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1. INTRODUCTION

Deoxyribonucleic acid, or DNA, stores genetic information 
needed by all living things to create, function, and develop. 
DNA is generally regarded as the blueprint of  all living 

organisms since its components encode all of  the information 
required to sustain life. Cancer is a complicated disease that 
stems from genetic mutations and unusual patterns of  gene 
expression. These molecular shifts can throw off  the normal 
functioning of  cells, resulting in unchecked cell growth and 
the formation of  tumors. Thanks to recent breakthroughs 
in gene expression profiling technologies, researchers can 
now assess the activity of  thousands of  genes all at once, 
offering crucial insights into how we diagnose, classify, 
and predict cancer outcomes [2], [3]. Cancer has become 
one of  the most fatal illnesses globally, with an anticipated 
9.7 million deaths from 20 million new cancer diagnoses in 
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2022, according to the World Health Organization. Cancer is 
caused by the unrestrained proliferation of  some abnormal 
cells, which divide and spread to other cells, multiplying 
malignant child cells. Men’s most frequent cancers include 
lung, prostate, colorectal, and stomach [4]. Over the past two 
decades, health informatics research has focused on a variety 
of  topics, including bioinformatics, cheminformatics, cancer 
prediction, and others [5].

Gene expression is the method by which the knowledge 
stored in DNA is transformed into instructions for producing 
proteins or other substances. It starts with the transcription 
of  DNA into messenger RNA, which is then translated 
into proteins. Gene expression analysis is used to analyze 
the order of  genetic modifications occurring under specific 
conditions in tissue or a single cell [6], [7]. A new technique 
for studying the expression of  several genes at once is 
microarray technology. It entails positioning thousands of  
sequences of  genes on a glass slide known as a “gene chip” 
in specific locations. The gene chip comes into contact with 
a sample of  DNA or RNA. Measured light is produced by 
complementary base pairing between the sample and the gene 
sequences on the chip. Genes expressed in the sample are 
identified by regions of  the chip that emit light. Each row in 
a tabular representation of  a microarray gene expression data 
set corresponds to a single gene, each column to a sample or 
time point, and each matrix entry represents the measured 
expression level of  a specific gene in a sample [8]–[10]. By 
offering more normalized and less noisy data for classification 
and prediction, RNA-Seq is a novel and well-liked method 
for finding new transcripts and isoforms. Finding the genes 
that are differentially expressed in a body or identifying 
changes in genes at various levels is the primary purpose of  
transcriptome profiling. RNA sequencing allows for both 
identification and quantification in one location. RNA-Seq 
data are widely available from various databases that can be 
used for cancer prediction and classification [11].

Machine learning (ML) techniques have recently been utilized 
to analyze microarray datasets for the categorization of  
cancer. One useful method for diagnosing cancer is to use 
the gene expressions found in microarray datasets. Several 
feature selection techniques have been used to identify the 
most important properties of  malignant microarray datasets 
to enhance the performance of  these widely used ML 
algorithms [6]. Notably, several innovative algorithms have 
surfaced that have demonstrated encouraging outcomes 
across a range of  fields [5]. A subfield of  artificial intelligence 
called ML gives computers the ability to learn from training 
data, identify patterns in data, and make predictions on their 

own that get better over time without explicit programming. 
Numerous classification techniques were developed in the ML 
field, and many of  them were applied to the categorization 
of  cancer [12].

In this paper, we advocate a technique called DistilBERT, 
which is a distilled version of  the Bidirectional Encoder 
Representations from Transformers (BERT) model that 
retains 97% of  BERT’s language understanding power 
while being lighter, faster, and smaller. DistilBERT was 
first presented by Hugging Face and is designed especially 
for tasks requiring less processing power [13]. The BERT 
version, added by Wu et al. (2024), is a groundbreaking deep 
learning model designed for herbal language processing 
that has 110 million parameters for the base version 
and 340 million parameters for the large version. Unlike 
conventional models that study textual content input in a 
unidirectional manner. It uses a transformer structure that 
reads the input text bi-directionally. This lets it recognize the 
context of  a phrase based totally on both its left and proper 
environment, imparting deeper semantic knowledge [14]. 
BERT’s transformer-primarily based architecture has been 
adapted for diverse fields past textual content processing, 
such as bioinformatics and computational biology. In those 
packages [15]–[17]. DistilBERT, such as the BERT model, 
uses the same structure but is compressed to reduce model 
size, holding most of  BERT’s overall performance with 
fewer parameters – approximately 60% of  the size of  BERT 
(66 parameters), making it quicker and more efficient, and 
providing quicker predictions with high performance [18].

