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1. INTRODUCTION

In recent years, bitcoin has been established as the world’s 
leading cryptocurrency, taking the attention of  consumers, 
businesses, and investors. On the other hand, the topic of  
forecasting volatility has attracted a lot of  attention in the past 

decade from many academics and also financial professionals. 
It has been a subject of  great discussion over the years 
and a lot of  research has already been done. One of  the 
most common approaches of  modeling volatility indirectly 
is using ARCH or generalized autoregressive conditional 
heteroskedasticity (GARCH) models, but nowadays, with 
the realized measures, it has became possible to directly 
model volatility. One of  the models that directly use the 
realized measures to forecast volatility is the heterogeneous 
autoregressive (HAR) model. The major idea of  this model is 
that investors with different time horizons perceive and react 
to different types of  volatility. It is a model that has a simple 
structure; it is easy to estimate and is able to replicate the main 
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features of  financial data, such as in Corsi’s study in 2003 [1]. 
The HAR model is basically an additive cascade of  realized 
volatilities, generated at different time horizons, that follows 
an autoregressive process. There are a lot of  studies in the 
field of  cryptocurrency that has been applied. According to 
Nathan Reiff ’s article [2], one of  the first attempts to create 
a cryptocurrency comes from the Netherlands in the late 
1980s. At the same time, an American cryptographer, David 
Chaum, introduced a different electronic cash, digiCash [3]. 
He developed a “blinding formula” to encrypt information to 
be passed among people. And then some companies applied 
these fundamentals in the 1990s. In 1998, Wei Dai developed 
an “anonymous, distributed electronic cash system”, called 
b-Money [4]. This system was based on a digital pseudonym 
used to transfer currency through a decentralized network. 
The Bit Gold proposed by Szabo [5] introduced a proof-
of-work system, which is used in some ways in bitcoin’s 
mining network, many academic papers have focused on 
bitcoin. For Corsi’s study in 2003 [1], bitcoin has a position 
in financial markets and project management between gold 
and the American dollar with clear advantages to risk averse 
investors. Zhu et al. [6] suggested that some factors, such 
as Consumer Price Index, Dow Jones Industry Average, 
and Fed Funds Rate, do have a long-run negative effect on 
bitcoin price, by applying the vector error correction model. 
Due to the importance of  forecasting, many specialists have 
developed a variety of  time series forecasting models. The 
framework of  historical volatility suggested by Bollerslev 
[7] on how Realized Variance significantly outperforms 
GARCH-type models, and the long memory extension 
presented by Corsi [8] would indicate that this is a highly 
efficient model. Chung et al. [9] applied a HAR model to index 
options and compared it with IV, which proved significantly 
higher values of  fit. Sea [10] used the HAR-RV model to 
test its performance on his data. He tested the HAR model 
against the simple autoregressive (AR) and GARCH (1,1) 
models. He concluded that the HAR model showed excellent 
in-sample forecasting performance against another models. 
According to Vortelinos [11], the HAR model produced the 
best accurate. The forecast against principal components will 
combining with neural networks, and GARCH models. From 
the above studies, the GARCH and HAR models have been 
widely utilized to enhance the accuracy of  the prediction 
model, especially in the financial field. Therefore, using these 
models to analyze and forecast of  bitcoin cryptocurrency 
price are suitable. Besides, a modern time series model exists 
and is applied to analyze bitcoin cryptocurrency, but the 
specifications and analyzing of  bitcoin is always mysterious. 
For this reason, the present study deals with this problem 

by forecasting and analyzing the bitcoin cryptocurrency. 
Hence, the researcher tries to set up a theoretical model to 
analyze bitcoin cryptocurrency with the recent record of  its 
data. Hence, the study contribution is building a volatility 
time series model to estimate and accurate forecast using 
these models, which are GARCH and HAR. Therefore, the 
objective of  the study is to forecast the realized volatility of  
the bitcoin cryptocurrency price using GARCH and HAR.

Hence, the next section provides a brief  overview of  the 
framework, applying the GARCH and HAR models in the 
determination of  the relationship between variables. In 
section 3, present the data and derive the time series models 
utilized in the analysis from the theoretical framework. The 
conclusions and further discussion of  the study results are 
examined in section 4.

