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1. INTRODUCTION

The cardiovascular system, also known as the circulatory 
system, is considered one of  the most vital systems in the 

human body, along with the liver, lungs, and other essential 
organs [1], [2]. Cardiovascular disease (CVD) has become 
one of  the most prevalent illnesses in nations worldwide 
today. It is often caused by low blood and oxygen levels in 
the circulatory system as well as blood vessel stenosis [3], [4]. 
Medical centers today have access to numerous datasets 
specifically focused on heart disease diagnoses. The 
evaluation of  diseases and recognizing objects both make 
significant utilization of  machine learning (ML) techniques 
[5]. Using ML algorithms to diagnose diseases, enormous 
quantities of  medical data are converted into information 
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that can improve predicting and decision-making. To 
help healthcare providers by improving the precision and 
accuracy of  making decisions over disease detection and 
diagnosis, ML research has gained importance in healthcare. 
A pair of  its goals is the development of  machine-based 
evaluation systems and disease prediction [6], [7]. A number 
of  symptoms are able to identify CVD: Hypertension, 
chest pain, high blood pressure, cardiac arrest, etc. Many 
CVD types are present, each having a different variety of  
symptoms. Such as: (1)  Chest pain, dyspnea, and throat 
pain are symptoms of  cardiac disease in the blood vessels. 
(2) CVD caused by irregular heartbeats: discomfort, a slowing 
heartbeat, chest pain, etc. The most typical symptoms are 
discomfort, shortness of  breath, chest pain, etc. The most 
typical symptoms include fainting, shortness of  breath, and 
chest pain. CVD can be led on by pre-mature births, diabetes, 
high blood pressure, cigarette smoking, drug usage, and 
drinking alcohol. A fever, exhaustion, dry cough, and skin 
rashes are signs that the infection has occasionally spread 
to the inner membranes of  the heart. Bacteria, viruses, and 
parasites are the causes of  heart infections. Heart disease 
kinds include the following: Angina pectoris, congenital heart 
disease, Cardiac failure, cardiac illness, high blood pressure, 
plaque in the arteries, and a slower beat of  the heart. Many 
automated techniques are available nowadays, including deep 
neural networks, algorithmic learning, and data mining [18].  
Heart disease risk is commonly predicted based on various 
factors such as insulin resistance, CVD, high bad cholesterol 
levels, age, gender, smoking or drinking habits, obesity, 
heart rate, and chest pain, as demonstrated in numerous 
previous studies on different cases [9]. Leveraging medical 
information gathered from real-world cases, technology has 
become increasingly effective in predicting heart disease. 
With advancements in ML, a core component of  artificial 
intelligence, these technologies have reached new heights. 
ML provides powerful tools for medical diagnosis and disease 
prediction, significantly enhancing the quality of  healthcare 
services. By analyzing real-life medical data, these systems 
can more accurately detect whether an individual is at risk for 
heart disease. Addressing this issue requires robust accuracy in 
ensuring data security and maintaining confidentiality between 
patients and physicians. This can be achieved through the 
implementation of  well-established security algorithms [10]. 
ML technology, considered a component of  artificial 
intelligence, represents the highest point of  technological 
advancement. Due to its ability to provide medical diagnostic 
tools for disease prediction, ML plays a significant role in 
enhancing the quality of  health services [11]. Despite this, 
many metaheuristic algorithms have been employed to 
classify data and optimize this problem through evolutionary 

evaluation [12], [13], [14]. Furthermore, the supervised ML 
approach includes an algorithm for classification that can be 
utilized for prediction [15].

The aim of  this study is to determine if  cardiac questions 
can be identified based on a patient’s medical factors, such 
as age, gender, and chest pain. For this purpose, patient 
characteristics and medical selected data datasets as specified 
in the future. By analyzing this dataset, the goal is to 
determine whether a patient has a cardiac issue.

The novelty of  this study lies in its innovative approach 
to enhancing CVD prediction by combining two datasets 
(UCI and HD) and applying stratified ML techniques. A key 
aspect of  this novelty is the integration of  two large datasets 
with identical feature variables, creating a more diverse and 
comprehensive dataset that improves model generalization 
compared to using a single source. In addition, the study 
employs stratified data splitting to maintain balanced class 
distributions, which is particularly beneficial for imbalanced 
datasets. This technique not only reduces model bias but 
also significantly improves the prediction accuracy of  
algorithms such as logistic regression (LR), random forest 
(RF), support vector machine (SVM), Gaussian Naive Bayes 
(GNB), gradient boosting (GB), K-nearest neighbors (KNN), 
decision tree (DT). The study further distinguishes itself  
through a thorough comparative performance evaluation 
of  multiple ML algorithms – including LR, RF, SVM, GNB, 
GB, KNN, and DT – assessing their effectiveness with 
and without stratification. Notably, the research provides a 
quantitative analysis of  how stratification positively impacts 
model accuracy, precision, and F1-score, underscoring 
its critical role in healthcare-related ML tasks. While the 
study leverages widely used ML methods, its uniqueness 
is evident in the dataset integration, the strategic use of  
stratification, and the detailed assessment of  its effects on 
model performance. To further enhance its contributions, 
future work could explore advanced techniques such as deep 
learning (DL), hybrid models, or clinical validation using 
real-world healthcare data. This study’s primary contribution 
lies in training health-related features using seven methods:
•	 Evaluate the performance of  various ML algorithms, 

including LR, RF, GNB, GB, KNN, SVM, and DT, in 
predicting CVD.

•	 The combined dataset showed enhanced accuracy by 
using the stratify parameter, which ensured balanced 
training and improved model performance.

•	 This strategy helps medical professionals assess patient 
risk, showcasing ML’s potential to enhance diagnostic 
accuracy and improve patient outcomes.
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•	 The use of  stratified techniques greatly enhanced the 
accuracy of  SVM, GNB, and GB models, emphasizing 
the value of  balanced data distribution during training.

•	 This study evaluates the performance of  various 
classification algorithms on three distinct datasets: UCI, 
HD, and the combined UCI-HD dataset.

•	 The results highlight the effectiveness of  RF and DT 
algorithms, demonstrating their robustness across all 
datasets, with RF achieving perfect accuracy on the 
combined dataset. In addition, the performance of  other 
algorithms, such as KNN and GNB, provides valuable 
insights into their strengths, particularly on the HD 
dataset.

•	 This comparative analysis supports the selection of  the 
most suitable algorithm for classification tasks across 
different datasets.

The rest of  the paper is organized as follows: Section 2 
delivers a background review, followed by Section 3, which 
outlines the methods and materials used. Section 4 presents 
the results and analysis, while Section 5 discusses the 
performance of  the algorithms based on the adjustments. 
Finally, the conclusion and future work are presented in the 
past section. Procedure for Paper Submission.

2. BACKGROUND REVIEW

Many studies involving animals or humans, and other studies 
that require ethical approval, must list the authority that 
provided approval and the corresponding ethical approval 
code. Many studies are being carried out having the goal of  
using algorithms based on ML to identify cardiac disease. The 
study employed various ML methods to create a prediction 
model for categorizing cardiac diseases. The following part 
discusses a few of  the earlier studies on predicting the 
likelihood of  heart disease.

The DT, RF, and Naïve Bayes (NB) methods are applied to 
the Cleveland heart disease dataset by Gavhane et al. [16]. The 
study dataset was used to evaluate the accuracy of  predictions 
of  the approaches, and the RF strategy performed better than 
the DT and NB procedures. Ambekar and Phalnikar [17] 
use a heart disease dataset to compare the prediction power 
of  many ML methods, such as GNB, LR, RF, and KNN. In 
terms of  prediction accuracy, LR performed better than all 
other approaches according to the two different findings. 
The comparison of  three ML algorithms, DT, RF, and multi-
layer perception, using the Wisconsin Heart Disease Data 
Repository is carried out by Jothi et al. [18]. The methods 

are compared for accuracy in predicting cardiac illness, and 
the findings indicate that multi-layer perception and neural 
networks perform better in this regard. The Wisconsin Heart 
Disease Data Repository forecasts heart disease using NB, 
as described by Segie et al. [19]. It can achieve 87% overall 
prediction accuracy. In artificial ML and forecasting systems, 
the NB model performs better than the other models in 
terms of  performance and the ability to accurately forecast 
cardiovascular illness, with an adequate forecasting accuracy 
of  eighty-seven. The study conducted by Kajal and Nishika 
[20] focused on different methods of  classification used 
to predict an individual’s danger degree based on blood 
pressure, cholesterol levels, cardiac rate, age, gender, and 
other characteristics.