Two forms of  gene expression datasets from diverse 
sources are used in this study to evaluate the efficacy of  
the recommended method, and the selected data do not 
achieve the high results with the previous model. The gene 
expression omnibus (GEO) provides microarray datasets, 
which include samples of  ovarian and lung cancer. The 
availability and dependability of  these microarray datasets, 
which provide a photo of  gene activity, have made them 
famous for being used in most cancer studies [11], [19]. The 
2nd set of  statistics is derived from the cancer genome atlas 
(TCGA), a comprehensive RNA-Seq dataset that consists 
of  facts on numerous cancer types, including prostate 
adenocarcinoma (PRAD), lung adenocarcinoma (LUAD), 
colon adenocarcinoma (COAD), kidney renal clear cell 
carcinoma (KIRC), and breast invasive carcinoma (BRCA). 
We can very well evaluate the adaptability and efficacy of  
the DistilBERT model across various gene expression 
technologies by way of  the utilization of  each microarray 
and RNA-Seq information [20], [21].
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The structure of  this paper is prepared as follows: The 
Methods section offers a complete evaluation of  the datasets 
and pre-processing strategies employed. The architecture 
and implementation phase into the version of  DistilBERT 
for numerical input and its integration into the cancer 
category framework. Finally, we gift the experimental results, 
comparing our method with existing today’s models, observed 
with the aid of  a dialogue at the implications and capacity 
applications of  these studies in customized oncology and 
medical decision aid.

2. LITERATURE REVIEW AND PROBLEM STATEMENT

This section reviews key research in cancer classification, 
highlighting the transition from traditional methods to 
innovative approaches of  deep learning and optimization 
techniques. It showcases studies that utilize gene expression 
data and delves into how metaheuristic algorithms have been 
employed to enhance feature selection and boost model 
performance.

2.1. ML-Based Methods
Tabassum et al. (2024) [3]. Proposed an ensemble learning 
approach that uses a bagging-based multilayer perceptron’s 
and mutual information for feature selection to classify cancer 
from high-dimensional gene expression data. The method 
was applied to different cancer types, demonstrating its 
effectiveness in handling high-dimensional data and achieving 
varying levels of  accuracy across several datasets. In this study, 
AbdElNabi et al. (2020) [4]. Introduced an intelligent decision 
support system for cancer classification using gene expression 
data from breast and colon cancers. Their method combines 
information gain (IG) for initial feature selection, Grey Wolf  
Optimization for further dimensionality reduction, and a 
support vector machine (SVM) for classification. Applied 
to microarray datasets, the approach effectively handled 
high-dimensional data and achieved strong classification 
performance, demonstrating its stability and reliability 
in early cancer diagnosis. Other studies by Guyon et al. 
(2002) [22]. Integrating recursive feature elimination (RFE) 
with SVM. The RFE method, used for gene choice, finished 
with incredible accuracy, and SVM for cancer classification 
consisted of  98% on leukemia datasets. A  recent study 
introduced a two-phase hybrid feature selection method by 
Ali and Saeed (2023) [6]. Combining filter techniques (IG, gain 
ratio, Chi-squared) with genetic algorithms (GA) to improve 
cancer classification. The approach was tested using SVM, 
Naive Bayes, k-nearest associates (KNN), Decision Tree, and 
random forest (RF) on microarray datasets for breast, lung, 

Central Nervous System, and brain cancers. The GA step 
further refined features selected by filters, enhancing overall 
classification performance, Wei et al. (2023) [23]. Emphasized 
the importance of  feature extraction and selection in high-
dimensional gene expression data. They applied methods 
such as methods like principal component analysis (PCA), 
IG, and GA were broadly followed. A look at applying PCA 
with numerous classifiers, which includes choice trees (DT), 
SVM, and RF, performed variable outcomes, emphasizing the 
importance of  effective function extraction in optimizing 
model overall performance, Li et al. (2020) [24]. Carried out 
an extensive study on pan-cancer classification, utilizing 
TCGA RNA-seq gene expression data from 31 different 
tumor types. They employed ML techniques to pinpoint 
groups of  distinguishing genes that could differentiate 
between these tumor types with an impressive accuracy 
of  over 90%. The research also delved into sex-specific 
variations in gene expression, underscoring the promise of  
certain biomarkers for tumor diagnosis and tailored treatment 
approaches. In this approach, García-Díaz et al. (2022) [25]. 
Proposed unsupervised studying strategies have additionally 
been explored for multiclass cancer classification. A  look 
at employing an extreme learning machine with a genetic 
grouping algorithm completed a median accuracy of  98.8% 
for breast, kidney, and prostate cancers, demonstrating the 
feasibility of  unsupervised techniques for high-dimensional 
data. In addition, Chen (2022) [26]. Presented ML models, 
which include SVM, linear discriminant analysis (LDA), and 
KNN, have also been explored for multi-cancer datasets, 
consisting of  brain, prostate, and colon cancers. These 
fashions did F-scores above 80% and furnished insights 
into feature screening techniques for dealing with high-
dimensional gene expression data. In another study, gene 
choice strategies have additionally been tailored for cancer 
classification by AlShamlan and AlMazrua (2024) [5]. An 
examination leveraging Harris Hawks Optimization and 
KNN completed perfect typing for colon tumors and 
leukemia datasets. These effects spotlight the promise of  
biostimulator algorithms in identifying biologically applicable 
gene markers. Mukhopadhyay et al. (2023) [12]. Proposed 
discriminant analysis (LDA) combined with RF is explored for 
excessive-dimensional microarray gene expression facts. The 
study finished with accuracies of  96% for breast cancer, 98% 
for most colon cancers, and 99% for most prostate cancers, 
demonstrating the effectiveness of  dimensionality discount 
strategies in improving category overall performance for 
multi-cancer datasets. Brought a bendy category framework 
for cancer gene expression profiles by Hijazi and Chan 
(2013) [20]. Utilizing ML models, such as DT, RF, and KNN, 
they have a look at implementing more than one characteristic 
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choice strategy (filter out, wrapper, and embedded) to 
datasets together with leukemia, colon, and prostate cancer, 
showcasing the adaptability of  ML frameworks throughout 
extraordinary cancer kinds.

