerical data presented in the tables, showing the size
difference between the original and each of the methods’
compressed sizes, thereby reconfirming that the proposed
method is the most efficient for any of the datasets considered.

Table 5 shows the performance results of six optimization
algorithms, namely Proposed Method, GWO, WOA, AVOA,
PSO, and GA, in terms of time consumption in seconds for
four different contexts. For Context 1, AVOA has the best
performance with a time of 2.25 s, but GWO is at 2.68 s,
the worst. The performance of the Proposed Method was
faster than GWO, WOA, and GA, taking 2.45 s but slower
compared to AVOA and PSO.

Context 2: The Proposed Method consumed 3.17 s, which
defeated GWO, WOA, and GA, with performances over 4 s,
whereas AVOA outperformed it at 2.94 s. In Context 3, the
Proposed Method again was competitive at 4.27 s, behind only
AVOA at 4.00 s yet faster than all other algorithms. Finally,
for Context 4, the Proposed Method completed its process in
5.95 s, ranking above all except AVOA, which finished in 5.47
s. GWO was generally the slowest algorithm in most contexts.
In general, the Proposed Method did a great job in various
contexts and generally came up among the best algorithms
when taking into consideration the consumption of time.

5. CONCLUSION AND FUTURE WORKS

Better text compression methods will be required due to the
ever-growing rate at which the digital world produces text data.

This work considers a hybrid Genetic-PSO technique for solving
common issues related to text compression, primarily when
highly variable or complex data is handled. It can be inferred
that the proposed method has successfully implemented a
combination that provided a robust, adaptive, and efficient
text compression algorithm by considering the exploratory
advantages of GA with the rapid convergence attributes of
PSO. Experimental results indicate that the hybrid GA-PSO
outperforms the traditional algorithms by a large margin in
terms of achieving better compression ratios without losing the
integrity of the original text. Moreover, the hybrid has proven its
strength on quite good performance on various datasets, proving
its ability to adapt to multiple natures and formats of text.

The hybrid GA-PSO algorithm will be further invested
with advanced adaptive techniques to maintain the balance
between exploration and exploitation for better performance.
Using machine learning models to predict the optimum
parameters of compression based on the features of the
text is likely to enhance compression efficiency further.
More evaluation of the proposed approach with real-time
applications and larger datasets is needed for deeper insight
into its scalability and effectiveness in diverse contexts.
Further research on the integrated approach of the GA-PSO
with the encryption algorithms may open new avenues in
those scenarios where integrity and security both become
critical issues in front of compressed data. Combining
adaptive optimization techniques can set new standards for
future text compression methods and show a way for more
intelligent and responsive data management methods.

REFERENCES

[1]	 M. V. Mahoney. “Fast Text Compression with Neural Networks.
In: Proceedings of the Thirteenth International Florida Artificial
Intelligence Research Society Conference (FLAIRS 2000)”.
FLAIRS, 2000.

[2]	 B. K. Kim, H. K. Song, T. Castells and S. Choi. “On Architectural
Compression of Text-to-Image Diffusion Models. In Proceedings of
the Neural Information Processing Systems (NeurIPS 2023). New
Orleans, Louisiana, United States of America.

[3]	 U. Manber. “A text compression scheme that allows fast searching
directly in the compressed file”. ACM Transactions on Information
Systems (TOIS), vol. 15, no. 2, pp. 124-136, 1997.

TABLE 5: Algorithm Performance Outcomes based on time consumption criteria (s) for context 1–4
Dataset Proposed

method
Grey Wolf

optimization
Whale optimization

algorithm
African vulture

optimization algorithm
Particle Swarm

optimization
Genetic

algorithm
Context 1 2.45 2.68 2.54 2.25 2.39 2.51
Context 2 3.17 4.52 4.10 2.94 3.09 4.27
Context 3 4.27 5.36 4.46 4.00 4.15 4.33
Context 4 5.95 6.78 6.08 5.47 5.85 6.08

Al Attar: Text Compression based on Optimization Approach

74	 UHD Journal of Science and Technology | Jul 2024 | Vol 8 | Issue 2

[4]	 Z. Jiang, M. Yang and M. Tsirlin. “Low-resource” text classification:
A parameter-free classification method with compressors”. In:
Findings of the Association for Computational Linguistics: ACL,
Stroudsburg, PA, 2023.

