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1. INTRODUCTION

Optimization plays a key role in solving complex real-
world problems across various disciplines, including 
engineering, medicine, and economics. One of  the most 
pressing challenges in this domain is finding a suitable 
balance between exploration (searching new regions of  the 

solution space) and exploitation (refining current solutions). 
Many metaheuristic algorithms suffer from premature 
convergence or inefficient space traversal, particularly when 
handling high-dimensional or multi-modal functions. This 
paper addresses this critical issue by proposing a hybrid 
approach that combines the pelican optimization algorithm 
(POA), known for its strong global search capabilities, with 
differential evolution (DE), a method renowned for effective 
local optimization. By combining these two useful methods, 
the proposed POA-DE algorithm seeks to improve results 
in tackling difficult optimization problems and to get past 
the drawbacks of  using each method on its own. Optimizing 
complex non-linear functions with constraints remains a 
critical challenge in engineering and computational science. 
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Existing metaheuristics often face a trade-off  between 
exploration and exploitation, which limits their effectiveness 
in high-dimensional and noisy environments. This paper 
addresses this challenge by proposing a novel hybrid 
algorithm that balances these aspects to achieve improved 
optimization performance.

This paper proposes a novel hybrid metaheuristic, the 
POA-DE, which synergistically integrates the exploratory 
capabilities of  POA with the exploitative advantages of  
DE. This integration leads to improved convergence speed 
and solution quality on complex optimization problems 
compared to the original POA and other metaheuristics.

This optimization is the systematic process of  finding the 
most favorable solution within a reasonable timeframe. This 
region has seen significant changes with the introduction of  
a genetic algorithm (GA) and DE. As a result, the number 
of  optimization challenges is increasing in complexity. 
Therefore, the resolution of  these issues requires the 
application of  more efficient optimization techniques [1]. 
There are several effective algorithms available for solving 
a certain issue. Nevertheless, it is premature to designate 
any one of  them as the superior option until this study has 
conducted a comprehensive evaluation of  their relative 
performance in addressing the problem under consideration. 
Optimization algorithms are capable of  efficiently solving 
many difficulties [2]. Optimization problem-solving 
methodologies can broadly be classified into two group’s 
deterministic methods and stochastic methods [3]. When 
trying to solve difficult optimization problems with objective 
functions that are discontinuous, high-dimensional, non-
convex, and non-derivative, deterministic approaches have 
trouble. Stochastic methods, unlike deterministic methods, 
can effectively address the challenges of  optimization 
problems by utilizing random search in the problem-solving 
space. These methods do not rely on derivative and gradient 
information from the optimization problem’s objective 
function [4]. People often classify stochastic as a heuristic 
or metaheuristic. Nature-inspired metaheuristic algorithms 
are capable of  efficiently solving both real-world issues 
and traditional mathematical functions throughout their 
exploration and exploitation stages. However, achieving 
a balance between these two stages is a critical challenge 
that metaheuristic optimizations struggle with [5]. Various 
optimization issues have been tackled using metaheuristic 
methods. The objective of  using these algorithms is to 
determine the maximum or lowest value of  a certain function, 
such as minimizing the time required for a specific journey 
or minimizing the cost of  completing a task [6]. However, 

these algorithms do have some shortcomings when it 
comes to achieving global optima since they must balance 
the competing goals of  exploration and exploitation. Due 
to their excellent performance, metaheuristic algorithms 
tackle real-world issues. The problem appears to have its 
roots in electromagnetics [7], engineering design problems 
[8], constrained optimization problems [9], economic 
problems [10], medical problems [11], and task planning 
problems [12]. These methods are effectively utilized in a 
wide range of  engineering and scientific applications, such 
as optimizing power generation in electrical engineering, 
designing bridges and buildings in civil engineering, 
performing data mining tasks such as classification, prediction, 
clustering, and system modeling, as well as designing radars 
and networking systems in communication [13].