2.2. Deep Learning and Hybrid Approaches
Similarly, another study by Das et al. (2023) [27]. Use CNN, 
LSTM, and hybrid architectures, such as DCNN-GRU with 
enhanced chimp optimization algorithms to classify cancer 
using microarray data. The researchers tested these models 
on datasets that included various subtypes such as brain, 
breast, prostate, colon, and leukemia. These approaches 
leverage deep learning capacity to capture complicated styles, 
supplying sturdy consequences in gene expression-based 
cancer detection, Yaqoob et al. (2023) [28]. Proposed Recent 
research has furthermore delivered hybrid algorithms to 
beautify most cancer classes; integrated ML classifiers for 
breast cancer classification, such as KNN, SVM, and Naive 
Bayes, with the sine cosine and cuckoo search algorithm 
(SCACSA) brought about high performance in breast 
cancer types, outperforming traditional techniques. The 
study presents limitations that are important to consider. 
The SCACSA method relies on the quality and size of  the 
dataset used for validation. On the other hand, Tarek et al. 
(2016) [29]. The KNN set of  rules has also proven promise 
in most cancer predictions. Have a look at applied wrapper, 
filter out, and embedded feature choice methods with 
microarray datasets for leukemia, colon, and breast cancers, 
achieving accuracy rates of  99% and 100%, respectively, 
showcasing the adaptability of  KNN across exclusive cancer 
datasets. Rukhsar et al. (2022) [2]. Introduced a deep-learning 
framework for classifying multiple types of  cancer using 
RNA-Seq gene expression data. They took the complex, 
high-dimensional gene data and converted it into 2D images 
through processes, such as normalization and zero-padding. 
Then, they employed eight different deep learning algorithms, 
including CNN, to extract features and categorize samples 
from five distinct cancer types. Their experiments, which 
involved various data splits and k-fold cross-validation, 
showed that CNN outshone the other models in terms of  
classification performance, achieving a high accuracy of  97%, 
Mohammed et al. (2023) [11]. Implemented hybrid stacking 
ensembles, which have furthermore proven powerful. For 
instance, employing 1D-CNN and LASSO with TCGA 
datasets yielded accuracies of  99.54 % for full datasets and 
98.62% for reduced datasets, demonstrating the performance 
of  deep learning with dimensionality reduction strategies. 
Some studies by Sucharita et al. (2024) [19]. Have centered on 
enhancing cancer type classification through deep learning 
improvements. For example, a hybrid version combining 

exponential sigmoid-deep notion networks and ranking 
methods carried out accuracies of  85–95% throughout 
seven cancer kinds, including leukemia and ovarian 
cancers, illustrating the potential of  deep belief  networks 
in gene expression evaluation. Aburass et al. (2024)  [30]. 
Introduced a hybrid ML model combining CNN, LSTM, and 
GRU architectures for gene mutation category execution, 
achieving 80.6% accuracy, and suggesting opportunities 
for additional optimization in hybrid frameworks. Despite 
these improvements, challenges persist in attaining regular 
generalization throughout datasets and addressing the 
computational complexity of  high-dimensional records 
evaluation. In previous work by Thakur et al. (2024) [21]. Multi-
cancer analysis has, moreover, benefited from advancements 
in ML. A comprehensive genomic pan-cancer category using 
TCGA datasets was completed with 90% accuracy through 
integrating GA, demonstrating the value of  function choice in 
large-scale genomic statistics evaluation. Another effort mixed 
RNN-CNN architectures with bottleneck function extraction, 
attaining accuracies of  97.8% for breast cancer and 99.4% for 
prostate cancer. In this study, Surbhi Gupta et al. (2023) [10]. 
Posited deep studying strategies continue to be pivotal for 
various cancer types. Deep learning on RNA sequence datasets 
was examined for breast, lung, kidney, prostate, and colon 
cancers. Although unique accuracy values are no longer certain, 
these studies demonstrate the strong potential of  deep learning 
architectures in managing complex datasets, reinforcing their 
relevance in modern-day cancer studies. An innovative graph 
convolutional network (GCN) was applied to TGCA datasets 
by Martínez Logreira (2020) [31]. Attaining approximately 52% 
accuracy for pan-cancer evaluation. Although the performance 
became modest, this observation highlighted the potential of  
graph-based procedures for shooting complex relationships 
in genomic records. Table 1 provides a precise view of  the 
literature discussed above.