Data mining methods, including NB, KNN, DT, and Neural 
Network, are used to increase the accuracy of  the hazard 
level. The kernel nearest neighbor and ID3 algorithms 
were used to determine the risk rate of  heart disease. The 
accuracy rating for various amounts of  attributes was also 
provided. Babu et al. [21], conducted research on a range of  
educational apps that support the identification of  many 
cardiac conditions. A selection of  methods, including data 
mining, SVMs, computationally intelligent classifiers, and 
hidden markov’s models, were employed. Since treating 
heart disease is extremely costly and out of  reach for the 
average person, these kinds of  cutting-edge technologies 
are created to address this issue. The beginning predictions 
can also benefit from these strategies. It modifies daily 
routines somewhat to prevent more suffering. As a result, 
the author draws the conclusion that the anticipated 
strategy is highly helpful and offers several advantages. 
Kannan and Vasanthi  [22] employed a variety of  ML 
algorithms, including LR, RF, SVM, and stochastic gradient 
boosting, to identify potential cardiovascular illnesses. The 
equation predicts that LR has the most accuracy, coming 
in at 86.5%.

In addition, Raza [23] employed LR, NB, a multilayer 
perceptron, and a combined learning model to classify 
heart diseases. The result shows that combined learning 
has improved the prediction performance of  cardiac 
disease when compared to other approaches. For example, 
Z-Alizadesh Sani and the Cleveland heart disorder dataset 
were two separate datasets utilized by Sapra et al. [24] to 
diagnose cardiac illnesses. These datasets were previously 
analyzed using six different ML techniques: LR, DL, DT, 
RF, SVM, and collaborative learning gradient boosted tree. 
When compared to other techniques, gradient boosted tree 
strategy yielded the highest accuracy, at 84%. Because CVD 
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has one of  the highest death rates worldwide, projection is an 
essential part of  medicine. Several techniques involving ML 
are being used to effectively forecast cardiac disease. Research 
has demonstrated that technologies such as KNN, RF, DT, 
and SVMs can reliably forecast CVD with excellent accuracy 
rates of  79%–94% [25]. According to this research [26], 
NB (83.60%), KNN (90.16%), LR (86.88%), RF (96.72%), 
extreme gradient boost (95.08%), and DT (77.049%) were the 
ML techniques that were employed. Remarkably, the method 
known as RF performed more effectively than the remaining 
algorithms, with a maximum accuracy rate of  96.72%. For 
further clarification on the methods used, Table 1 includes 
a summary of  the approaches, along with a comparison to 
previous works that have addressed similar topics.

3. MATERIALS AND METHODS

3.1. Dataset
The UCI Heart Disease dataset is a widely used dataset for 
predicting CVD, containing various attributes related to patient 
health, such as age, cholesterol levels, and electrocardiographic 
results. The investigation utilized two datasets for analysis, 
as summarized in Table 2. The first dataset, UCI, contains 
samples categorized based on the presence or absence of  
CVD. Similarly, the second dataset, HD, provides additional 
samples with the same classification criteria.

The Combined dataset, created by merging UCI and HD, 
offers a comprehensive view of  CVD distribution. All 

TABLE 1: Relevant bibliography
Title of research The methods Different types of data 

used
Year References

Utilizing Artificial Intelligence to Predict 
Cardiovascular Disease

RF, DT, and NB Cleveland Cardiovascular 
Disease Data Set

2018 [16]

Making use of convolutional neural networks 
to predict the probability of diseases

GNB, RF, KNN, and L R Cardiovascular Disease 
Data Set

2018 [17]

Genetic algorithm‑based feature determination 
technique in the healthcare dataset

RF, DT, and multi‑layer neural 
networks for perception

Wisconsin Cardiovascular 
Research Center

2019 [18]

Support Vector Techniques for Machine‑Based 
Detection of Cardiovascular Disease

NB Wisconsin Cardiovascular 
Research Center

2019 [19]

Cardiovascular Disease Detection Utilizing 
Data Mining Methods

Neural Network, KNN, DT, 
and NB

Features: Sexuality, 
Age, Blood Pressure, 
Cholesterol Levels, and 
Heart Rate

2016 [20]

Diagnosing Cardiovascular Disease Through 
Data Mining Method

Data mining, computerized 
smart classifiers, SVM, and 
concealing Markov chain

Cardiovascular Disease 
Data Set

2017 [21]

ROC curve‑based machine learning 
techniques for cardiovascular disease 
diagnosis and prognosis

Probabilistic Gradient 
Boosting, RF, SVM, and LR

Cardiovascular Disease 
Data Set

2019 [22]

Improving the identification of cardiovascular 
disease accuracy using a majority vote and 
group learning

LR, NB, Multilayer Perceptron, 
Ensemble Learning

Cardiovascular Disease 
Data Set

2019 [23]

Using a combined technique, a smart 
approach for detecting CAD

Gradient Boosted Tree, RF, 
SVM, DT, DL, and LR

Cleveland Cardiovascular 
Disease and Z‑ Alizadesh 
Sani Datasets

2021 [24]

Using Machine Learning Techniques to Track 
Cardiovascular Issues in Cardiovascular 
Disease

SVM, RF, DT, and KNN Cardiovascular Disease 
Data Set

2023 [25]

An Organized Analysis of Machine Learning 
Algorithms for Heart Failure Prediction

KNN, LR, and RF Cardiovascular Disease 
Data Set

2022 [25]

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, KNN: K‑nearest neighbors, DT: Decision tree, DL: deep learning

TABLE 2: Cardiovascular disease dataset distribution and sources
Dataset Feature Samples Negative samples (%) Positive samples (%) Source
UCI 14 1025 499 (48.68) 526 (51.32) https://www.kaggle.com/datasets/

johnsmith88/heart‑disease‑dataset/data
HD 14 303 138 (45.5) 165 (54.5) https://www.kaggle.com/code/mragpavank/

heart‑disease‑uci/notebook
UCI‑HD 14 1328 637 (48.0) 691 (52.0) Includes UCI ‑HD
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datasets are complete, with no missing feature values. Fig. 1 
illustrates the distribution of  CVD across the samples. For 
model development, 80% of  the combined dataset was 
allocated for training, and 20% for testing.

3.2. Data Pre-Processing
This study focuses on pre-processing the UCI and HD (heart 
disease) datasets before developing a predictive model using 
ML. These datasets have undergone extensive cleaning and 
pre-processing, making them easier to use and requiring 
minimal effort for data preparation. In addition, they are well-
documented and frequently cited in scientific research. In 
both datasets, the target attribute is an integer indicating the 
presence of  heart disease in a patient. A value of  0 signifies 
no heart disease, while a value of  1 indicates its presence. The 
attribute sex represents gender, with two classes: 1 for males 
and 0 for females. The attribute cp (chest pain type) includes 
four classes, while fbs (fasting blood sugar) has two classes. 

Similarly, restecg (resting electrocardiogram) consists of  three 
classes, and exang (exercise-induced angina) has two classes. 
The attribute slope (ST slope) comprises three classes. Four 
additional attributes – trestbps (resting blood pressure), chol 
(cholesterol level), age, and oldpeak – are treated as numerical 
values. The data pre-processing process involves multiple 
steps, from data loading to splitting for training and testing. 
These steps are detailed in Table 3.