2. THEORETICAL FRAMEWORK

2.1. Bitcoin
Bitcoin is a peer-to-peer (P2P) electronic cash system 
introduced in the well-known paper of  Nakamoto [12]. 
The P2P mechanism allows an ownership transfer from 
one party to another without a third-party intervention 
(financial institution). Payments can be made over the internet 
without any control or cost of  a central authority for the 
1st  time. Individuals who want to own bitcoins can either 
run a program on their own computer that implements the 
bitcoin protocol or create an account on a website that runs 
bitcoin for its users. The bitcoins are saved in a file called 
a wallet, which the user may secure and backup. These 
programs connect to each other over the internet forming 
P2P networks, making the system resistant to a central attack 
by M. Crosby et al. [13].

For now, bitcoins are generated through a process of  
mining. Any member operates as a miner using their 
computer knowledge to maintain the network. Mining is 
a computationally process that requires miners to find a 
solution to a mathematical problem to create a new block into 
the blockchain. Miners resolve this issue using the proof-of-
work concept. This algorithm involves recurrently difficult 
mathematical problems until getting to a solution. The first 
miner to find a solution broadcast it to the network to verify 
it. Once verified, the block is added to the blockchain. Every 
10  min on average is found a new answer and a bitcoin 
is created. The bitcoin protocol is designed to generate a 
new bitcoin gradually. The difficulty of  solving problems 
is adjusted every 2 weeks at the rate of  six blocks per hour. 
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The size of  the reward was initially 50 (genesis block) and 
it is halved every 4 years, this implies that the number of  
bitcoins in circulation will never exceed 21 million. Once the 
last bitcoin is generated, miners will instead be rewarded with 
transaction fees Lo [13].

2.2. GARCH Model
The GARCH model was first introduced by Bollerslev [7]. 
Back in these days, the concept of  realized volatility 
modeling was not even introduced. At that period, the 
daily volatility was calculated as the squared daily return 
without taking into consideration any subintervals. The 
GARCH model is a conditional volatility model that allows 
the conditional variance to depend on the previous lags. It 
is based on the ARCH model by Engle [14], who used it to 
show that the conditional volatility is affected by volatility 
clustering. An autoregressive conditionally heteroskedastic 
(ARCH) model is a time series model with econometric 
applications that consider the variance of  the current error 
term as a function of  the variance of  the error conditions 
of  the previous time periods. One of  the disadvantages of  
the ARCH model is that it responds slowly to large, unusual 
shocks. Thus, the need of  an improvement of  this model 
was crucial. Assuming an autoregressive moving average 
(ARMA) model for the error variance, then the model 
is a GARCH model. GARCH models were designed to 
deal with the problem of  volatility clustering, which is the 
phenomenon where large changes in prices tend to cluster 
together, as A. J. M. Karim and N. M. Ahmed [15]; Botan 
et al. (2020) [16]; and R. F. Engle [14].

Before describing the GARCH model, the ARCH 
specification has to be introduced. The following return 
process has to be specified:

r with zt t t t t t= + =µ ε ε σ         � (1)

Where, µt is a drift term that is explained by the structural 
model and zt is an independent shock with zero mean and 
unit variance, signifying that εt is normally distributed εt ~ 
Z(0, σt). The conditional variance in (1) can be transformed 
into a time-varying by specifying the ARCH (q) process:

σ εt
i

q

i tc a= +
=

−∑
1

1
2 � (2)

Where c is a constant and ai is the coefficient for the past 
squared shocks ( ε t

2 ). Then the GARCH (p,q) model is 
derived by adding p lagged conditional variances, with orders 
p ≥ 1 and q ≥ 1:

σ ε β σt
i

q

i t
j

p

j t jc a= + +
=

−
=

−∑ ∑
1

1
2

1
� (3)

Where βj is the coefficients for the past conditional variances, 
p is the past squared error terms, and q is the past estimated 
volatility terms. When q = 0, then the above equation 
(3) reduces to an autoregressive conditional heteroskedastic 
(ARCH) model. Given a distribution of  εt in equation 
(1) and setting p = q =1, then the GARCH (1, 1) is derived:

σ ε β σt t tc a= + +− −1 1
2

1 1 � (4)

For which the condition c ≥ 0, a1 ≥ 0, and β1 ≥ 0 should stand 
for every positive value of  σt. Since the GARCH model is 
non-linear, it cannot be estimated by an OLS regression like 
the HAR model. Thus, the Gaussian maximum likelihood 
(GMLE) method should be used for parameter estimation. 
When assuming normally distributed errors and starting from 
some parameter vector θ and a time series of  size T (𝑦1,y2... 
𝑦𝑇), the GMLE method calculates the probability density 
for this specific sample by taking the product over all the 
marginal conditional probability densities of  the observed 
data. In general, the GARCH model is using the returns to 
forecast volatility, and it depicts that today’s return consists of  
yesterday’s return plus some volatility part and this volatility 
is what we need. This model is also using a rolling regression 
method to forecast volatility, by moving one day ahead and 
leaving 1 day behind for every forecast, which means that 
the data window size remains stable.