2.3. Limitations of Existing Work
Although there are significant advances in cancer classification 
using gene expression data, several recurring challenges 
continue to limit the effectiveness and scalability of  existing 
methods. Key limitations identified in recent studies include.
•	 Lack of  generalization: A  lot of  models are trained 

and fine-tuned on specific datasets, but they often skip 
validation on external or diverse datasets.

•	 Dataset dependency: When sample sizes are small or 
when there’s a heavy reliance on just microarray or RNA-
Seq data, it limits how well these models can apply to a 
wider range of  cancer types.

•	 Computational cost: Methods that rely on optimization, 
such as GA and deep learning frameworks, tend to be 
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resource-heavy, making them less ideal for real-time 
applications or environments with limited resources.

•	 Manual or static feature selection: Many studies stick to 
traditional feature selection techniques that need manual 
adjustments and don’t adapt on the fly during training.

•	 Limited data pre-processing and hyperparameter tuning: 
Some methods fall short on having effective pre-
processing steps or optimized hyperparameter choices, 
which can hurt their overall performance.

•	 Limited use of  advanced models: There’s a noticeable 
lack of  exploration into transformer-based or graph-
based neural networks in many studies, even though these 
could do a better job of  capturing complex relationships 
between genes.

2.4. Problem Statement
Cancer diagnosis remains a critical challenge in healthcare, 
where early and accurate detection is essential to improving 
outcomes and reducing mortality. Traditional methods 
often fall short in handling the complexity of  gene 
expression data, and many ML approaches struggle with 
generalizability, static feature selection, and dataset-specific 
tuning. To address these issues, this study introduces a 
DistilBERT-based model with a self-attention mechanism 
that dynamically identifies significant gene features during 

training. This approach enhances accuracy, reduces 
manual pre-processing, and offers a scalable solution for 
classifying multiple cancer types using high-dimensional 
gene expression data.

3. MATERIALS AND METHODS

The main steps in developing this research for cancer 
classification using gene expression include data collection, 
data pre-processing, gene selection using the self-attention 
mechanism, and finally classification using the DistilBERT 
model. Fig. 1 describes the processing steps of  the proposed 
methodology; each step is briefly described next.

3.1. Data Collection
To determine the effectiveness of  our DistilBERT model for 
cancer classification across different cancer types, we utilized 
publicly available gene expression datasets from two open 
sources platform, such as the GEO and TCGA. These data 
are not re-identifiable and have been released under a license 
that prohibits their use for commercial purposes only. They 
were used in a way that matches the requirements, that is, 
under a subscription based upon the terms and conditions 
established by both GEO and TCGA. The study does 
not need the formal approval of  the Institutional Review 

TABLE 1: Comparative review of literature
References Model Feature extraction Dataset Year
[3] Multilayer perceptron’s (MLPs) Mutual information algorithm Microarray 2024
[29] k‑nearest neighbors (KNN) algorithm Wrappers, Filters, Embedded methods Microarray 2016
[27] CNN, LSTM, DCNN, GRU, PSCS‑DL, 

CSSMO‑DL
ECO algorithm Microarray 2024

[4] SVM Information gain (IG) Microarray 2020
[6] SVM, NB, KNN, DT, RF IG, information gain ratio, and 

Chi‑squared
Microarray 2023

[2] CNN Deep learning (DL) RNA‑Seq data 2022
[25] Extreme learning machine (ELM) Grouping genetic algorithm (GGA) RNA‑Seq data 2020
[11] 1D‑CNN LASSO (TCGA) 2022
[26] SVM, LDA, or KNN Feature screening Gene expressions 2022
[22] SVM with RFE Recursive feature elimination (RFE) Leukemia data 2002
[19] Exponential sigmoid‑deep belief network 

(ES‑DBN)
Feature ranking (CM‑CRO,) Microarray Data 2024

[5] (KNN), (SVM), Harris hawks optimization (HHO) Microarray Data 2024
[12] Linear discriminant analysis (LDA) and (RF) Linear discriminant analysis (LDA) Microarray 2024
[30] LSTM, LSTM, CNN, GRU Not mention Cancer Treatment dataset 2024
[28] SVM, KNN, NB (SCACSA) Microarray Data 2024
[23] DT, SVM, RF, NB, Neural network, KNN Principal component analysis (PCA) Microarray Data 2023
[20] DT, SVM, RF, KNN, bagging, Filter, wrapper, and embedded methods Microarray Data 2013
[24] KNN (GA) (TCGA) 2017
[21] RNN‑CNN Sandwich stacked method based on 

VGG16 and VGG19 pre‑trained models
Gene expression data 2023

[10] Deep learning Not mentioned RNA sequence dataset 2022
[31] Graph convolutional network (GCN) Genetic Algorithms (GA) The TGCA dataset 2020

ECO: Enhanced chimp optimization
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Board as it is public data and it does not contain any private 
information that has an identifiable person. We specifically 
selected datasets that had presented challenges to previous 
models, aiming to demonstrate the potential of  our approach 
and achieve better results.