In 2022, Trojovský and Dehghani [14] introduced a new 
optimization technique called the Pelican optimization 
technique POA. They have modeled the design after the 
foraging actions of  pelicans. Compared to eight well-known 
SI optimization methods, the POA achieves outstandingly 
comparable performance by effectively balancing exploration 
and exploitation. Therefore, many practical applications 
utilize the POA. Although the standard POA is valuable, 
it is also susceptible to local optimization. To overcome 
this problem, several academics have proposed alternate, 
improved methodologies. They implemented tent chaos to 
improve population diversity and incorporated a dynamic 
weight factor to enable the pelican’s continuous position 
updates. These approaches surpass classic POAs in 
performance and provide better outcomes in 10 benchmark 
functions. However, they did not compare the execution 
times of  various algorithms [15]. Each particle modifies its 
path toward its past optimal position and the current optimal 
position achieved by any other member in its local area [16]. 
Particle swarm optimization (PSO) has the advantage over 
GA in that it is theoretically straightforward, requires little 
calculation time, and has a limited number of  parameters 
to change. Nevertheless, the primary drawback of  PSO is 
the potential for premature search convergence, particularly 
in intricate multi-peak search issues. In this study have 
developed a hybrid approach that combines PSO with DE 
to address this issue and enhance the efficiency of  the PSO 
algorithm, this work proposes the PSO-DE method. DE is 
an enhanced iteration of  GA, first introduced by Abualigah et 
al. [17]. A hybrid PSO-DE technique is proposed to tackle a 
global optimization problem. A hybrid PSO-DE technique is 
presented, combining the speed of  PSO with the exploration 
capabilities of  DE. The hybrid approach employs the PSO 
algorithm to identify the best solution area, followed by a 
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mix of  PSO and DE algorithms to locate the ideal point 
[18]. The POA-DE distinguishes itself  from previous POAs 
because it uses DE in its hybridization process. This way, 
the hybridization process can combine the characteristics 
of  DE such as mutation and crossover with those of  the 
Population-based Optimization Algorithm POA, which 
works by repeating itself. The proposed hybrid method 
incorporates an additional DE phase into the primary loop 
of  the PSO. This novel addition aims to enhance both the 
exploration and exploitation capabilities of  the original 
POA. The integration of  DE’s methodology for generating 
a pool of  prospective solutions and POA’s methodology for 
modifying positions led to the development of  POA-DE, 
which offers a more balanced and comprehensive approach 
to global search and local fine-tuning. The POA-DE is a 
novel kind of  hybridization that significantly enhances the 
optimization outcomes of  the original POA.

Our research is organized around a POA framework, with its 
mechanism detailed in Section 2. Section 2 then elucidates the 
POA Work and Flowchart. Section 3 describes DE. Section 
4 provides a comprehensive explanation of  our proposed 
POA-DE approach. Section 5 involves a comparison between 
POA-DE and 23 benchmark test functions [19], statistical 
results are documented and presented. Finally, the conclusion 
is presented, and suggestions for future research are offered.

2. LITERATURE REVIEW

Stochastic population-based optimization algorithms are 
among the best methods for addressing optimization 
problems. Based on the primary concepts and sources of  
inspiration that shaped their design, optimization algorithms 
may be broadly divided into four groups: Swarm-based 
optimization techniques that are game-, physics-, and 
evolutionary-based. Natural phenomena, such as the swarm 
behaviors of  insects, animals, and other living things, are 
considered while developing swarm-based optimization 
algorithms. One of  the first and most widely used swarm-
based algorithms is PSO, which draws inspiration from how 
birds forage for food. The best position each population 
member has encountered and the best position the whole 
population has experienced are used to update each member’s 
status in the PSO [20]. The modeling of  a classroom 
environment and student-teacher interactions serves as the 
foundation for teaching-learning-based optimization (TLBO). 
Population members in TLBO exchange information 
with one another and receive updates as part of  teacher 
training [21]. The social behavior and hierarchical structure 