2.3. Testing GARCH Effects (Test of Heteroscedasticity)
The availability of  ARCH/GARCH effects may give serious 
model misspecification if  they are ignored. Logically, 
ignoring ARCH effects will give the identification of  
ARMA models that are over-parameterized. In addition, 
as in heteroscedasticity, estimation assuming its absence 
will result in inappropriate standard errors of  parameter 
estimates, which are typically smaller than what they should 
be. Therefore, it is important to check the presence of  
GARCH effects in time series modeling according to McLeod 
and Li [17]; Asraa et al. [18]; and Azhy et al. [19].

Two ways of  testing GARCH effects are used. First is to 
check the Ljung-Box portmanteau Q statistics of  at

2 . 

McLeod and Li show that the sample autocorrelations of  
at

2  have asymptotic variance n−1 and that portmanteau 
statistics calculated from their distribution is asymptotically 
Chi-square if  at

2  are independent. Since the sample 
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autocorrelations of  a are also pertinent to the identification 
of  a GARCH model for at

2 .

The second is the process of  checking for conditional 
heteroscedasticity which is to utilize the Lagrange multiplier 
test of  Engle. Think about the following model of  regression 
for

at
2  on at j−

2  j=1,2,…,m

a a a a vt t t m t m t
2

0 1 1
2

2 2
2 2= + + + + +− − −α α α α... , t=m+1…n� (5)

Where yt is the error term, m is a pre-determined positive 
integer, and n is the total number of  data points in the 
series. Using the coefficient of  determination from 
(5), Engle demonstrates that, under the null hypothesis 
H0: α1 = α2 =… = αm = 0, the variance of  nR2 is 
approximately distributed according to a chi-square 
distribution with m degrees of  freedom by Weiss [20]; 
Nakamoto [12].

2.4. Identification of a GARCH Model
If  the Ljung-Box statistics and the LaGrange multiplier (LM) 
test are significant, then conditional heteroscedasticity of  at

2  
is present, and we need to identify an appropriate GARCH 
model for at

2 . However, since the GARCH (1,1) model has 
been shown to be appropriate in many empirical studies, we 
may employ the GARCH (1,1) model at the beginning of  the 
analysis. As the model is estimated, diagnostic checking 
procedures may be followed to see if  the GARCH (1,1) model 
is okay, or if  the orders of  the GARCH model should be 
increased or decreased. Instead of  using this trial-and-error 
approach, we may use the following procedure for the 
definition of  a GARCH model for the { at

2 } series by Lon-Mu 
[21]; N. M. Ahmed and A. J. M. Karim [22], Dyhrberg [23].

2.5. Ljung-Box Q-Statistic
Adding to the visual inspection of  the plotted autocorrelation, 
the Ljung-Box Q-Statistic is used for diagnostic checking by 
Box and Jenkins [24]. The Ljung-Box Q-Statistic is defined 
by equation (6)

Q n n n j r a
j

K

j t
* ( )= +( ) − ( )

=

−∑2
1

1 2 � (6)

Where n is the number of  observations, K is the largest 
degree of  freedom used, and r j is the sample association 
function at the jth degree of  freedom of  a relevant 
time series at, for example. The statistical r j for is then 
calculated as:

r
a a a a

a a
j

t j

n
t t j

t

n
t

=
−( ) −( )

−

= + −

=

∑
∑
1

1
2( )

� (7)

The Q-statistic was suggested for testing ARIMA and 
ARMA models; both the test statistics are determined by 
the calculation of  the sample autocorrelation function for 
the residuals ε t

^  from those models. The similar test 
statistic based on different calculations using the 
autocorrelation function will be high benefit for small 
sample applicability, it is defined as Weiss [20]; M. S. Lo. 
[25].