[5]	 Y. Marton, N. Wu and L. Hellerstein. “On Compression-based Text
Classification. In Advances in Information Retrieval: 27th European
Conference on IR Research, ECIR 2005”. Springer, Santiago de
Compostela, Spain, 2005.

[6]	 P. Lewan and C. Khancome. “Bit-Level Affixation Text Compression
Algorithms. In: 2024 21st International Joint Conference on Computer
Science and Software Engineering (JCSSE)”. IEEE, 2024.

[7]	 A. Moffat. “Huffman coding”. ACM Computing Surveys, vol. 52,
no. 4, pp. 1-35, 2019.

[8]	 H. N. Dheemanth. “LZW data compression”. American Journal of
Engineering Research, vol. 3, no. 2, pp. 22-26, 2014.

[9]	 E. P. Capo-Chichi, H. Guyennet and J. M. Friedt. “K-RLE: A New
Data Compression Algorithm for Wireless Sensor Network. In
2009 Third International Conference on Sensor Technologies and
Applications”. IEEE, 2009.

[10]	 T. Li., T. Zhao, M. Nho and X. Zhou. “A Novel RLE & LZW for Bit-
stream compression. In: 2016 13th IEEE International Conference
on Solid-State and Integrated Circuit Technology (ICSICT)”. IEEE,
2016.

[11]	 Y. Zhou, F. Zhang, T. Lin, Y. Huang, S. Long, J. Zhai and X. Du.
“F-TADOC: FPGA-Based Text Analytics Directly on Compression
with HLS. In: 2024 IEEE 40th International Conference on Data
Engineering (ICDE)”. IEEE, 2024.

[12]	 A. Moronfolu and D. Oluwade. “An enhanced LZW text compression
algorithm”. The African Journal of Computing and ICT, vol. 2, no. 2,
pp. 13-20, 2009.

[13]	 F. Zhou, X. Huang, P. Zhang, M. Wang, Z. Wang, Y. Zhou and
Y. I. N. Haibing. “Enhanced Screen Content Image Compression:
A Synergistic Approach for Structural Fidelity and Text Integrity
Preservation”. ACM Multimedia, New York, 2024.

[14]	 S. Mirjalili. “Genetic algorithm”. In: Evolutionary Algorithms And
Neural Networks: Theory and Applications. Springer, Cham,
pp. 43-55, 2019.

[15]	 J. Kennedy and R. Eberhart. “Particle Swarm Optimization. In:
Proceedings of ICNN’95-International Conference on Neural
Networks”. IEEE, 1995.

[16]	 V. Kachitvichyanukul. “Comparison of three evolutionary
algorithms: GA, PSO, and DE”. Industrial Engineering and
Management Systems, vol. 11, no. 3, pp. 215-223, 2012.

[17]	 L. Haldurai, T. Madhubala and R. Rajalakshmi. “A study on genetic
algorithm and its applications”. International Journal of Computer
Sciences and Engineering, vol. 4, no. 10. pp. 139-143, 2016.

[18]	 M. P. Song and G. C. Gu. “Research on Particle Swarm
Optimization: A Review. In: Proceedings of 2004 International
Conference on Machine Learning and Cybernetics (IEEE Cat.
No. 04EX826)”. IEEE, 2004.

[19]	 T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh
and S. Mirjalili. “Particle swarm optimization: A comprehensive
survey”. IEEE Access, vol. 10, pp. 10031-10061, 2022.

[20]	 J. Zhou, R. Du, T. Yushan, J. Yang, Z. Yang, W. Luo, Z. Luo,
X. Zhou and W. Hu. “Context Compression and Extraction:
Efficiency Inference of Large Language Models. In: International
Conference on Intelligent Computing”. Springer, 2024.