of  gray wolves while hunting serve as the inspiration for gray 
wolf  optimization (GWO). Alpha, beta, delta, and omega 
wolves are the four wolf  types employed in GWO to simulate 
the hierarchical leadership of  gray wolves. Simulations update 
population members by modeling the three primary hunting 
stages: Searching for prey, surrounding prey, and attacking 
prey [22]. The Whale optimization algorithm (WOA) is a 
swarm-based optimization algorithm inspired by nature that 
models the social behavior of  humpback whales and their 
bubble-net hunting technique. WOA uses three hunting 
phases searching for prey, surrounding prey, and humpback 
whale bubble-net foraging behavior to update population 
members [23]. In this research, a Tunicate Swarm Algorithm 
(TSA) is developed by simulating the swarm behavior and 
jet propulsion of  tunicates during feeding and navigation. 
Four phases avoidance of  search agent (SA) conflicts, 
convergence toward the best SA, movement toward the best 
neighbor, and swarm behavior are used by TSA to update 
the population [24]. The movement strategies used by marine 
predators to catch their food in the ocean served as the model 
for the marine predators algorithm (MPA). The population 
update process in MPA is divided into three stages due to the 
different speeds of  the predator and prey: (i) The predator is 
faster, (ii) the predator and prey are equal in speed, and (iii) 
the prey is faster [25]. The introduction of  evolutionary-based 
optimization algorithms is predicated on models of  genetic, 
biological, and other evolutionary processes. One of  the first 
and most popular evolutionary algorithms is the GA, which 
draws inspiration from Charles Darwin’s idea of  natural 
selection and the reproductive process. In [26], the authors 
employ three primary operators’ selection, crossover, and 
mutation to update the population members. The artificial 
immune system (AIS) algorithm, a revolutionary approach, 
is based on the immune system’s response to viruses and 
bacteria. Cognitive, activation, and effector stages all have an 
impact on the population updating process in AIS [27]. The 
modeling of  the many physics laws serves as the foundation 
for the development of  physics-based optimization methods. 
The metallurgical melting and cooling process inspired the 
physics-based approach known as “simulated annealing.” To 
lessen its flaws, the material is heated and then softly cooled 
under carefully monitored circumstances. The SA optimizer 
was designed using mathematical modeling of  this process 
[28]. The modeling of  the gravitational attraction between 
objects at varying distances from one another served as the 
inspiration for the gravitational search algorithm (GSA). 
The GSA updates its population members by modeling 
Newtonian principles of  motion and calculating gravitational 
force [29]. The construction of  game-based optimization 
algorithms is based on modeling player behavior and the 
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rules of  various solo and multiplayer games. A game-based 
algorithm called the football game-based optimizer (FGBO) 
simulates player behavior and club relations in a football 
league. The four stages of  league holding, training, player 
transfers between teams, and club promotion and relegation 
form the basis of  FGBO’s population update procedure 
[30]. The foundation of  Tug of  War Optimization (TWO) 
is modeling player behavior in a tug of  war. Modeling the 
tensile force between population members who compete with 
one another serves as the foundation for TWO’s population 
member update method [31].

While numerous metaheuristic algorithms such as GA, 
PSO, and DE have been proposed, most prior studies 
provide primarily descriptive overviews of  their applications. 
A critical comparison reveals that many of  these methods 
suffer from premature convergence or lack the balance 
between exploration and exploitation necessary for complex, 
high-dimensional optimization problems. The proposed 
POA-DE addresses this gap by integrating the exploratory 
nature of  the POA with DE’s exploitative strengths, aiming 
to improve convergence speed and solution quality.

3. THE POA ALGORITHM AND DE

3.1. Biological Inspiration and Mathematical Modeling 
of POA
The pelican is a large avian creature known for its prominent 
beak and throat pouch, which it uses to capture and consume 
food [32]. This species congregates in communal roosts, 
where groups of  pelicans, sometimes numbering in the 
hundreds, meet together. We can describe the appearance 
of  pelicans as follows: Pelicans have a weight range of  
approximately 2.75–15 kg, a height range of  1.06–1.183 m, 
and a wing span of  0.5–3 m. They primarily consume fish but 
also feed on frogs, turtles, and other crustaceans. In times of  
extreme hunger, they may even consume shellfish. Pigeons, 
particularly pelicans, often exhibit collective behavior when 
foraging for their prey. On locating their prey, they swiftly 
submerge into the water, descending a distance of  10–20 m. 
Indeed, some predators descend to lower regions to capture 
their prey. Pelicans are considered to be very skilled hunters 
based on their intellect, hunting habits, and techniques. The 
suggested approach’s modeling primarily inspires the design 
of  the intended POA [14], [33].

The proposed POA is population-based, including 
pelicans as well. Within population-based algorithms, every 
individual serves as a prospective solution. Every individual 

in the population suggests values for the variables of  the 
optimization problem depending on their location in the 
search space. At first, individuals in the population are 
allocated randomly within the specified range of  values using 
Equation (1).