Q n n
r e
n jj

K
j t

k
* ~= +( )

( )
−( )=

∑2
1

2
2χ � (8)

where k is the number of  lags considered in the test, and k 
is defined by:
k = K – m,

where K: Number of  lags used in the test.

m: Number of  parameters estimated in the mean and variance 
equations of  the GARCH model, and r j

*  is:

r a a a a a aj
t j

n

t t j
t

n

t
* ^ ^ ^( )( )/ ( )= − − −

= +
−

=
∑ ∑

1

2 2

1

2 � (9)

2.6. Likelihood Function of GARCH Models
By defining α = [α0, α1,…, αm, B1,…, Br,η]’, the log 
likelihood functions of  α may be derived under the 
Normality assumption of  εt. If  εt is assumed to follow a 
normal distribution. However, practically, there is substantial 
evidence showing that this assumption may not all the time 
be satisfactory by Lon-Mu [21].

For the GARCH (1.1) model, the joint density of  the 
observations a1…aT can be calculated as the product of  the 
conditional densities, conditioning on the last observations 
from M. S. Lo. [25].

fa1,….,aT (a1,…,aT)

=
=

− −∏{ ,... ( , ... )}* ( )
i

T

i i i ifa a a a a a fa a
2

1 1 1 1 1 1 � (10)

Easy to say, the marginal population will decrease as for the 
ARIMA (1.1) model. For k = 2.,T, the probability of  ak, given 
the values a1…a(k−1), is
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fa a a a a a a
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Moreover, the conditional likelihood function given at and 
σ t

2  is:

L B fa a a a a aT T( , , ) , ... ( , ... )α α σ σ0 1 1 2 1 1
2

2 1 1
2=

= −






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∏
i

T

i

i

i

a

1
2

2

2
1

2 2π σ σ* *exp � (12)

Where σ α αi ia B*2
0 1 1

2
1= + +−  are obtained recursively. We 

substitute σt
2  by its expected value:

E
Bt( )σ

α
α

2 0

1 11
=

− −
� (13)

Using the logarithm and ignoring the constant term, we find 
that the log likelihood function is:

l B a a

i

T

i
i

i

( , , , ) log *
*α α σ σ

σ0 1 1
2

2

2
2

2
1
2

= − +










=
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Where a a aT t T= =−( , .... ) ( , ... )1
2

1
2 2and σ σ σ .

2.7. Model Checking of GARCH (r,m)

For a GARCH model, the standardized errors ε σt t ta∧ ∧ ∧= /  
are independent and identically distributed random mistakes 
that are associated with either a standard normal or a non-
normal distribution, such as the standardized student-t 
distribution. As a result, one can assess the effectiveness of  
a fitted GARCH model by inspecting the series { ε t

∧ }. 
Specifically, the sample autocorrelations and the Ljung-Box 
Q statistics of  can be utilized to assess the effectiveness of  
the mean (primordial) equation and the sample autocorrelations 
and the Ljung-Box Q statistics of  can be utilized to assess 
the validity of  the volatility (secondary) equation A.J.M. 
Karim, and N.M. Ahmed [15]; Lon-Mu [21].

2.8. Forecasting the GARCH (1,1) Model
Forecasts of  a GARCH model can be found using methods 
similar to those of  an ARMA model. Consider the GARCH 
(1, 1) model in assume that the forecast origin is n. For a 
one-step-ahead forecast, we have:

σ α α σn n na B+ = + +1
2

0 1
2

1
2 � (15)

Where an
2  and σ n

2  are known at t = n, therefore, the one-
step ahead forecast is:

σ α α σn n na B2
0 1

2
1

21( ) = + + � (16)

For multi-step ahead forecasts, we use at t t
2 2 2=σ ε :

σ α α σ α σ εt t t tB+ = + + + −1
2

0 1 1
2

1
2 2 1( ) ( ) � (17)

When t = n+1, the equation becomes:

σ α α σ α σ εn n n nB+ + + += + + + −2
2

0 1 1 1
2

1 1
2

1
2 1( ) ( ) � (18)

Since E(ε (n+1)−1 |Fn) = 0, the two-step-ahead volatility 
forecast at the forecast origin n satisfies the equation:

σ α α σn nB2
0 1 1

22 1( ) ( ) ( )= + + � (19)

In general, we have:

σ α α σn nB2
0 1 1

2 1 1( ) ( ) ( ) ,  = + + − > � (20)