3.3. Selection Algorithms
There are several algorithms commonly used for the 
classification of  cardiac disease, including LR, RF, SVM, 
GNB, GB, KNN, and DT.

3.3.1. LR algorithm
It consists of  a classification process that makes use of  
only one class-based classifier and a single multinomial LR 
approach. When using a specific technique, a LR analysis 

Fig. 1. Patient with cardiovascular disease compared to non-heart disorder patients.

TABLE 3: Heart dataset features
Attributes Information
Sex Gender of participants
Cp Kind of chest pain. There are four parts to this feature: unusual angina, usual angina, and both. Pain that is not anginal and 

asymptomatic
Trestbps Blood pressure of the patient during a time of rest or inactivity
Chol Level of cholesterol
Fbs The level of blood sugar has an accurate level if it is more than 120 mg/dL and an incorrect value if it is below 120 mg/dL.
Restecg Electrocardiogram outcomes acquired as a patient is at rest, often known as resting electrocardiogram results. Following the Estes 

criteria, a result of 0 denotes normalcy, an amount of 1 suggests aberrant ST‑T waves, & a result of 2 suggests a certain risk of 
hypertrophy of the left ventricle.

Thalach Maximal heartbeat
Exang The patient’s pain whereas physical activity. Value, true if the answer is “yes” and false if the word “no”
Oldpeak The reduction in ST brought on by activity.
Slope Slope during exercise at maximum ST. The slope of it can be classified as upsloping, round, or downsloping.
Ca The amount of vessels is identified by coloring.
Thal Test for thalassemia has a total of three numbers: changeable error, immovable defect, and regular.
Target Cardiac illness (1) is a type of label. Non‑cardiac illness (0)
Thalach Maximal heartbeat
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usually shows where the group’s borders are and how far 
removed the category’s probabilities are from them. This 
approaches the extremes (0 and 1) more quickly depending 
on the data collection. LR is elevated beyond the level of  a 
basic classification by these conditional arguments. It might 
be applied in a different method more offers more accurate 
and thorough estimates, although they are not certainties. 
LR is an estimating technique that resembles ordinary least 
squares regression. However, employing LR for prediction 
results in a single response [27]. LR has become one of  the 
increasingly popular techniques for intermittent information 
analysis and statistical applications. The LR approach makes 
use of  the linear interpolation method [28]. The sigmoid 
function, given by the equation (1)

( ) 1
1  tsig t

e−
=

+
� (1)

3.3.2. RF algorithm
Among the most effective learning techniques is RF. 
Humanities researchers are able to benefit from algorithmic 
advancements if  they are allowed access to an application of  
the method. Since models that utilize trees are the foundation 
of  the RF technique, let’s start by talking about them. With 
a tree-based approach, the collection of  data is repeatedly 
divided into two separate categories according to a pre-
defined parameter or another is satisfied. The referred to as 
nodes of  leaves, or leaves are located at the base of  the DT. 
Comparing to DTs, the RF algorithm calculates the error 
rate more accurately. Particularly, it can be demonstrated 
analytically that the error rate constantly converges as the 
number of  trees rises [29]. At the preparation phase, the 
out-of-bag (OOB) error approximates the variance of  
the RF mistake. A distinct bootstrapping sample serves as the 
foundation for every tree. Approximately one-third of  the 
observations are randomly excluded from each bootstrapping 
dataset. An OOB example of  this is the collection of  each 
of  this excluded information for an individual tree. When 
choosing an algorithm and fine-tuning factors, determining 
which ones will result in a small OOB variance is frequently 
crucial. Keep in mind that the size of  the group of  predictor 
factors is essential for regulating the trees’ ultimate depth in 
the RF method. As a result, it is a parameter that must be 
adjusted when choosing a model.

3.3.3. SVM algorithm
The most commonly implemented supervised ML technique, 
SVM, is utilized for classification as well as regression. 
However, this approach is mostly examined for ML issues 

with classification. To swiftly place the newly acquired 
information in the right group, the strategy known as SVM 
aims to construct the most effective border, the line of  sight 
that may divide the space with n dimensions into classes. 
This optimal selection of  boundaries is referred to as a 
“hyperplane” [30]. SVM selects the extreme vectors that help 
to create the hyperspace. The highest and lowest vectors are 
collectively referred to as vectors of  support, and the method 
that employs a disproportionate number of  verticals is called 
SVM. The SVM image below classifies two distinct groups 
using hyperplanes or borders of  selections.

3.3.4. KNN algorithm
The KNN algorithm, the most basic categorizing technique, 
is based on supervised learning techniques. The KNN 
technique can be applied to reversion, although it is primarily 
used for classification [22]. A new data point is categorized 
using the KNN algorithm according to how well the 
information it provides matches the existing data. How 
fresh data can be promptly classified by the method known 
as KNN when it falls into an appropriate class.

3.3.5. GNB algorithm
The GNB, which comes through the Bayesian theory, 
GNB provides constant data that are drawn through the 
Gaussian typical distribution. The idea that its elements 
are autonomous is the foundation of  the GNB. This 
sorting algorithm is regarded as being one of  the most 
straightforward and practical methods. For categorization 
using supervised ML, which is predicated on the concept 
that the information is regularly generated. GNB is 
demonstrated  [31]. If  every chosen feature contributes 
equally and independently, the Bayes theorem depends on 
multiplying the probability and previous by the evidence 
presented. Since they are independent of  one another, it is 
assumed that the significance of  each attribute has an equal 
impact on the result. The likelihood of  a specific event 
because something else has previously occurred is known 
to be called the GNB using the formula (2).

A B
P B A P A

P B
| �

� | �
�

( ) = ( ) ( )
( ) � (2)

This formula determines the following probability, or the 
likelihood that A will occur, considering that B will occur, 
and the likelihood that B will occur, provided that A will 
occur. The probabilities of  A Occurring P(A) split by proof, 
or the possibility of  B occurring P(B), is P(B|A), which is 
the probability multiply by the previous event.
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3.3.6. GB
In terms of  accuracy, the GB provides a cutting edge, 
particularly for supervised training tasks on structured 
datasets. Freund and Schapire created AdaBoost, the initial 
boosting method, in the year 1997. Combining various 
models of  ML is the aim of  collaborative learning with the 
objective of  enhancing the accuracy of  predictions. The 
precise concept behind boosting is that you should start with 
an algorithm that is referred to as a poor learner, meaning it 
is just marginally higher quality than chance guesswork. Over 
time, the algorithm gets better by fixing the mistakes made 
by the prior model at each stage. GB begins with a poor 
learner, usually a DT, and continuously refines this starting 
learner by accounting for the inaccuracy of  the preceding 
models at each stage. GB has become considered among the 
most successful algorithmic learning strategies available. The 
most common form of  boosting progressively advertises a 
single DT as time by using trees of  choices. Higher accuracy 
is the result of  the model’s effectiveness being gradually 
improved by this sequential change. There are many kinds 

of  GB available. The gradual boosting version used in this 
investigation relies on [32].

3.3.7. DT algorithm
The DT Algorithm is a supervised learning method for 
classification and regression. It splits data into subsets based 
on attribute values, forming a tree-like structure of  decisions 
and outcomes. Metrics, such as entropy and information 
gain [33]. The entropy value is calculated using the formula 
in Equation 3, when S is representing a specific set, A is one 
of  the attributes, the number of  divisions for attributes is n, 
(|Si|) is the quantity of  instance in partition (i), finally |S| 
is the sum of  the instance in (S).