X Y rand Z Y a M b Nab b b b= + −( ) = …… = ……. , , , , ,�� ,1 2 1 2
� (1)

where Xab is the value of  the bth variable specified by the ath 
candidate solution, M is the number of  population members, 
N is the number of  problem variables, rand is a random 
number in interval [0, 1], Yb is the bth lower bound, and Zb 
is the bth upper bound of  problem variables. The suggested 
POA replicates pelican behavior and strategy for approaching 
and hunting prey, updating potential solutions.

3.2. DE and its Role in POA-DE
The DE algorithm, introduced by Storn and Price [17], is a 
powerful evolutionary optimization technique widely used for 
solving continuous and multimodal optimization problems. 
DE operates through three primary operations: Mutation, 
crossover, and selection. These steps allow the population 
to evolve better solutions over iterations.

In the context of  the hybrid POA-DE algorithm, DE 
enhances the global search ability of  POA by diversifying the 
candidate solutions early in the search process, helping avoid 
premature convergence. The new trial vector is generated 
using DE’s mutation and crossover operations. Depending 
on the nature of  the problem, various mutation and crossover 
strategies can be employed [34] [35].

This hybridization leverages the global exploration strength 
of  DE and the problem-specific exploitation ability of  POA, 
leading to a more robust and efficient optimization process.

3.3. Parameter Settings
Table 1 summarizes the key parameters used in the POA-
DE algorithm. These parameters control the behavior and 
performance of  the algorithm during optimization. Selecting 
appropriate values is essential to balance exploration of  the 
search space and convergence speed, ensuring effective and 
efficient optimization results.

4. HYBRID APPROACH: POA-DE

The suggested study introduces a novel metaheuristic 
algorithm called POA-DE, which combines the features of  
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POA and DE. The purpose of  this hybridization is to merge 
DE’s global search capability with POA’s local exploitation 
capability to achieve a balance between exploration and 
exploitation in the optimization process. The POA-DE 
algorithm operates in two distinct stages. The first stage 
employs the DE algorithm. Therefore, DE starts by selecting 
three pairs of  distinct candidate solutions from the population 
in a random manner. The mutation process generates a third 
candidate solution by calculating the weighted difference 
between the first two solutions and adding it to the third 
solution. This modified candidate subsequently mates with 
the aforementioned candidate, resulting in the creation of  a 
novel solution. This implies that the population includes the 
new solution only if  its fitness exceeds that of  the current 
population. This phase fortifies the algorithm’s learning 
capabilities as it searches for the optimal solution to a 
given issue, shielding it from becoming stuck in suboptimal 
solutions. The POA assumes the role during the second 
phase. Pelicans’ hunting technique is the source of  the term 
“POA.” During exploration, they categorize each potential 
solution as either moving closer to or farther away from 
a reference solution, also known as a food source. This 
categorization is based on the fitness value compared to 
the reference values. Put simply, the candidate approaches 
the reference point if  its fitness is greater, and it goes away 
if  the candidate’s ability is lower. It is particularly helpful in 
investigating the search space. Following the exploration 
phase, the exploitation phase improves the solutions by 
including a small random increment that progressively 
decreases during the exploitation phase. Optimizing this 
fine-tuning process is crucial for enhancing the exploration 
of  the local search space and improving the quality of  the 
acquired solutions.

The hybrid POA-DE algorithm has been tested using a 
collection of  benchmark functions (F1–F23) to compare the 
results with the original POA. Experiments were conducted 
to evaluate the performance and adaptability of  POA-DE 
across various population sizes and iteration counts. The 
outcomes assessment demonstrated that POA-DE exhibited 
a superior level of  accuracy when compared to the original 

POA in several functions, thereby confirming the successful 
integration of  DE into the POA framework.

In the DE phase of  the proposed POA-DE algorithm, the 
mutation factor (F) and crossover rate (CR) play crucial roles 
in controlling the search dynamics. In this study, F is set to 
0.5 and CR to 0.9, which are commonly used default values 
known to provide a good trade-off  between exploration and 
exploitation. To ensure the robustness of  these parameters, 
a sensitivity analysis was conducted by varying F within the 
range [0.4, 0.9] and CR within [0.5, 1.0]. The results confirmed 
that the algorithm maintains stable performance under these 
variations, supporting the suitability of  the chosen parameter 
values for the benchmark functions used in this work.