The GEO is managed by the National Center for 
Biotechnology Information. It is a repository for high-
throughput gene expression and other functional genomics 
data. From GEO, we downloaded two high-dimensional 
microarray datasets: one for lung cancer and another for 
ovarian cancer [6] (as detailed in Table 2). The lung cancer 
dataset contains 203 instances with five classes and 12,600 
features, or genes. The samples in the lung cancer dataset are 
classified as belonging to four classes of  lung tumors: Small 
cell lung cancer (6 samples), adenocarcinoma (139 samples), 
normal lung (17  samples), squamous cell carcinoma 
(21  samples), and pulmonary carcinoid (20  samples) [2]. 
The ovarian cancer dataset includes 253 samples with two 
classes and 15,154 genes. The ovarian cancer dataset is labeled 
with a normal class (91  samples) and with cancer classes 
(162 samples) [3].

The second data source were TCGA, More than 20,000 
primary cancers and matched normal samples from 33 
different cancer types were molecularly characterized by the 
groundbreaking Cancer Genome Atlas (TCGA) program. 
Beginning in 2006, this collaborative effort between NCI and 
the National Human Genome Research Institute brought 
together scientists from various institutions and disciplines. 
In this source, we downloaded the RNA-Seq gene expression 
data from Pan-Cancer Atlas (https://portal.gdc.cancer.

gov/) using the R statistical application version 3.6.3 by the 
TCGAbiolinks package [2], [11]. The dataset contains 801 
instances or samples and 20,531 features or genes from the 
top five common cancer types, including BRCA, KIRC, 
COAD, LUAD, and PRAD [2], [11], [24]. Each sample 
has 20,532 gene sequences. The dataset’s cancer classes 
are denoted by the following codes: 0, 1, 2, 3, and 4 for 
PRAD, LUAD, BRCA, KIRC, and COAD. Out of  a total 
of  801 samples, the BRCA class has 300 samples, clear cell 
carcinoma (KIRC) has 146, LUAD has 141, COAD has 
78, and PRAD class has 136 samples [21], [24]. As shown 
in Table  3, after downloading, we combine each type of  
cancer to make a unified, large-scale dataset for training and 
evaluating our model, aiming for a more generalized and 
accurate approach to cancer classification and prediction 
across multiple cancer types.

TABLE 2: Description of the high‑dimensional 
microarray datasets used in this study
Dataset No. of 

features
No. of 

instances
No. of 

classes
DS1: Lung cancer 12,600 203 5
DS2: Ovarian cancer 15,154 253 2

TABLE 3: Description of the DS3: Pan‑cancer 
datasets used in this study
Dataset No. of features No. of instances
BRCA 20,532 300
KIRC 20,532 146
LUAD 20,532 141
COAD 20,532 78
PRAD 20,532 136

Fig. 1. Steps of the proposed methodology for cancer classification.
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3.2. Data Processing
Before using a ML model, the selected datasets must be 
properly processed and processing raw gene expression data 
can be challenging due to its varied range. Several common 
procedures are taken during the pre-processing stage, 
including Data Cleaning. Normalization and feature selection.

3.2.1. Data cleaning
To ensure the quality and reliability of  our datasets for 
effective model training, a data cleaning phase was performed. 
This involves identifying and dealing with different facets 
of  data quality, including missing values, duplicates, 
inconsistencies, and outliers, which can lead to poor 
performance and interpretability of  ML models. Removing 
missing values and duplicates is a very important step toward 
statistics cleaning to ensure the quality and abundance of  the 
dataset, substituting missing values with statistical measures 
such as mean, median, or mode such as mean, median, or 
mode as shown in Tables 4 and 5. Similarly, duplicate records 
in a dataset can distort evaluation and version performance. 
Identifying and getting rid of  duplicates guarantees statistics 
integrity and decreases redundancy [3], [27], [32].

3.2.2. Normalization
To ensure that all gene expression features contributed equally 
to the model training process, we applied normalization using 
the StandardScaler technique. The goal of  normalization 
is to convert the values of  numeric columns in the dataset 
to a common scale, which improves both the performance 
and accuracy of  your model without distorting value ranges 
or losing any information [33]. We specifically employed 

StandardScaler, which centers the data around a mean of  0 
and a standard deviation of  1. Figure 3 shows the data before 
normalization, and Figure 4 demonstrates the data after 
normalization. StandardScaler enhances version education 
balance by preventing features with larger scales from 
dominating other [34]. The scikit-learn (sklearn) library in 
Python includes the StandardScaler implementation. Fig. 2 
is the form of  the script we used when StandardScaler was 
implemented before data splitting was done.