Gain� S �A � �entropy Si( , ) = ( )
=
∑
i

n S
S1

1
� (3)

3.4. Proposed Method
The proposed method, illustrated in Fig.  2, flowchart for 
the Proposed System, outlines a comprehensive approach to 
heart disease prediction using ML. The process begins with 

Fig. 2. Flowchart for the proposed system.
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data collection from three sources: UCI, HD, and UCI-HD 
datasets, ensuring a diverse and robust dataset. This data 
undergoes pre-processing to clean and normalize it, addressing 
issues, such as missing values, noise, and inconsistencies to 
prepare it for analysis. The next step involves applying 
the data. For balanced datasets, a stratification process is 
applied to ensure even class distribution, reducing bias. For 
unbalanced datasets, the data are split into training (80%) and 
testing (20%) subsets, enabling effective model evaluation. 
The processed data are fed into a ML classification pipeline 
consisting of  algorithms, such as LR, RF, SVM, GNB, GB, 
KNN, and DT. These classifiers are trained on the dataset 
to build predictive models. Finally, the system undergoes an 
evaluation phase, classifying outcomes into two categories: 
Heart Disease and Non-Heart Disease, based on the decision 
boundary of  the classifiers. This robust framework ensures 
accurate and fair predictions, with balanced data enhancing 
model reliability and unbalanced data reflecting real-world 
scenarios.

3.4.1. The importance of stratified sampling in 
dataset splitting
Table 4 shows that stratify = y is used in train_test_split, 
it ensures that the class distribution in the target labels 
(y) is maintained across both training and test sets. This 
is particularly useful for imbalanced datasets, where some 
classes may have fewer samples than others. The function 
groups the data by unique classes in y and splits each class 
proportionally into training and testing subsets. This process 
ensures that the relative frequency of  each class in y remains 
consistent. If  stratify is not specified, the split is purely 
random and may lead to class imbalances in the subsets.

The data processing in this study employs a stratified splitting 
method to ensure that the class distribution of  the target 
labels is preserved across both training and testing subsets. 
The dataset is split into two parts: A  training set and a 
testing set, with the proportion for the testing set specified 
by the test_size parameter (20%). The random_state seed 

ensures that the data split is reproducible. If  the stratify 
option is enabled, the dataset is grouped by unique target 
label classes, and each group is split into training and testing 
sets while maintaining the original class proportions. These 
stratified splits are then combined into the final training and 
testing sets. If  stratification is not applied, the function will 
randomly shuffle and split the data based on the test_size 
ratio. This stratified methodology ensures that the subsets are 
representative of  the overall dataset, preserving the balance 
of  target labels in both training and testing sets, which is 
critical for training accurate ML models. Fig. 3 illustrates the 
stratified dataset splitting for training and testing.

4. RESULTS

According to the methodology of  this study, the datasets 
have been compared based on the comparative parameters 
for each algorithm described in subsection one. Notably, the 

TABLE 4: Performance evaluation of machine learning algorithms on the UCI dataset
Algorithm Accuracy Precision F1‑score Log loss Error rate
LR 79.51219 0.80234 0.7937867 0.45313 0.2048780
RF 98.53658 0.98578 0.9853637 0.06658 0.0146341
SVM 88.78048 0.89226 0.8874512 0.25314 0.1121951
GNB 80.00000 0.81050 0.7981741 0.66268 0.2000000
GB 93.17073 0.93235 0.9316748 0.19782 0.0682926
KNN 83.41463 0.83869 0.8335281 0.25111 0.1658536
DT 98.5365 0.98578 0.985363 0.5274 0.014634

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

Fig. 3. Stratified dataset splitting for training and testing.
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results for each dataset are presented and the modifications 
evaluated are illustrated in subsection two.

4.1. Comparative Parameters
The performance of  the proposed model was evaluated 
using the UCI, HD, and Combined (UCI-HD) datasets, 
which provide comprehensive information on CVD. After 
dividing the data, the model was trained and tested using 
algorithms such as LR, RF, GNB, GB, SVM, DT, and KNN. 
The algorithm with the highest efficiency was identified by 
analyzing performance metrics, including accuracy, precision, 
F1-score, and logarithmic loss. Accuracy, which measures 
the percentage of  correctly classified samples, was calculated 
using the formula derived from the confusion matrix. This 
formula, referred to as equation 4, quantifies the model’s 
ability to classify CVD cases accurately across different 
datasets.

Accuracy TP TN
TP TN FP FN

= +
+ + +

 
        

� (4)

Precision evaluates the accuracy of  a classifier by comparing 
the number of  true positives (TP) in the actual data to the 
number of  predicted TP. This measure of  accuracy is essential 
for assessing the performance of  the proposed method, as 
calculated mathematically according to equation 5.

Precision TP
TP FP

    =
+   

� (5)

F1-Score: The F1-score is a statistical metric used to evaluate 
the performance of  a classification model. It provides a 
balanced assessment by calculating the harmonic mean of  
precision and recall. This single metric considers both recall 
and precision, offering a comprehensive evaluation of  model 
performance. The F1-score is calculated as the harmonic 
mean of  these two values, with the formula for the F-measure 
represented in equation 6.

F measure
Precision Recall
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The performance of  a classifier can be effectively represented 
and evaluated using a confusion matrix. TP represents the 
number of  individuals correctly identified as having the 
disease. True Negatives represent the number of  individuals 
correctly identified as not having the disease. False Positives 
(FP) represent the number of  healthy individuals who are 
incorrectly diagnosed with the disease. False Negatives 
(FN) occur when individuals with the disease are incorrectly 
classified as healthy.

4.2. Evaluative Results
The datasets are utilized to identify the most effective 
model for predicting cardiovascular disease in patients. This 
investigation is based on established algorithms commonly 
used in healthcare predictions. The nominated model 
demonstrated particularly strong performance in specific 
cases, making it a valuable tool for professionals in diagnosing 
this condition. All issues, comparisons, and outcomes are 
thoroughly illustrated in the subsequent tables.

Table 4 shows the performance evaluation of  ML algorithms 
on the UCI dataset reveals notable differences in accuracy, 
precision, F1-score, log loss, and error rate. RF and DT 
achieved the highest accuracy (98.54%) and precision 
(0.9858), indicating superior performance. GB followed 
with 93.17% accuracy and balanced metrics, while SVM 
demonstrated strong results with an 88.78% accuracy. LR 
and GNB showed moderate performance, with accuracy 
values of  79.51% and 80%, respectively. KNN achieved 
83.41% accuracy but slightly higher error rates compared 
to top-performing models. RF and DT stand out as optimal 
models for the dataset due to their low error rates (1.46%) 
and minimal log loss. These findings highlight RF and DT 
as robust classifiers for this dataset.

A comparison of  error rates among seven ML algorithms, 
such as LR, DT, GNB, KNN, GB, RF, and SVM, is presented 
in Fig. 4. Among these, RF demonstrated the lowest error 
rate, showcasing its effectiveness and robustness for this 
dataset. GB and SVM also achieved strong results, with 
error rates slightly higher than that of  RF. LR and GNB 
showed moderate performance, whereas KNN had a higher 
error rate. While the DT performed competitively, it was 
outperformed by the ensemble methods. Overall, ensemble 

Fig. 4. Comparison of error rates for machine learning algorithms on 
UCI dataset.
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models, especially RF, proved to be the most effective for 
this dataset.

To modify these algorithms as stated, a stratified procedure 
was employed. Table  5 presents the performance metrics 
of  various classification algorithms applied to the UCI 
dataset using stratified sampling. The RF algorithm achieved 
perfect scores across all metrics, with 100% accuracy and 
zero error rates. DT closely followed with 98.54% accuracy 
and an error rate of  1.46%. GB performed impressively 
with 97.56% accuracy. SVM showed 92.68% accuracy, 
while KNN and GNB achieved accuracies of  86.34% and 
82.93%, respectively. LR exhibited the lowest accuracy among 
the models at 80.98%. Overall, RF demonstrated superior 
performance, while LR lagged behind.

Moreover, Fig.  5 shows a comparison of  error rates for 
various ML algorithms applied to the UCI dataset using 
stratified sampling. RF and DT achieve the lowest error 
rates, indicating the best performance among the evaluated 
methods. GB also exhibits a relatively low error rate, 
demonstrating strong predictive capabilities. SVM and KNN 
fall in the mid-range of  error rates. LR and GNB show higher 
error rates, reflecting comparatively weaker performance. 
This comparison underscores the effectiveness of  RF, DT, 
and GB in minimizing prediction errors.