Algorithm (1) displays the Pseudocode and flowchart for 
POA-DE.

4.1. Mathematical Equations for Hybrid POA-DE
Equation (2) in the DE phase, which is also called the 
mutation equation, yields a new candidate solution by 
introducing diversity into the population. This step is done 
for three randomly selected solutions, though adding to the 
third solution a scaled difference between two other solutions, 
this process creates a mutant vector that has the potential 
to explore a new area of  the search space. Consequently, it 
aids the algorithm in evading local optima and amplifies its 
capacity for global search.

V Xa= + −F X b X c.( _ _ ) � (2)

Here, V is the mutant vector, F is the differential weight, 
Xa+F.(X_b−X_c) are three randomly selected individuals 
from the population.

Crossover Equation (3) uses the generated mutant vector 
during the previous step and combines it with the current 
solution to generate a trial solution. This is achieved through 
random selection of  some of  the components either from 
the mutant vector or the current solution. This process also 
guarantees that the trial solution has some of  the features 

TABLE 1: Parameter settings
Parameter Description Value Justification
Population size Number of pelican agents 30 Balances search diversity and computational cost
Maximum iterations Max iterations for algorithm 500 Empirically sufficient for convergence in tests
DE mutation factor (F) Controls mutation step size 0.5 Standard value that balances exploration and exploitation
DE crossover rate Probability of crossover in DE 0.9 Encourages recombination of solutions

DE: Differential evolution
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of  the original and the mutant solutions, hence diversifying 
the population to increase the possibility of  arriving at an 
even better solution.

U
X if rand j CR or j j

Xi j
i j rand

i j
( )

( )

( )

�������� � � � �
���������

=
( ) ≤ =

�����������������������������������otherwise





� (3)

U(i(j)) is the trial vector, X(i(j)) is the target vector, CR is the 
crossover rate, and jrand is a randomly chosen index.

The exploration phase in Equation (4) determines the 
direction of  moving a candidate solution in the search space 
forward or backward depending upon whether the current 
candidate solution performs better or worse than a randomly 
selected “food.” If  the solution becomes worse, it approaches 
the food in an attempt to better itself. If  it’s better, it steps 
slightly back, which makes one search for other options with 
more fervor. This allows the algorithm to extend its search 

in multiple directions and not to be confined to areas with 
lower utility levels.

X
X rand X I X if f X f X
X randi

new i Food i i FOOD

i
=

+ ( ) −( ) ( ) >
+ ( )

� . . �� � ( )
� .. ����������������������

�
X X otherwisei FOOD−( )






� (4)

Here, Xi
new  is the updated position of  an individual, XFOOD 

is the location of  a random individual considered as “food,” 
and I is a random binary value.

The exploitation phase in Equation (5) refines the candidate 
solution by adjusting the position slightly in a way that reduces 
over time. Initially, to search the space of  the search space, the 
changes made are more significant, whereas as the algorithm 
proceeds, the changes made are comparatively smaller, trying 
to get as close to the optimal value as possible. This makes 
sure that the algorithm is able to converge with the right 
solution within a short span of  time.

X X t
Max iterations

rand Xi
new

i i= + −





( ) −( )� . .
_

. . � .0 2 1 2 1 �

�

(5)

This equation introduces a small random perturbation to Xi 
as the algorithm iteratively refines the solution towards the 
optimal value.

4.2. Statistical Validation
The Wilcoxon rank-sum test was carried out with a 
significance threshold of  0.05 to provide statistical evidence 
that POA-DE is better than other evaluation methods. The 
findings indicate that POA-DE performs much better than 
the metaheuristics that were chosen for comparison in the 
majority of  benchmark functions. This substantiates the fact 
that the observed increases in performance are statistically 
significant and are not the product of  random chance.