We use StandardScaler in normalization, and the equations 
(1), (2), and (3) represent the metaethical formula of  
standardization, mean, and standard deviation. Where X is 
the original value of  the feature, N is the total number of  
values in the dataset, μ is the mean of  the feature, and σ is 
the standard deviation of  the features [35]–[37].

µ
σ
−

=X standardization
x

� (1)

µ
=

= ∑
1

1
Mean   i

N

i

X
N

� (2)

σ µ
=

= −∑
1

1
Standard Deviation  ( i )2

N

i

X
N

� (3)

3.2.3. Feature selection
To identify the most relevant gene expression features for 
reliable cancer classification, we employed the inherent self-
attention mechanism within the DistilBERT model for feature 
selection. This training process, learning their significance 
without explicit pre-processing, evaluates the relationships 
and dependencies among capabilities, assigning attention 
weights that reflect their importance in the context of  the 
given project. Unlike traditional feature selection strategies, 
which necessitate either manual guidance or algorithmic Fig. 2. Standardscaler Implementation [1].

Fig. 3. Example of data before normalization.
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pre-processing to pinpoint and eliminate irrelevant features, 
it dynamically learns which capabilities (genes) are maximally 
relevant for distinguishing between different cancer 
types. [38]–[42]. This concept is mathematically captured by 
what’s known as scaled dot-product attention.

=
 

Attention Score(Q,K, V) softmax( )   
 

T

k

Qk V
d

� (4)

Where Q, K, and V are the query, key, and value matrices 
derived from gene expression embeddings. By focusing on 
these dynamically identified key features, the model can 
potentially achieve better performance and generalization [39].

3.2.4. Data splitting
To train our DistilBERT model and see how well it performs 
on new, unseen data, we split each of  our datasets into 
training and testing sets. Training data contained up to 80% 
of  the overall dataset, allowing it to learn the patterns in the 

gene expression profiles associated with different cancer 
types, whereas test data represented up to 20%. As a result, 
the DistilBERT models were used to classify the cancer types.

4. PROPOSED CLASSIFICATION MODEL

Our proposed classification model uses a modified 
DistilBERT architecture to classify cancer types based on 
high-dimensional numerical gene expression datasets. This 
model is intended to efficiently process and evaluate input 
information to accurately forecast the cancer class and use 
our model with different types of  cancer and achieve the 
highest accuracy.

4.1. DistilBERT
DistilBERT is a streamlined version of  the BERT model, 
as shown in Fig. 5. It starts by taking in high-dimensional 
numerical inputs that represent gene expression levels. 
The first step is an embedding layer that uses a linear 
transformation (nn.Linear) to shrink the input dimensions 
down to 768, setting the stage for the next steps. To 
enhance training stability and improve generalization, a 
Group Normalization (Group Norm) layer is applied right 
after the embedding layer, ensuring that the input to the 
Transformer is appropriately normalized. After that, the 
model goes through a Transformer block made up of  six 
stacked layers. Each of  these layers features a self-attention 
mechanism, allowing the model to hone in on the most 
significant gene features by assigning varying weights across 
the input sequence. A special [CLS] token is added at the 
beginning, and it gets refined through these layers to serve 

Fig. 4. Example of data after normalization by Standardscaler.

Fig. 5. Workflow of the DistilBERT model approach used as an ensemble classifier.
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as a global summary of  the entire sample. Following the self-
attention process, a feed-forward network (FFN) – which is 
a fully connected network – adds non-linearity, enriching the 
feature representations and boosting the model’s learning 
capabilities. Before reaching the final classification stage, 
a dropout layer with a rate of  0.2 is applied to the [CLS] 
token to help prevent overfitting and improve the model’s 
generalization. Finally, a fully connected classification layer 
translates the 768-dimensional [CLS] representation into 
the output space, and the results are processed through a 
SoftMax function to generate the final class probabilities. 
One of  the key strengths of  the proposed study lies in its 
capability for generalization. By using a flexible transformer-
based architecture, the version may be tailored to categorize 
extraordinary sorts of  cancer with minimal changes. This 
generalizability becomes evident within the steady overall 
performance across various datasets examined throughout 
the study.

4.2. Training
During the training step, the model uses optimizers, such 
as AdamW and SGD with a learning rate of  2 × 10-5 and 
a weight decay of  1 × 10-3 and uses cross-entropy loss 
for classification, which allows the model to learn the 
relationships between the input features and the cancer 
classes.