Table  6 presents the performance metrics of  various 
classification algorithms applied to the UCI dataset using 
k-fold cross-validation. LR achieved the highest accuracy of  
84.16%, along with the best precision (0.8472) and F1-score 
(0.8392). RF followed with an accuracy of  81.52%, while 
SVM slightly outperformed RF in terms of  precision (0.8292) 
and F1-score (0.8188), despite a marginally lower accuracy 
of  82.17%. GNB and GB exhibited similar performances, 
both with around 80.84% and 80.87% accuracy, respectively. 
KNN had a lower accuracy of  79.85% and the highest log 
loss (1.751), indicating weaker performance compared to 
other models. DT demonstrated the lowest accuracy (72.89%) 

and the highest log loss (9.773), making it the least effective 
model in this comparison. Overall, LR emerged as the most 
robust classifier, balancing accuracy, precision, and F1-score, 
while DT exhibited the weakest performance due to its high 
error rate and log loss.

Fig. 6 illustrates the error rates of  various ML algorithms 
applied to the UCI dataset using k-fold cross-validation. The 
algorithms compared include LR, DT, GNB, KNN, GB, RF, 
and SVM. The error rate is plotted on the y-axis, while the 
different algorithms are labeled along the x-axis. For clarity, 
each algorithm is represented by a distinct color. The DT 
exhibits the highest error rate among the models, while LR 
achieves the lowest. The remaining models demonstrate 
relatively similar error rates, with slight variations. These 
results provide insights into the comparative performance of  
different classifiers on the given dataset, helping to determine 
the most effective model for classification tasks.

The performance metrics of  classification algorithms on 
the HD dataset are shown in Table 7. KNN achieved the 
highest accuracy (90.16%) and the lowest error rate (9.83%), 
making it the top-performing algorithm in this study. SVM 

TABLE 5: Performance metrics of classification algorithms on the UCI dataset using stratified sampling
Algorithm Accuracy Precision F1‑score Log loss Error rate
LR 80.97561 0.822476 0.807244 0.348282 0.190244
RF 100.00000 1.00000 1.00000 0.05885 0.00000
SVM 92.68293 0.927144 0.926787 0.178714 0.073171
GNB 82.92683 0.831469 0.828754 0.506077 0.170732
GB 97.56098 0.975649 0.975606 0.156275 0.02439
KNN 86.34146 0.863618 0.863434 0.216995 0.136585
DT 98.53659 0.985792 0.985368 0.527468 0.014634

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

Fig. 5. Comparison of error rates for machine learning algorithms using 
stratified sampling on UCI dataset.
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and GNB both exhibited strong performance with identical 
accuracy (86.89%), precision (0.87), and F1-score (0.87). 
LR also performed well with an accuracy of  85.25%. RF 
showed moderate results with an accuracy of  83.61%, while 
DT achieved comparatively lower accuracy at 78.69% and 
75.41%, respectively. The log loss values for SVM and LR 
were notably lower, indicating better calibration, while DT 
had the highest log loss, suggesting poorer reliability. These 
results position KNN as the most effective classifier for this 
dataset, with SVM and GNB following closely behind.

The classification results demonstrate significant performance 
variations across different algorithms. KNN achieved the 
lowest error rate, highlighting its effectiveness for this dataset. 

LR also performed well, with relatively low error rates. In 
contrast, DT exhibited the highest error rate, reflecting 
its lower suitability for this task. RF and GB delivered 
intermediate performance, balancing error rates and model 
complexity. SVM showed moderate performance, while 
GNB lagged behind the top-performing algorithms but 
outperformed DT. These findings, as depicted in Fig.  7, 
underscore the importance of  selecting an appropriate 
algorithm to enhance classification accuracy.

The performance metrics of  classification algorithms on the 
HD dataset using stratified sampling are presented in Table 8, 

TABLE 7: Performance metrics of classification algorithms on the HD dataset
Algorithm Accuracy Precision F1‑score Log loss Error rate
LR 85.2459 0.853076 0.852538 0.364798 0.147541
RF 83.60656 0.836066 0.836066 0.3633 0.163934
SVM 86.88525 0.870862 0.868923 0.345582 0.131148
GNB 86.88525 0.870862 0.868923 0.693538 0.131148
GB 78.68852 0.787537 0.787 0.43882 0.213115
KNN 90.16393 0.903684 0.901692 1.96402 0.098361
DT 75.40984 0.770801 0.75224 8.863193 0.245902

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

TABLE 6: Performance metrics of classification algorithms on the UCI dataset using k‑fold cross‑validation
Algorithm Accuracy Precision F1‑score Log loss Error rate
LR 84.15847 0.847168 0.839233 0.408436 0.158415
RF 81.51913 0.819266 0.81326 0.404027 0.184809
SVM 82.17486 0.829186 0.818829 0.420519 0.178251
GNB 80.84153 0.8137 0.806308 0.580949 0.191585
GB 80.86885 0.811012 0.806967 0.476965 0.191311
KNN 79.84699 0.804062 0.794404 1.751016 0.20153
DT 72.88525 0.72869 0.728066 9.773148 0.271148

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

Fig. 6. Comparison of error rates across algorithms for UCI dataset 
using k-fold cross-validation.

Fig. 7. Comparison of error rates across algorithms for HD dataset 
classification.
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highlighting key insights. LR achieved an accuracy of  80.33%, 
a precision of  0.813, and an F1-score of  0.800, with a log 
loss of  0.438 and an error rate of  0.197. RF outperformed 
others with the highest accuracy of  83.61%, precision of  
0.858, and an F1-score of  0.831, while maintaining a log 
loss of  0.405 and an error rate of  0.164. SVM and GB both 
reached an accuracy of  81.97%, with comparable precision 
and F1-Scores, though GB had slightly better log loss at 
0.449. KNN and GNB had identical accuracies of  80.33% 
and 81.97%, respectively, but KNN showed significantly 
higher log loss at 2.069. DT performed the worst, with an 
accuracy of  70.49% and a log loss of  10.636, reflecting its 
limitations compared to other models.

Fig.  8 compares the error rates of  various classification 
algorithms for the HD dataset using stratified sampling. 
DT exhibited the highest error rate, approximately 0.30, 
highlighting its relatively poor performance. LR, KNN, 
and GNB demonstrated similar error rates around 0.20, 
indicating moderate performance. GB, RF, and SVM achieved 
lower error rates, with RF standing out as the most accurate 
model, achieving an error rate of  approximately 0.16. This 
emphasizes the effectiveness of  ensemble methods, such as 
RF and GB in reducing classification errors compared to 
simpler models such as DT.

Table  9 presents the performance metrics of  various 
classification algorithms evaluated on the HD dataset using 
k-fold cross-validation. The DT algorithm achieved the 
highest performance, attaining 100% accuracy, precision, 
and F1-score, with a log loss of  0 and an error rate of  0. 
RF closely followed, exhibiting an accuracy of  99.61%, 
precision of  0.9962, and an F1-score of  0.9961, with 
minimal log loss (0.0516) and a very low error rate (0.0039). 
GB also demonstrated strong performance, achieving 
97.17% accuracy, a precision of  0.9722, and an F1-score 
of  0.9717, with a log loss of  0.1364 and an error rate of  
0.0283. The SVM classifier achieved an accuracy of  92.39% 
and a precision of  0.9241, with an F1-score of  0.9239 and 

a moderate log loss of  0.1991. LR and KNN exhibited 
comparable performance, with 84.59% and 83.61% accuracy, 
respectively. LR showed a slightly higher precision (0.8506) 
and F1-score (0.8451) compared to KNN (0.8380 precision, 
0.8359 F1-score). GNB recorded the lowest accuracy 
(82.63%) and the highest log loss (0.5122), indicating weaker 
reliability than other models. Overall, DT and RF emerged 
as the most effective classifiers, with GB also demonstrating 
competitive performance.