5. EXPERIMENTAL SETUP AND RESULTS

A novel POA-DE method is provided in this study, followed 
by a comprehensive empirical analysis using 23 benchmark 
functions. This assessment is part of  the comprehensive 
experimental design used to compare the effectiveness of  
the hybrid technique. The 23 benchmark functions are a 
standard set of  test problems that can be used to see how 
the suggested changes to the POA-DE algorithm stack up 
against the original POA method. The test results are very 
important for supporting the idea that using both DE and 

ALGORITHM 1: Pseudo code of pelican 
optimization algorithm‑differential evolution
Algorithm: POA‑DE
1. Input:

a. Define the objective function f (x)
b. Set bounds for each decision variable
c. Set population size N and maximum iterations T

2. Initialization:
a. �Randomly initialize positions of N pelicans within bounds → X 

= {x1, x2, ., xn}
b. Evaluate fitness of each pelican: f (xᵢ) ∀ i ∈ [1, N]

3. For t = 1 to T do:
a. Step 1: Update global best

i. Identify best pelican: X_best = argmin (f (xᵢ))
ii. Store best fitness value: f_best = f (X_best)

b. Step 2: Differential Evolution Phase (DE Phase)
i. Set DE parameters: F (mutation factor), CR (crossover rate)
ii. For each pelican i = 1 to N do:

1. Mutation:
‑ Randomly select three distinct pelicans: x_r1, x_r2, x_r3
‑ Compute mutant vector: vᵢ = x_r1 + F * (x_r2 ‑ x_r3)

2. Crossover:
‑ Generate trial vector uᵢ by mixing vᵢ and xᵢ based on CR

3. Selection:
‑ If f (uᵢ) < f (xᵢ), then xᵢ ← uᵢ

c. Step 3: Pelican Optimization Algorithm Phase (POA Phase)
i. Select a random pelican as prey: X_FOOD
ii. Phase 1: Exploration (Moving Towards Prey)

For each pelican i = 1 to N:
‑ Update position of xᵢ based on movement toward X_FOOD

iii. Phase 2: Exploitation (Winging on Water Surface)
For each pelican i = 1 to N:

‑ Refine position of xᵢ using water surface dynamics
d. Step 4: Update and store best solution found in iteration t

4. Output:
‑ Best candidate solution X_best and corresponding fitness f_best

End Algorithm
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POA together makes the balance between exploration and 
exploitation better, as well as the optimization performance 
in many situations. The below tables and figures provide a 
performance comparison between the original POA and 
the hybrid POA-DE. The results are calculated using two 
parameters: The number of  SA and the maximum number 
of  iterations (MI). In cases where POA-DE performs better 
than POA, significant improvements (SIs) are indicated. 
In addition to the highest scores, each table displays the 
benchmark functions on which both algorithms have 
been evaluated. The tables are accompanied by charts that 
facilitate comparison. Table  2 displays the results of  the 
POA versus POA-DE comparison for 20 SA. This table 
presents a comparison between the results of  the POA 
and the outcomes of  the POA-DE in situations involving 
20 SA. The findings include a range of  iteration numbers. 
They are calculating the square values of  100, 500, 800, and 
1000. In addition, for each iteration count, the top results 
for each algorithm are shown for each benchmark function, 
highlighting significant improvements where POA-DE 
outperforms POA. To be more precise: Out of  100 trials, 
there are 17 instances where the performance of  POA-DE 
exceeds that of  POA in terms of  SI. In 500 iterations, there 

are 16 improvements, with POA-DE surpassing POA by a 
substantial margin. Among the 800 iterations, there are 15 
occurrences when the POA-DE has a superior index (SI) in 
comparison to the POA. Among the 1000 repetitions, there 
are 14 instances of  SI. These findings allow for a comparison 
of  the relative efficiency of  the studied algorithms in terms of  
their ability to operate with a smaller group of  persons. They 
also provide an evaluation of  how many times the algorithm 
hybridization based on the POA improves its performance 
compared to the original version.

Table  3 presents the results of  the comparison between 
the original POA and the hybrid POA-DE for scenarios 
with 30 SA. It includes results for various iteration counts: 
100, 500, 800, and 1000. For each iteration count, the table 
shows the best scores achieved by each algorithm for each 
benchmark function and indicates significant improvements 
where POA-DE outperforms POA. Specifically: For 100 
iterations, there are 17 significant improvements where 
POA-DE performs better than POA. For 500 iterations, there 
are 14 significant improvements where POA-DE performs 
better than POA. For 800 iterations, there are 14 significant 
improvements where POA-DE performs better than POA. 