This outcome is identical to the result of  an ARMA (1, 1) 
model with an AR polynomial of  degree 1 − (α_1+B_1) 
B. By repeatedly changing the values in (20), the forward 
forecast can be written as:

σ
α α

α
α σn n

B
B

B2 0 1 1
1

1 1
1 1

1 21
1

1( ) [ ( ) ] ( ) ( )



=
− +
− −

+ +
−

− � (21)

Therefore:

σ
α
α

α ∞n B
as2 0

1 1
01

( ) ,* →
− −

= → � (22)

Provided that α1 + B1 < 1

As a result, the multi-step-ahead predictions of  volatility 
made by a GARCH (1,1) model match the unconditional 
variance of  as the horizon for predictions increases to 
nothing if  Var (a_t) is present Lon-Mu [21]; Cont [26]; and 
Nader et al. [27].

2.9. The HAR-RV Model
The idea of  realized variance is based on these assumptions 
and Andersen et al. [28] provide us with an explanation in 
further detail on how efficient an estimator of  volatility 
the realized volatility is, and moreover, how it outperforms 
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traditional GARCH-type models. Equation (23) presents 
the model for estimating a daily Realized Variance (RV), 
where r is high-frequency intraday log-returns as described 
in equation (24).

RV rt
d

j

M

t j
( ) =

=

−

−∑
0

1
2 � (23)

where r is Log returns (or continuously compounded returns) 
are approximately equal to normal price returns, but hold 
significant benefits in simplicity in multi-period returns by 
Ruppert and Matteson [29]. Log returns are defined:

r log P
P

t Tt

t
=









 = …

−1

1�,������� , , � (24)

Based on the Heterogeneous Market Hypothesis (HMH), 
Corsi [8] proposes the HARRV as a model that will utilize 
three realized volatility components in an autoregressive 
manner, which all represent some time-dependent market 
component for the model. The following equations 25 and 
26 consider the RV over the complementing horizons. They 
are quite simply the average of  the daily RV, so for a weekly 
RV, we simply extend the model as following:

RV RV RV RVt
w

t
d

t d
d

t d
d( ) ( ) ( ) ( )= + +…+( )− −

1
5 1 4 � (25)

Moreover, the same definition for monthly volatility, but 
over 22 daily periods:

RV RV RV RVt
m

t
d

t d
d

t d
d( ) ( ) ( ) ( )= + +…+( )− −

1
22 1 21 � (26)

The added sum of  these three volatilities can be regarded as 
an additive cascade of  volatilities, each representing different 
components of  market volatility. From this, it gets an almost 
long memory AR type of  character (with lags one, five, and 
22), but not strictly Corsi [8].

By expanding the expected values and utilizing straightforward 
recursive substitution, the volatility model will be given by a 
three-step cascade and has a form of  something similar to 
three AR processes Corsi [8]):

σ β β β ωt
d d

t
d w

t
w m

t
m

t d
dc RV RV RV+ += + + + +1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) �(27)

Now given (27), all variables are directly observable and 
available in the data set. The parameters will be able to 
be estimated through a simple Ordinary Least Squares 
estimation (OLS) using the Newey-West covariance matrix 

estimator. However, due to possible serial correlation, a 
Newey-West (NW) covariance correction will be applied, 
since the effects of  covariance and autocorrelation must be 
considered in the estimation.

3. DATA ANALYSIS AND RESULTS

3.1. Data Description
In this paper, daily observations are used of  the bitcoin price, 
the sample period is June 31, 2017–January 31, 2022, which 
obtained from the Kaggle website [30], the researcher use 
R-language to obtain results. Fig. 1 below shows the time 
series plot of  the series during the sample period. Since 2017, 
the bitcoin price has become more volatile. On October 
13th, 2017, bitcoin price breaks the $5,000 for the 1st time, 
on November 28th, 2017, the $10,000, and on December 
18th, 2017, hits all-time high just below $20,000. The bitcoin 
price time series can be observed in Fig. 1, non-linear trend 
and non-stationarity are the first geometrical properties that 
are shown in Fig. 1.

To build an appropriate model, the series that are used in 
analysis must be stationary; therefore, it should check the 
unit-root structure of  the data. Although the above graph 
gives a rough idea about the stationarity structure of  the 
series, we have applied the Augmented Dickey-Fuller test 
to the series to test unit roots. Table 1 exhibits the results 
from the ADF test applied to levels, first differences of  
the series.