4.3. Experimental Setup
The model we proposed was built using Python 3.11.5 and 
Visual Studio Code. We made use of  several essential libraries. 
We preprocessed and normalized different types of  cancer 
from two open sources. For cancer classification, we fine-
tuned DistilBERT, a streamlined transformer model. This 
model features 6 transformer layers, 12 attention heads, and 
768 hidden units and can handle a maximum input length 
of  512. All our experiments were conducted on a Windows 
10 machine equipped with an Intel Core i7-6820HQ CPU, 
16 GB of  RAM, and an NVIDIA GeForce RTX 4060 GPU.

5. RESULTS ANALYSIS

The general efficacy of  the proposed DistilBERT-based 
complete variant for most cancer classes was examined using 
different datasets, including lung cancer, ovarian cancer, 
and TCGA datasets. The results show the model’s ability to 
efficiently handle high-dimensional gene expression data and 
achieve exceptional class accuracy across several datasets. 
The results are evaluated using accuracy performance 
metrics. In our experiments with the DistilBERT model, 

we explored various batch sizes and used the AdamW and 
SGD optimizers on all datasets. For the lung cancer dataset, 
our approach achieved an exceptional accuracy improvement 
of  97.56% with the AdamW optimizer and a batch size of  
16, outperforming other batch sizes and SGD, making it 
the best choice for this task. Conversely, the SGD optimizer 
showed optimal performance with batch sizes of  32 and 128, 
as shown in Table 6. Fig. 6 displays the highest accuracy and 
loss attained by the model for lung cancer datasets, and Fig. 7 
shows the confusion matrix model.

For the ovarian cancer dataset that contains 15,154 genes with 
two classes, our model gets 100% accuracy with the AdamW 
optimizer across all batch sizes; with the SGD, the results 
are represented in Table 7 with different batch sizes. Fig. 8 
displays the highest accuracy and loss attained by the model 
for ovarian cancer datasets, and Fig. 9 shows the confusion 
matrix model.

For the TCGA dataset that includes five types of  cancers and 
contains 20,532 genes for each type, we use DistilBERT with 

TABLE 4: Example of data with miss values and 
duplicate rows
Sample ID Feature1 Feature2 Feature3 Feature4
Sample_0 0.0 2.017209 3.265527 5.478487
Sample_1 0.0 0.592732 1.588421 7.586157
Sample_2 Nan NaN 2.3271 6.881787
Sample_3 0.0 3.511759 4.327199 6.881787
Sample_4 0.0 3.511759 4.327199 6.881787

TABLE 6: Using different batch sizes with AdamW 
and SGD optimizers for the lung cancer dataset
Batch size Optimizer Accuracy %
16 AdamW 0.9756
32 0.926
64 0.9268
128 0.9268
16 SGD 0.9024
32 0.92
64 0.878
128 0.92

TABLE 5: Example of data after handle missing 
values with remove duplicate rows
Sample ID Feature1 Feature2 Feature3 Feature4
Sample_0 0.0 2.017209 3.265527 5.478487
Sample_1 0.0 0.592732 1.588421 7.586157
Sample_2 0.0(Mean) 2.408865(Mean) 2.3271 6.881787
Sample_3 0.0 3.511759 4.327199 6.881787
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AdamW and SGD optimizers. Our model achieves 99.5% 
accuracy with the AdamW optimizer with a batch size of  16, 
as shown in Figs. 10 and 11 shows the confusion matrix. For 
the SGD optimizer, the result is presented in Table 8 with 
different batch sizes for both optimizers.

6. DISCUSSION

This paper proposed an approach by utilizing ML techniques 
for cancer prediction and classification based on gene 
expression data. The DistilBERT model was applied to 
classify gene expression datasets in bioinformatics because 
it can find complex non-linear relationships between the 
inputs and the outputs and is effective for large datasets. 
As discussed, it above indicates that DistilBERT model 
architectures could be used with two types of  optimizers, 

SGD and AdamW, for cancer classification, as they show a 
confident result. The results indicate that model architectures 
performed well. The AdamW optimizer reached higher 
results across different batch sizes with model architecture, 
showing a better choice as its accuracy reached 97.56% 
with a batch size of  16, for the lung cancer dataset, while 
the accuracy dropped to (92.6%, 92%, and 92.68%) with 
batch sizes of  32, 64, and 128. For ovarian cancer the model 
performed well, and the accuracy achieved (100%) with the 
AdamW optimizer was the same with all different batch 
sizes. For the TCGA dataset, the accuracy reached (99.5%) 
with a batch size of  16, which is higher than the results 
for batch sizes of  32, 64, and 128  (99.37%, 98.04%, and 
98%). On the other hand, the SGD optimizer produced the 
results in different batch size values, which are (16, 32, 64, 

TABLE 8: Using different batch sizes with AdamW 
and SGD optimizer
Batch size Optimizer Accuracy %
16 AdamW 0.995
32 0.9937
64 0.9804
128 0.98
16 SGD 0.987
32 0.9813
64 0.9565
128 0.9255

TABLE 7: Using different batch sizes with SGD for 
ovarian cancer
Batch size Optimizer Accuracy %
16 SGD 100
32 100
64 0.9804
128 0.9412

Fig. 6. Accuracy and loss for DistilBERT model for lung cancer dataset.