TABLE 2: POA versus POA‑DE results for 20 SA
Function Maximum number of iterations

100 500 800 1000
POA POA‑DE POA POA‑DE POA POA‑DE POA POA‑DE

F1 8.44242E‑19 2.607E‑19 5.3111E‑103 1.0405E‑128 5.6066E‑180 2.5394E‑212 6.0024E‑232 2.9654E‑259
F2 1.02422E‑08 1.67645E‑11 1.602E‑54 2.75195E‑68 3.89621E‑86 1.906E‑111 1.2771E‑111 5.7266E‑147
F3 4.8004E‑18 1.34672E‑20 1.0435E‑114 1.2884E‑119 3.8238E‑155 8.9934E‑187 3.6462E‑226 1.5807E‑240
F4 1.83678E‑10 4.41394E‑10 3.90111E‑52 5.80852E‑62 6.50224E‑87 3.9976E‑100 1.8618E‑106 3.6818E‑127
F5 28.8410256 28.40746944 28.83434241 25.72787702 26.46808462 24.36385211 27.96069942 24.13425128
F6 0 0 0 0 0 0 0 0
F7 0.001842118 0.002489956 0.000811606 0.0002196 0.00018826 0.000251286 0.000195164 0.000185465
F8 −6752.338401 −8973.535957 −7986.181885 −8658.249743 −7206.595666 −9666.603987 −7690.545649 −9739.742638
F9 0 0 0 0 0 0 0 0
F10 7.1642E‑10 2.5695E‑12 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15
F11 0 0 0 0 0 0 0 0
F12 0.379335727 0.110466078 0.20717646 0.006759976 0.163103261 0.011113309 0.307773401 0.004877733
F13 2.993078621 1.886155787 2.485823119 0.828283394 2.974257347 0.722645709 1.996425926 0.593715012
F14 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838
F15 0.000308452 0.001223173 0.000307486 0.000307486 0.000307487 0.000307486 0.000307505 0.020363339
F16 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453
F17 0.397887372 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358
F18 3 3 3 3 3 3 3 3
F19 −3.862782044 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148
F20 −3.321732438 −3.321995121 −3.321990444 −3.20310205 −3.32199453 −3.321995172 −3.321994009 −3.321995172
F21 −10.14786467 −10.15319968 −10.15307188 −10.15319968 −10.15313299 −10.15319968 −5.055197391 −10.15319968
F22 −10.39811953 −10.40294057 −10.40283234 −10.40294057 −10.402923 −10.40294057 −10.40289467 −10.40294057
F23 −10.45228277 −10.53640982 −10.53628678 −10.53640982 −10.53639666 −10.53640982 −10.53638089 −10.53640982
SI 17 16 15 14

POA: Pelican optimization algorithm, DE: Differential evolution, SA: Search agent
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For 1000 iterations, there are 15 significant improvements 
where POA-DE performs better than POA. These results 
offer a comparative view of  the algorithms’ performance with 
a medium-sized population and highlight how the iteration 
count influences the effectiveness of  the hybrid approach 
over the original POA.

Furthermore, Table 4 presents the results of  the comparison 
between the original POA and the hybrid POA-DE for 
scenarios with 50 SA. It includes results for various iteration 
counts: 100, 500, 800, and 1000. For each iteration count, the 
table shows the best scores achieved by each algorithm for each 
benchmark function and indicates significant improvements 
where POA-DE outperforms POA. Specifically: For 100 
iterations, there are 16 SI where POA-DE performs better 
than POA. For 500 iterations, there are 14 SI where POA-DE 
performs better than POA. For 800 iterations, there are 16 
SI where POA-DE performs better than POA. For 1000 
iterations, there are 13 SI where POA-DE performs better 
than POA. This table provides insights into how a larger 
population size affects the performance improvements of  
POA-DE relative to POA and the impact of  iteration count 
on optimization results.