Fig. 9 presents a comparative analysis of  the error rates for 
various ML algorithms applied to the HD dataset using 
k-fold cross-validation. The x-axis represents different 
algorithms, including LR, DT, GNB, KNN, GB, RF, and 
SVM. The y-axis denotes the corresponding error rates. 
For clarity, each algorithm is represented by a distinct color. 
The results indicate that DT exhibits the lowest error rate, 
demonstrating its strong classification performance for this 
dataset. In addition, RF and GB also show relatively low error 
rates, reinforcing the effectiveness of  ensemble methods. 
Conversely, GNB and KNN yield higher error rates, while 
LR and SVM fall in between. These findings highlight the 

TABLE 8: Performance metrics of classification algorithms on the HD dataset using stratified sampling
Algorithm Accuracy Precision F1‑score Log loss Error rate
LR 80.32787 0.812564 0.799672 0.438066 0.196721
RF 83.60656 0.858297 0.831266 0.404595 0.163934
SVM 81.96721 0.834563 0.815437 0.425831 0.180328
GNB 81.96721 0.826237 0.817182 0.61126 0.180328
GB 81.96721 0.826237 0.817182 0.449421 0.180328
KNN 80.32787 0.812564 0.799672 2.069169 0.196721
DT 70.4918 0.705287 0.702 10.63583 0.295082

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

Fig. 8. Comparison of error rates across algorithms for HD dataset 
classification using stratified sampling.
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performance variations among different models and suggest 
that DT is particularly well-suited for this dataset.

Significantly, this model was modified to show that the 
combination of  these two datasets affected its performance. 
Therefore, Table 10 presents the performance metrics of  
various classification algorithms on the UCI-HD dataset, 
offering insights into their effectiveness. DT and RF both 
achieved perfect performance with 100% accuracy, precision, 
and F1-score, along with zero error rates and minimal log 
loss. GB exhibited excellent results, with 96.99% accuracy and 
a precision of  0.970, followed by KNN at 94.73% accuracy. 
SVM showed strong performance, achieving 92.86% accuracy 
and a log loss of  0.1838. LR and GNB demonstrated 
moderate effectiveness, with accuracies of  83.08% and 
82.71%, respectively. The table highlights the dominance of  
ensemble methods and DT in classification tasks.

The error rates of  various ML algorithms applied to the UCI 
Heart Disease (UCI-HD) dataset are illustrated in Fig. 10. 
RF and DT achieved the lowest error rates, showcasing 
their strong predictive performance. GB also performed 
competitively, with slightly higher error rates. KNN algorithm 
demonstrated moderate accuracy, while LR and GNB 
produced comparatively higher error rates, indicating reduced 
effectiveness.

The results clearly determine the performance metrics of  
various classification algorithms applied to the UCI-HD 

dataset using stratified sampling, as shown in Table  11. 
DT and RF achieved perfect results, with 100% accuracy, 

TABLE 10: Performance metrics of classification algorithms on the UCI‑HD dataset
Algorithm Accuracy Precision F1‑score Log loss Error rate
LR 83.08271 0.838173 0.829144 0.377472 0.169173
RF 100.00000 1.000000 1.000000 0.025382 0.000000
SVM 92.85714 0.930338 0.928379 0.183863 0.071429
GNB 82.70677 0.832169 0.825731 0.543392 0.172932
GB 96.99248 0.970311 0.969898 0.128287 0.030075
KNN 94.73684 0.94913 0.947392 0.129948 0.052632
DT 100.0000 1.0000 1.0000 2.22E‑16 0.000000

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

TABLE 9: Performance metrics of classification algorithms on the HD dataset using k‑fold cross‑validation
Algorithm Accuracy Precision F1‑score Log loss Error rate
LR 84.58537 0.850558 0.845109 0.362773 0.154146
RF 99.60976 0.996248 0.996098 0.051581 0.003902
SVM 92.39024 0.924054 0.923882 0.199138 0.076098
GNB 82.63415 0.828886 0.825682 0.512226 0.173659
GB 97.17073 0.97216 0.971708 0.136384 0.028293
KNN 83.60976 0.837965 0.835948 0.222265 0.163902
DT 100 1 1 0 0

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

Fig. 10. Comparison of error rates for machine learning algorithms on 
the UCI-HD dataset.

Fig. 9. Comparison of error rates across algorithms for the HD dataset 
using k-fold cross-validation.
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precision, and F1-score, and zero error rates. GB and KNN 
also demonstrated high performance, with accuracies of  
98.12% and 96.62%, respectively. SVM showed strong results, 
achieving 95.11% accuracy. LR and GNB exhibited moderate 
performance, with accuracies of  84.59% and 84.21%. The 
metrics highlight the superior predictive capabilities of  
ensemble models, such as RF and DT.

The results indicate that for the stratified modification, the 
error rates of  various classification algorithms applied to 
the UCI-HD dataset using stratified sampling are illustrated 
in Fig. 11. The comparison reveals that SVM achieved the 
lowest error rate, indicating its superior performance in 
accurately classifying the dataset. RF and GB also exhibited 
competitive error rates, showcasing their effectiveness in 
handling the dataset’s complexity. Conversely, algorithms such 
as GNB demonstrated relatively higher error rates, suggesting 
challenges in capturing the underlying data patterns. The 
stratified sampling methodology ensured balanced class 
representation, which contributed to the robustness of  the 
evaluation. These results emphasize the need for selecting 
appropriate algorithms for high-stakes applications, such 
as heart disease prediction, where classification accuracy is 
paramount.

Table  12 presents the performance metrics of  various 
classification algorithms evaluated on the UCI-HD dataset 
using k-fold cross-validation. The DT and RF classifiers 
achieved perfect accuracy (100%) with an error rate of  0, 
demonstrating their strong predictive capabilities. The GB 
classifier followed closely with an accuracy of  98.12%, a 
precision of  0.981, and an F1-score of  0.981, indicating 
robust performance. The SVM model also exhibited high 
accuracy (94.88%) and precision (0.949), while KNN 
performed slightly lower with an accuracy of  93.53%. LR and 
GNB recorded relatively lower accuracy scores of  85.16% 
and 82.91%, respectively, with GNB having the highest log 
loss value (0.5147), indicating more significant uncertainty 
in its predictions. DT achieved the lowest log loss among all 

models, emphasizing its reliability. Overall, ensemble-based 
methods (RF and GB) outperformed other classifiers in terms 
of  accuracy and precision, highlighting their effectiveness in 
heart disease classification.

Fig.  12 presents a comparative analysis of  the error rates 
for different ML algorithms on the UCI-HD dataset using 
k-fold cross-validation. The x-axis represents the algorithms 
evaluated, including LR, DT, GNB, KNN, GB, RF, and 
SVM. The y-axis denotes the corresponding error rates. Each 
algorithm is color-coded for clarity, as shown in the legend. 
The results indicate that RF and GB achieved the lowest 
error rates, suggesting superior predictive performance, while 
GNB and LR exhibited higher error rates. The variability in 
error rates highlights the importance of  model selection in 
achieving optimal classification performance on this dataset.

5. DISCUSSION

There are differences in the evaluation models and results 
obtained from the combined datasets or stratified algorithms 
compared to previous studies on the same datasets. All 
relevant studies are referenced in the background review. 
However, the variations in performance highlight the superior 
results achieved by specific algorithms, as noted.