The ADF test results indicate that the variable is non-
stationary by not rejecting the null hypothesis of  unit-root at 
the level, but it is stationary after first differencing. Therefore, 
the researcher uses differenced series in its analysis. Fig. 2 
below presents a time series plot of  the differenced series.

Fig. 1. Time series plots of the variable.
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TABLE 2: The fit of the mean equation model
Variable Coefficient Standard error t‑statistic P
C 5.59E‑07 3.09E‑07 1.811371 0.0402
Original (‑1) 0.993359 0.001206 823.5537 0.000

TABLE I: Unit root results of the lag variable
Variable Lags Test value P‑value
Bitcoin Price Level −0.9695 0.7659

First −43.9029 0.0001

After achieving the stationarity condition of  the series, we 
should fit the mean equation model as it is shown below:

From Table 2, P-value of  the constant and lagged variable 
are less than the statistical significance (0.05), then one can 
say that the model is significant.

Fig. 3 shows that there is a prolonged period of  high volatility 
from day 1 to the end of  2017, and also, there exists a 
prolonged period of  low volatility from the end of  2018, 
to the beginning of  2019. This suggests that the residual 
or error term is conditionally heteroskedastic and it can be 
represented by the ARCH and GARCH models.

In the series, hypothesis of  ARCH has an effect or not on 
the mean equation. For this purpose, a heteroskedasticity 
test ARCH have been used to test the following hypothesis 
below, and its results are shown in Table 3:
•	 H0: There is no ARCH effect.
•	 H1: There is an ARCH effect.

Table 3 presents P-value of  the heteroskedasticity ARCH 
test, which is less than the statistical level (0.05), then the 
hypothesis can be rejected; in another word, there exists 
an ARCH effect in the series. The researcher achieved two 
main assumptions of  using the GARCH model, which are 
the stationary of  the series and the effect of  ARCH in the 
mean equation model, and then GARCH model can be used 
to forecast the volatility. The GARCH (1,1) model has been 
run, the results of  its fit are shown in Table 4 below:

From the above table, it is obvious that the estimators of  
the variance equation are significant, depending on P-value, 
which is less than 0.05. The residuals of  the GARCH (1,1) 
model should be tested to find out that the model is suffered 
from serial correlation of  residuals or not for the hypothesis 
below:
•	 H0: There is no serial correlation of  residuals.
•	 H1: There is serial correlation of  residuals.

From Table 5, P-value of  the Q-statistic test for the 36 laggs 
are greater than the statistical level (0.05), then we cannot 
reject the hypothesis, that is mean there is no serial correlation 
of  residuals.

TABLE 4: The fit of the GARCH (1,1) model
Variable Coefficient Standard 

error
z‑statistic Prob.

C 3.88E‑07 1.86E‑07 2.082135 0.0373
Original (‑1) 0.99336 0.000632 1570.896 0.000
Variance equation

C 6.35E‑12 2.59E‑13 24.52996 0.000
RESID (‑1)^2 0.15 0.007405 20.2578 0.000
GARCH (‑1) 0.6 0.012556 47.78632 0.000

R‑squared: 0.9973

TABLE 3: The heteroskedasticity test ARCH
Test value P‑value
214.9139 0.000

Another test is the heteroskedasticity test to figure out that 
the postulated model is adequate or not for the following 

Fig. 3. The residuals of the mean equation.

Fig. 2. Time series plot of the differenced variable.
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TABLE 5: Testing of ACF and PACF

TABLE 6: The test of heteroskedasticity for the 
ARCH effect
Test‑value P‑value
0.065713 0.7977

hypothesis below, and the results are shown in Table  6 
below:
•	 H0: ARCH has no effect
•	 H1: ARCH has effect.

Table 6 shows the test for heteroskedasticity and it is clear 
that P-value of  the test is greater than the statistical level 
(0.05) then cannot be reject the hypothesis, which means 
that there is no heteroskedasticity.