[21]	 T. Bell, I. H. Witten and J. G. Cleary. “Modeling for text compression”.
ACM Computing Surveys, vol. 21, no. 4, pp. 557-591, 1989.

[22]	 A. Moffat. “Word-based text compression”. Software: Practice and
Experience, vol. 19, no. 2, pp. 185-198, 1989.

[23]	 I. H. Witten and T. C. Bell. “The zero-frequency problem:
Estimating the probabilities of novel events in adaptive text
compression”. IEEE Transactions on Information Theory, vol. 37,
no. 4, pp. 1085-1094, 1991.

[24]	 N. R. Brisaboa, A. Fariña, G. Navarro and J. R. Paramá.
“Lightweight natural language text compression”. Information
Retrieval Journal, vol. 10, pp. 1-33, 2007.

[25]	 Z. Li, Z. Zhang, H. Zhao, R. Wang, K. Chen, M. Utiyama and E.
Sumita. “Text compression-aided transformer encoding”. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 7, pp. 3840-3857, 2021.

[26]	 P. Sarker and M. L. Rahman. “Introduction to Adjacent Distance
Array with Huffman Principle: A New Encoding and Decoding
Technique for Transliteration Based Bengali Text Compression.
In Progress in Advanced Computing and Intelligent Engineering:
Proceedings of ICACIE 2020”. Springer, 2021.

[27]	 E. Priyono and H. Mustafidah. “Text compression using the
Shannon-fano, Huffman, and half-byte algorithms”. International
Journal of Scientific Research and Management, vol. 12,
pp. 1422-1427, 2024.

[28]	 H. Gilbert, M. Sandborn, D. C. Schmidt, J. Spencer-Smith and
J. White. “Semantic Compression with Large Language Models. In:
2023 Tenth International Conference on Social Networks Analysis,
Management and Security (SNAMS)”. IEEE, 2023.

[29]	 O. D. Adeniji, O. E. Akinola, A. O. Adesina and O. Afolabi. “Text
Encryption with Advanced Encryption Standard (AES) for Near
Field Communication (NFC) Using Huffman Compression. In:
International Conference on Applied Informatics”. Springer, 2022.

[30]	 J. R. Jayapandiyan, C. Kavitha and K. Sakthivel. “Optimal secret
text compression technique for steganographic encoding by
dynamic ranking algorithm”. Journal of Physics: Conference
Series, vol. 1427, p. 012005.

[31]	 H. Garg. “A hybrid PSO-GA algorithm for constrained optimization
problems”. Applied Mathematics and Computation, vol 274,
pp. 292-305, 2016.

[32]	 Q. Zhang, R. M. Ogren and S. C. Kong. “A comparative study
of biodiesel engine performance optimization using enhanced
hybrid PSO-GA and basic GA”. Applied Energy, vol. 165,
pp. 676-684, 2016.

[33]	 C. Li, R. Zhai. H. Liu, Y. Yang and H. Wu. “Optimization of a
heliostat field layout using hybrid PSO-GA algorithm”. Applied
Thermal Engineering, vol. 128. pp. 33-41, 2018.

[34]	 M. Sheikhalishahi, V. Ebrahimipour, H. Shiri, H. Zaman and M.
Jeihoonian. “A hybrid GA-PSO approach for reliability optimization
in redundancy allocation problem”. The International Journal of
Advanced Manufacturing Technology, vol. 68, pp. 317-338, 2013.

[35]	 J. H. Holland. “Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence”. MIT Press, United States, 1992.

[36]	 S. Mirjalili and A. Lewis. “The whale optimization algorithm”.
Advances in Engineering Software, vol. 95, pp. 51-67, 2016.

[37]	 S. Mirjalili, S. M. Mirjalili and A. Lewis. “Grey wolf optimizer”.
Advances in Engineering Software, vol. 69, pp. 46-61, 2014.

[38]	 B. Abdollahzadeh, F. S. Gharehchopogh and S. Mirjalili. “African
vultures optimization algorithm: A new nature-inspired metaheuristic
algorithm for global optimization problems”. Computers & Industrial
Engineering, vol. 158, p. 107408, 2021.