TABLE 11: Performance metrics of classification algorithms on UCI‑HD dataset using stratified sampling
Algorithm Accuracy Precision F1‑score Log loss Error rate
LR 84.58647 0.847779 0.845358 0.352075 0.154135
RF 100.00000 1.000000 1.000000 0.021479 0.000000
SVM 95.11278 0.95114 0.95112 0.140181 0.048872
GNB 84.21053 0.842237 0.84198 0.47266 0.157895
GB 98.1203 0.981225 0.9812 0.12264 0.018797
KNN 96.61654 0.96678 0.966129 0.116318 0.033835
DT 100.00000 1.000000 1.000000 2.22E‑16 0.000000

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

Fig. 11. Comparison of error rates across algorithms for UCI-HD 
dataset classification using stratified sampling.
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Table  13 presents the accuracy of  several classification 
algorithms across the UCI, HD, and combined UCI-HD 
datasets. LR achieved accuracies of  79.512%, 85.246%, 
and 83.083% for the UCI, HD, and UCI-HD datasets, 
respectively. RF demonstrated the highest accuracy on the 
UCI dataset (98.537%) but showed a decline on the HD 
dataset (83.607%), achieving a perfect accuracy of  100% 
on the combined dataset. SVM recorded 88.78% for UCI, 
83.607% for HD, and 92.857% for UCI-HD. GNB achieved 
80% on UCI, 86.885% on HD, and 82.707% on the combined 
dataset. GB performed with 93.171% on UCI, 78.689% on 
HD, and 96.992% on UCI-HD. KNN achieved 83.415% 
on UCI, 90.164% on HD, and 94.737% on the combined 
dataset. Finally, DT reached an accuracy of  98.537% on UCI, 
75.41% on HD, and 100% on UCI-HD. Overall, RF and 
DT demonstrated the best performance on the combined 
UCI-HD dataset, achieving perfect accuracy. However, other 
algorithms, such as GB and KNN, also showed notable 
effectiveness across the datasets.

The comparison in Table  14 highlights the impact of  
using stratification on algorithm accuracy with the UCI 
dataset. Without stratification, the accuracy varied across 
algorithms, with DT and RF achieving the highest accuracies 
at 98.537%, reflecting their strong classification capabilities. 
GB also performed well at 93.171%, while SVM, KNN, 
and GNB exhibited moderate accuracies of  88.780%, 
83.415%, and 80%, respectively. LR showed the lowest 
accuracy at 79.512%, indicating potential limitations with 
non-stratified data. Stratification improved accuracy for 
most algorithms, ensuring better representation of  class 
distributions during training. RF achieved a perfect 100% 
accuracy with stratification, while GB, SVM, and KNN also 
demonstrated significant gains. DT performance remained 
constant, indicating minimal dependency on class distribution 
in this case.

Table 15 compares algorithm accuracies on the HD dataset 
with and without stratified sampling. Most algorithms 

TABLE 13: Accuracy of classification algorithms 
on UCI, HD, and combined UCI‑HD datasets
Algorithm Accuracy UCI Accuracy HD Accuracy UCI‑HD
LR 79.512 85.246 83.083
RF 98.537 83.607 100
SVM 88.78 83.607 92.857
GNB 80 86.885 82.707
GB 93.171 78.689 96.992
KNN 83.415 90.164 94.737
DT 98.537 75.41 100

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian 
Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

TABLE 14: Comparison of algorithm accuracies 
with and without stratification according to the 
UCI dataset
Algorithm Accuracy Accuracy (Stratify=y)
LR 79.512 80.976
RF 98.537 100.000
SVM 88.780 92.683
GNB 80.000 82.927
GB 93.171 97.560
KNN 83.415 86.341
DT 98.537 98.537

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian 
Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

TABLE 12: Performance metrics of classification algorithms on the UCI‑HD dataset using k‑fold cross‑validation
Algorithm Accuracy Precision F1‑score Log loss Error rate
LR 85.16385303 0.857201168 0.850471332 0.361969257 0.14836147
RF 100 1 1 0.020635519 0
SVM 94.87955738 0.949310038 0.948753901 0.15644934 0.051204426
GNB 82.90707902 0.830871801 0.828611865 0.514689846 0.17092921
GB 98.11717974 0.981378517 0.981166354 0.123583547 0.018828203
KNN 93.52617393 0.936109038 0.935228791 0.1410065 0.064738261
DT 100 1 1 0 0

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

Fig. 12. Comparison of error rates across algorithms for the UCI-HD 
dataset using k-fold cross-validation.
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showed a decline in accuracy with stratified sampling, such 
as KNN (90.164–80.328%) and LR (85.246–80.328%), 
indicating sensitivity to data redistribution. RF maintained 
consistent accuracy (83.607%) across both cases, showcasing 
its robustness. GB slightly improved (78.689–81.967%), 
suggesting enhanced generalization. Other algorithms, such 
as SVM and GNB, experienced moderate declines, indicating 
varied sensitivity. These results highlight that stratified 
sampling impacts algorithms differently, emphasizing the 
need for careful evaluation of  sampling strategies for optimal 
performance.

The results in Table  16 highlight the impact of  stratified 
sampling on algorithm accuracy when applied to the UCI-HD 
dataset. The majority of  algorithms show an improvement in 
accuracy with stratified sampling, notably LR, which increases 
from 83.083% to 84.586%, and GNB, which improves 
from 82.707% to 84.211%. Similarly, KNN shows a notable 
increase from 94.737% to 96.617%, and GB improves 
from 96.992% to 98.120%. SVM also sees an increase from 
92.857% to 95.113%. In contrast, DT and RF algorithms 
maintain their perfect accuracy of  100% with and without 
stratification. These findings suggest that stratified sampling 
can provide slight accuracy enhancements, particularly for 
algorithms that initially perform below perfect accuracy, while 
having no effect on algorithms already achieving optimal 

results. This suggests the potential of  stratified sampling 
to improve model performance, especially for classifiers 
sensitive to class imbalances.

In previous experiments with the UCI and HD datasets, 
several machines learning algorithms, including LR, RF, 
SVM, GNB, and KNN, were evaluated. For the UCI dataset, 
RF achieved the highest accuracy of  98.53%, followed by 
SVM at 87.31%. LR reached an accuracy of  82.92%, while 
KNN recorded 81.95%. GNB showed the lowest accuracy at 
74.63% [34]. Notably, our modifications resulted in improved 
accuracy across these models compared to previous results.

Table  17 presents the classification accuracy of  seven 
algorithms, LR, RF, SVM, GNB, GB, KNN, and DT, 
evaluated on the UCI, HD, and combined UCI-HD datasets 
using stratified sampling. Among these, RF and DT achieved 
perfect accuracy (100%) on both the UCI and UCI-HD 
datasets, indicating excellent performance. SVM also 
delivered strong results, with accuracy scores of  92.68% on 
UCI and 95.11% on UCI-HD, closely followed by GB with 
97.56% and 98.12%, respectively.

However, DT showed a sharp decline in performance on 
the HD dataset, recording the lowest accuracy of  70.49%, 
while RF maintained a comparatively higher score of  83.61%. 
This suggests that the HD dataset introduced more complex 
classification challenges for tree-based models. Overall, the 
combined UCI-HD dataset resulted in improved accuracy 
for most algorithms, demonstrating the advantage of  data 
integration. LR, GNB, and KNN exhibited moderate yet 
stable performance across all datasets, with accuracies ranging 
from 80.33% to 96.62%. These findings underscore the 
superior generalization ability of  ensemble methods such 
as RF and GB, particularly when applied to enriched and 
well-balanced datasets.