Fig. 7. Confusion matrix model for lung cancer dataset.
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Fig. 8. Accuracy and loss for DistilBERT model for ovarian cancer dataset.

Fig. 9. Confusion matrix model for ovarian cancer dataset.

and 128). The accuracy was (90.24%, 92%, 87.8%, 92%) 
for lung cancer, but only in 16 and 32 did it reach the result 
of  (100%), for ovarian cancer with model architecture. For 
the TCGA dataset, the accuracy is decreased with SGD for 
model architecture, as shown in Table 8. This suggests that 
batch sizes of  16 and 32 are the most effective for achieving 
optimal performance. This experiment discovered that the 
smaller batch size of  16 worked better because it allowed 
for improved generalization from the noisier updates, and 
the AdamW optimizer with batch 16 is more proper for 
cancer classification, as it got a high accuracy in almost all 
the tests compared to the SGD optimizer. The consistent 
100% accuracy on the ovarian dataset with AdamW was 
unexpected, suggesting a highly separable gene expression 

TABLE 9: Comparison of our proposed model with some existing works used in this field
Dataset Existing work Accuracy of our 

proposed modelMethod Accuracy (%) Year
DS1: Lung Cancer SVM, KNN, DT, RF [6] 94.09–97.04 2023 97.56%

CNN [2] 97 2022
ES‑DBN [19] 94.5454 2024
LDA and RF [12] 95 2024
RNN‑CNN [21] 0.97 2023
SVM, RF, MLP, SMO [7] 93, 96, 86.6, 91 2022

DS2: Ovarian Cancer MLPs [3] 98 2024 100%
1D‑CNN [11] 98.62 2022
ES‑DBN [19] 95.7746 2024
MI, GA, SVM [7] 80–98 2022

DS3: TCGA Dataset 1D‑CNN 98.62 2022 99.504%
ELM [25] 98.81 2020
KNN [24] 90 2017
GCN [31] 52 2020
CNN [2] 97 2022

SVM: Support vector machine, LDA: Linear discriminant analysis, MLPs: Multilayer perceptrons, KNN: k–Nearest Neighbors, ELM: Extreme learning machine, GCN: Graph 
convolutional network, ES‑DBN: Exponential sigmoid‑deep notion networks
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profile that simplifies classification. When we compared it 
to previous studies, the proposed model achieved higher 
accuracy, demonstrating its robustness and effectiveness in 
cancer classification. The results indicate that integrating 
transformer-based architectures can enhance predictive 
accuracy, making it a promising approach for gene expression 
analysis. By comparison with recent works, Table 9 indicates 
the comparison between those papers referenced with the 
proposed method. One limitation of  our study model was 
that it was trained on specific GEO and TCGA datasets, 
potentially limiting its direct applicability to unseen cancer 
types or data modalities. The interpretability of  the deep 
learning model also requires further investigation.

7. CONCLUSION

Gene expression profiling for early cancer diagnosis is a new 
strategy that is intended to help with the early detection and 
treatment of  several types of  cancer. In this research, we 
proposed a DistilBERT model as a multi-class classifier to 
classify different types of  cancer from a variety of  sources, 
including a cancer dataset. We obtained lung and ovarian 
cancer from GEO, which provides microarray datasets, and 
used each one separately. We downloaded (BRCA, KIRC, 
COAD, LUAD, and PRAD) from TCGA, which offered 
RNA-Seq datasets, which were then merged to create a 
substantial dataset for cancer classification. We employed 
a self-attention mechanism to select important features in 
the dataset and compare the performance of  our proposed 
method with other models and techniques that are used in 
ML to classify cancer types. We conclude that our proposed 
model achieved the highest performance compared to other 
ML methods and techniques. As a result, our proposed 
approach can accurately categorize all of  the observed 
positive cancer cases. The suggested model can improve 
early identification of  cancer susceptibility, guiding early 
intervention decisions and ultimately improving survival 
rates. The suggested model surpasses others across all 
datasets, achieving the highest classification accuracy: 97.56% 
for lung cancer, 100% for ovarian cancer, and 99.504% for 
the TCGA dataset, which includes five types of  cancer. In 
the future, we plan to boost the quality of  gene expression 
data and use metaheuristic optimization alongside deep 
learning to take our performance to the next level, and we 
will explore metaheuristic optimization for feature selection 
and hyperparameter tuning. We also aim to evaluate the model 
on broader datasets.

Fig. 10. Accuracy and loss for the DistilBERT model with the TCGA dataset.

Fig. 11. Confusion matrix of the DistilBERT model with the 
TCGA dataset.
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