The final test is a normality test to figure out that the residual 
of  the postulated model is normally distributed or not form 
the following hypothesis below, and the results are shown 
in Table 7 below:
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TABLE 7: A normality test for the residual of the model
Mean Median Max Min SD Skew‑ness Kurt‑osis Jarque Bera P‑value
0.030 −0.017 16.36 −8.77 1.13 1.80 32.33 66410.98 0.000

TABLE 8: The forecasted values
Parameters Estimate Standard error t value Pr(>|t|)
beta0 0.00000051 0.00000039 1.298 0.195
beta1 0.966 0.031 31.015 0.000
beta2 0.042 0.039 1.083 0.279
beta3 0.014 0.019 0.707 0.479

Multiple R‑squared: 0.9968
F‑statistic: 186600 with P-value (0.000)

•	 H0: The residual is normal.
•	 H1: The residual is not normal.

Table 7 shows the test for residual normality and it is clear 
that P-value of  the test is less than the statistical level (0.05) 
then one can be reject the hypothesis, which means that the 

residual are not normal and this is a good result because 
residual not normal, which indicate to good model. Moving 
now to the HAR-RV model, first, the heteroskedasticity test 
has to be done for the residuals. Using heteroskedasticity test, 
as shown in Table 3, that there is indeed heteroskedasticity 
was found. After conducting this test for the HAR-RV model, 
the realized volatility of  yesterday (RV1) was significant at a 
level of  5%, the realized volatility of  past week (RV5) was 
no again significant, and the realized volatility of  past month 
(RV22) was no again significant at a level of  5%. All the 
coefficients were positive and the F-test for the model is very 
large, which is significant. The coefficient for RV1 is more 
than RV5 and RV22. Table 8 below provides an overview 
of  the coefficients of  the estimation.

Fig. 4. (a) Observed and forecasted realized volatility (RV), (b) forecasted RV only.

a

b
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TABLE 9: Comparison of postulated models
Model AIC BIC MSE Residual standard error Log likelihood
GARCH −21.1672 −21.15 1.011E‑10 1.00E‑05 19320.1
HAR* −36475.5 −36448 6.1419E‑13 9.829E‑06 18242.7

TABLE 10: he forecasted values
Date Forecast Date Forecast Date Forecast
November 03, 2021 61619.76 December 01, 2021 54641.91 January 01, 2022 44580.88
November 04, 2021 61222.82 December 02, 2021 54747.75 January 02, 2022 45812.86
November 05, 2021 60099.69 December 03, 2021 54107.37 January 03, 2022 45356.18
November 06, 2021 59618.95 December 04, 2021 50953.54 January 04, 2022 44687.40
November 07, 2021 59994.44 December 05, 2021 47245.07 January 05, 2022 44160.97
November 08, 2021 61809.40 December 06, 2021 47332.24 January 06, 2022 41972.35
November 09, 2021 65592.52 December 07, 2021 48573.66 January 07, 2022 41780.99
November 10, 2021 65107.30 December 08, 2021 48597.10 January 08, 2022 40388.64
November 11, 2021 63344.30 December 09, 2021 48412.76 January 09, 2022 40347.31
November 12, 2021 63388.27 December 10, 2021 45801.95 January 10, 2022 40470.99
November 13, 2021 62861.41 December 11, 2021 45644.80 January 11, 2022 40571.47
November 14, 2021 63062.32 December 12, 2021 47544.54 January 12, 2022 41413.94
November 15, 2021 64183.95 December 13, 2021 48167.93 January 13, 2022 42524.40
November 16, 2021 62065.81 December 14, 2021 45213.72 January 14, 2022 41454.08
November 17, 2021 58823.18 December 15, 2021 46687.91 January 15, 2022 41922.97
November 18, 2021 58644.59 December 16, 2021 47112.76 January 16, 2022 41910.83
November 19, 2021 55676.47 December 17, 2021 46145.70 January 17, 2022 41985.74
November 20, 2021 56342.73 December 18, 2021 44862.72 January 18, 2022 41329.44
November 21, 2021 58032.85 December 19, 2021 45324.90 January 19, 2022 41442.00
November 22, 2021 57217.83 December 20, 2021 45247.74 January 20, 2022 40879.03
November 23, 2021 54909.94 December 21, 2021 45455.27 January 21, 2022 39958.20
November 24, 2021 56151.42 December 22, 2021 47271.15 January 22, 2022 35918.61
November 25, 2021 55860.37 December 23, 2021 46954.62 January 23, 2022 34599.21
November 26, 2021 57195.02 December 24, 2021 48763.34 January 24, 2022 35582.92
November 27, 2021 52061.67 December 25, 2021 48714.33 January 25, 2022 35847.75
November 28, 2021 52269.52 December 26, 2021 48353.02 January 26, 2022 36130.89
November 29, 2021 54747.87 December 27, 2021 48699.05 January 27, 2022 36036.67
November 30, 2021 55152.15 December 28, 2021 48565.47 January 28, 2022 36406.57