The exceptionally high accuracy (100%) observed for the 
RF and DT models, particularly on the combined UCI-HD 
dataset with stratified sampling, may initially raise concerns 
of  overfitting. However, several factors inherent to the study 
provide a reasonable justification for this performance. First, 
the application of  stratified sampling ensured balanced class 
representation across both training and testing sets, thereby 
minimizing the risk of  class imbalance-related bias. Second, 
the datasets underwent rigorous pre-processing, which 
eliminated missing values and ensured well-defined feature 
distributions, likely enhancing the learning capacity of  tree-
based algorithms. Third, the combined dataset incorporated 
consistent features from two closely related sources 

TABLE 16: Algorithm accuracies: Comparison with 
and without stratified sampling UCI – HD dataset
Algorithm Accuracy Accuracy (Stratify=y)
LR 83.083 84.586
RF 100 100
SVM 92.857 95.113
GNB 82.707 84.211
GB 96.992 98.120
KNN 94.737 96.617
DT 100 100

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian 
Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

TABLE 15: Algorithm accuracies: Comparison 
with and without stratified sampling HD dataset
Algorithm Accuracy Accuracy (Stratify=y)
LR 85.246 80.328
RF 83.607 83.607
SVM 83.607 83.607
GNB 86.885 81.967
GB 78.689 81.967
KNN 90.164 80.328
DT 75.410 70.492

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian 
Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree
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TABLE 17: Accuracy of classification algorithms on UCI, HD, and combined UCI‑HD datasets using 
stratified sampling
Algorithm Accuracy UCI (Stratify=y) Accuracy HD (Stratify=y) Accuracy UCI‑HD (Stratify=y)
LR 80.976 80.328 84.586
RF 100.000 83.607 100
SVM 92.683 83.607 95.113
GNB 82.927 81.967 84.211
GB 97.560 81.967 98.120
KNN 86.341 80.328 96.617
DT 98.537 70.492 100

LR: Logistic regression, RF: Random forest, SVM: Support vector machine, GNB: Gaussian Naive Bayes, GB: Gradient boosting, KNN: K‑nearest neighbors, DT: Decision tree

(UCI and HD), which may have facilitated more distinct 
classification boundaries. Moreover, the RF, as an ensemble 
method, mitigates overfitting by averaging the outputs of  
multiple decorrelated DTs. While perfect accuracy warrants 
cautious interpretation, the results remained consistent across 
various datasets and sampling techniques, suggesting that 
the model’s performance is robust rather than indicative 
of  data memorization. Nonetheless, to further confirm 
generalizability, additional validation on external datasets or 
through k-fold cross-validation would be a valuable next step 
in future work. It is also possible that data augmentation was 
employed to prevent overfitting.

The study evaluated ML models for CVD prediction, showing 
distinct performance patterns. Ensemble models, such as 
RF, GB, and DT were top performers, with RF achieving 
perfect accuracy, especially using stratified sampling. 
Stratification was crucial for improving SVM and GNB by 
maintaining class balance and reducing bias. LR showed 
moderate performance due to its linear limitations, while 
SVM excelled in high-dimensional spaces. KNN performed 
well on smaller datasets but struggled with larger, complex 
ones. GNB was competitive but limited by its Gaussian 
assumptions. Combining UCI and HD datasets enhanced 
performance for all models, especially ensemble methods. RF 
and DT achieved 100% accuracy on the combined dataset. 
Despite perfect accuracy, safeguards, such as pre-processing 
and stratification minimized overfitting risks. The findings 
highlight the value of  ensemble methods, dataset integration, 
and stratified sampling, suggesting future work on hybrid 
models and real-world validation.

Fig.  13 displays the classification accuracy of  seven ML 
algorithms, LR, RF, SVM, GNB, GB, KNN, and DT, 
evaluated using k-fold cross-validation. Performance is 
compared across three datasets: UCI, HD, and their merged 
variant (UCI-HD). Notably, RF and DT achieved perfect 
accuracy (100%) on the HD and UCI-HD datasets, while 

LR and SVM demonstrated consistently high performance 
across all datasets. The figure highlights the impact of  dataset 
variation on model accuracy, underscoring the robustness of  
ensemble methods, such as RF and GB.

Fig. 14 illustrates the Receiver Operating Characteristic (ROC) 
curves for all evaluated classification models, providing a 

Fig. 13. Comparison of classification algorithm performance across 
UCI, HD, and UCI-HD datasets using k-Fold cross-validation.

Fig. 14. ROC curve evaluation of machine learning models: Ensemble 
methods achieve perfect AUC.
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visual comparison of  their diagnostic performance. The Area 
Under the Curve (AUC) metric is presented for each model, 
with higher values indicating better discriminative ability. 
Ensemble methods, such as DT, GB, and RF achieved perfect 
classification performance with an AUC of  1.00. The KNN 
and SVM models also demonstrated excellent performance 
with AUCs of  0.99 and 0.98, respectively. LR and GNB 
had slightly lower AUCs of  0.93 and 0.92, but still showed 
strong classification capability. Overall, the ROC analysis 
confirms the superior performance of  ensemble methods 
and supports their robustness in distinguishing between 
classes with minimal false positive rates.

The comparative analysis of  confusion matrices, as illustrated 
in Fig.  15, reveals substantial differences in classification 
performance across the evaluated models. Both DT and RF 
classifiers achieved perfect predictive accuracy (100%) with 
F1-scores of  1.00, indicating zero misclassifications for both 
negative (class 0) and positive (class 1) instances, 128 and 
138 samples, respectively. GB also demonstrated exceptional 
performance, attaining an accuracy of  98.9% and an F1-score 
of  0.989, with only five misclassifications (three FP and two 
FN). Similarly, the KNN classifier performed strongly, with 

Fig. 15. Confusion matrix comparison of ML models.

97.8% accuracy and a 0.978 F1-score, misclassifying seven 
negative and two positive cases.

The SVM model yielded commendable results with 96.9% 
accuracy and a 0.969 F1-score, though it incurred slightly 
higher misclassification rates (seven FP and six FN). In 
contrast, LR and GNB underperformed relative to the 
other models. LR achieved 89.9% accuracy and a 0.896 F1-
score, misclassifying 26 negative and 15 positive instances. 
GNB recorded the lowest performance, with an accuracy 
of  87.0% and an F1-score of  0.873, resulting in 42 total 
misclassifications.

These results, as depicted in Fig. 15, underscore the superiority 
of  ensemble methods, particularly RF and GB, in effectively 
capturing complex patterns within the dataset. Conversely, 
simpler linear (LR) and probabilistic GNB models may be 
less capable in such high-dimensional classification tasks.

6. CONCLUSION

CVD remains a leading cause of  mortality worldwide, 
emphasizing the critical need for early diagnosis and 
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intervention. If  the symptoms of  heart disease are not 
promptly identified and treated, the condition can escalate 
into life-threatening scenarios. Artificial intelligence has been 
effectively utilized for CVD prediction, with advancements 
promising increasingly accurate forecasts based on historical 
medical data. Despite significant progress in this domain, 
continuous enhancements in predictive methodologies are 
essential and highly encouraged.

In conclusion, these modifications improved CVD prediction 
by utilizing seven ML algorithms: LR, RF, SVM, GNB, GB, 
KNN, and DT. By analyzing medical histories of  patients 
with severe heart conditions, the models classified individuals 
based on their risk of  developing CVD. The models were 
trained and tested on datasets containing factors such as 
chest discomfort, high blood pressure, and cardiac arrest. 
To ensure robustness, evaluations were performed with 
and without the stratify parameter. The results revealed that 
the DT and RF algorithms consistently achieved the peak 
accuracy rates, with both models reaching 100% accuracy 
on the combined dataset. Besides, the stratified technique 
enhanced the accuracy across all methods. These findings 
emphasize the critical role of  sufficient training data and 
stratification in improving predictive performance. They also 
highlight the potential of  AI-driven tools to assist healthcare 
professionals in making faster and more accurate diagnoses, 
ultimately lowering costs and enhancing patient outcomes. 
The results represent a significant advancement in the field 
by achieving higher accuracy rates than previous studies, 
setting a standard for the practical application of  ML in CVD 
prediction. Among the tested methods, DT and RF emerged 
as the most reliable, highlighting the efficiency of  ensemble 
learning techniques in clinical applications.

This research inspires future work to explore integrating 
additional datasets, refining algorithms, and developing 
real-time prediction systems to further advance the field. In 
addition, the combined dataset (UCI-HD) was tested using 
novel classifier metaheuristic algorithms, such as the fitness 
dependent optimizer (FDO) [35], [36].
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