December 29, 2021 45845.78 January 29, 2022 36970.56
December 30, 2021 44856.14 January 30, 2022 37487.20
December 31, 2021 45372.75 January 31, 2022 37268.50

Table 8 reports the results of  the HAR model, where the in-
sample forecasting results show consistently that the lagged 
RV has a strong and persistent positive relationship with 
future realized variance log (RVt: t+h), especially in the first 
forecasting horizons h = 1. To detect the best model between 
GARCH and HAR models, one can use the criteria below 
such shown in Table 9.

Table  9 represents the comparison between models, 
according to all criteria; the HAR model is the best model 
than the GARCH model, which means that can be used 
HAR model to forecast the price of  bitcoin cryptocurrency. 
In addition, the full-sample forecasting assumes the 
realized variance time series to be stable, so the researcher 
implements the rolling window method to allow the 
parameters to change over time, and then more reasonable 

comparisons can be obtained. The adaptive method mimics 
an investor who updates the forecasting model based on 
the most recent information. The window size T of  the 
adaptive HAR models employed here is 90  days, that is, 
models are estimated using past 90-day samples, such as 
shown in Table  10. Moreover, the model is re-estimated 
every day. After the re-estimation of  each day, the out-of-
sample forecasts are performed in horizons h = 1; 5; 22, 
spontaneously. The parameters of  the daily aggregated 
realized variances are evolving systematically, which justifies 
the adaptive forecasting method.

Table 10 reports about the forecast values. These forecasts 
are obtained by first estimating the parameters of  the models 
on the full sample and then performing a series of  static 
one-step-ahead forecasts. Fig. 4 reports the results for out-
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of-sample forecasts of  the realized volatility in which the 
model is re-estimated daily.

Fig.  4 illustrates that the upward and downward risk 
estimators serve complementary roles in forecasting over 
time. Specifically, the upward risk coefficients showed a 
gradual increase from 2017 until early 2021. After that point, 
they exhibited a stronger upward trend, indicating growing 
exposure to potential positive risks or gains in the forecasted 
variable.

4. CONCLUSION

As an emerging financial asset, bitcoin has been booming 
in recent years and has become a major alternative asset for 
many investors worldwide. This paper studies the realized 
volatility forecast of  the bitcoin cryptocurrency price using 
GARCH and HAR, based on the data of  a 5-year sample 
period from January 2017 to January 2022. The researcher 
employs the GARCH and HAR models to study the 
forecasting properties of  bitcoin realized volatility. First of  all, 
a full sample forecasting result reveals that the 1-day lagged 
realized variance estimators and jump estimators impact the 
future realized variance significantly across the forecasting 
horizons h = 1. Then, the researcher allows the forecasting 
model to be adaptive with a 90-day rolling window, and who 
finds that the signed jumps can be a significant predictor 
of  the future realized variance of  the longer horizon. The 
results show that the HAR model seems to successfully 
achieve the purpose of  modeling the behavior of  volatility 
in a very simple and parsimonious way. Moreover, in spite 
of  the simplicity of  its structure and estimation, the HAR 
model shows remarkably good forecasting performance. 
Based on the out-of-sample forecasting results for the long 
series of  realized volatilities of  bitcoin price, the HAR model 
steadily outperforms the short-memory models at all the 
time horizons considered (1 day, 1 week, and 2 weeks) and 
is comparable to the much more complicated and tedious 
to estimate GARCH model. The study has been found that 
the HAR model was able to better forecast volatility for this 
period against GARCH (1, 1).

A good future research suggestion would be that the 
extensions of  these two models could be tested, such as a log 
HAR model and the 1,2 or 1,3 order of  the GARCH model. 
The EGARCH and TGARCH are two extensions of  the 
GARCH model that can be also tested for their forecasting 
performance with the HAR model. While high-frequency 
data enhances the accuracy of  realized volatility estimates, it 

also introduces microstructure noise. HAR-RV may be more 
robust to such noise due to its aggregation over multiple time 
scales, but this can also smooth over meaningful short-term 
shifts.
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