In last table, Table 5 presents the results of  the comparison 
between the original POA and the hybrid POA-DE 
for scenarios with 80 SA. It includes results for various 
iteration counts: 100, 500, 800, and 1000. For each iteration 
count, the table shows the best scores achieved by each 
algorithm for each benchmark function and indicates 
significant improvements where POA-DE outperforms 
POA. Specifically: For 100 iterations, there are 17 SI where 
POA-DE performs better than POA. For 500 iterations, 
there are 13 SI where POA-DE performs better than POA. 
For 800 iterations, there are 13 SI where POA-DE performs 
better than POA. For 1000 iterations, there are 14 SI where 
POA-DE performs better than POA. These results reflect 
the performance of  the algorithms with a larger population 
and provide a comparison of  how different iteration counts 
affect the relative success of  the hybrid POA-DE approach 
over the original POA.

The graphical comparisons between the POA and the hybrid 
POA-DE, with a focus on significant improvements, are 
illustrated in four figures: These are Figs.  1-4. For either 
figure, in this research report the results of  a total of  23 test 
functions for given values of  SAs and four iteration counts of  

TABLE 3: POA versus POA‑DE results for 30 SA
Function Maximum number of iterations

100 500 100 1000
POA POA‑DE POA POA‑DE POA POA‑DE POA POA‑DE

F1 2.44686E‑21 3.24652E‑21 1.8596E‑100 2.8411E‑129 7.1447E‑166 6.2389E‑202 1.0337E‑225 1.689E‑261
F2 6.30687E‑10 6.92141E‑13 5.36129E‑52 6.45989E‑69 3.11624E‑86 6.1841E‑110 3.3754E‑110 6.1431E‑133
F3 1.49479E‑18 2.15422E‑19 2.1028E‑111 3.8733E‑127 1.5153E‑172 2.2947E‑192 4.3141E‑216 6.8049E‑241
F4 6.17297E‑09 1.05369E‑08 2.94986E‑52 6.17893E‑63 6.5319E‑91 5.0517E‑102 7.6164E‑113 2.1422E‑122
F5 28.9155397 28.5032141 28.83833557 24.70437222 27.97057944 24.06465201 25.859068 25.00836819
F6 0 0 0 0 0 0 0 0
F7 0.001223655 0.001004973 0.000328992 6.25394E‑05 0.000140125 0.00022994 0.000429553 0.000181634
F8 −6427.415167 −8416.720434 −7084.244045 −8835.40723 −8185.882717 −9316.476719 −8513.675101 −8658.286337
F9 0 0 0 0 0 0 0 0
F10 8.89046E‑10 2.33826E‑10 4.44089E‑15 8.88178E‑16 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15
F11 0 0 0 0 0 0 0 0
F12 0.57331789 0.056721115 0.176276713 1.57179E‑06 0.145433174 1.16027E‑06 0.1679032 3.03096E‑07
F13 2.990963261 1.009436307 2.620938032 0.297529501 2.982695256 0.108381791 2.980186413 0.308401823
F14 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838
F15 0.000308878 0.000307486 0.000307486 0.000307486 0.000307487 0.000307486 0.000307486 0.000307486
F16 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453
F17 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358
F18 3 3 3 3 3 3 3 3
F19 −3.862782087 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148
F20 −3.321708176 −3.20310205 −3.321993603 −3.321995172 −3.321994662 −3.20310205 −3.321991814 −3.20310205
F21 −5.055164449 −10.15319968 −10.1531993 −5.055197729 −10.15319967 −10.15319968 −10.15315661 −10.15319968
F22 −10.40167737 −10.40294057 −10.40292935 −10.40294057 −10.40281433 −10.40294057 −10.40294057 −10.40294057
F23 −10.53138633 −10.53640982 −10.5363856 −10.53640982 −10.53624667 −10.53640982 −5.128480787 −10.53640982
SI 17 14 14 15

POA: Pelican optimization algorithm, DE: Differential evolution, SA: Search agent
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TABLE 4: POA versus POA‑DE results for 50 SA
Function Maximum number of iterations

100 500 100 1000
POA POA‑DE POA POA‑DE POA POA‑DE POA POA‑DE

F1 2.49576E‑15 8.25975E‑24 6.4535E‑113 1.7909E‑129 1.5327E‑175 3.1429E‑201 2.788E‑225 2.7614E‑260
F2 3.883E‑12 5.58281E‑11 2.10498E‑56 4.55152E‑62 2.78613E‑91 2.0983E‑105 4.5724E‑118 7.365E‑131
F3 3.82949E‑18 2.40486E‑17 1.1427E‑106 7.8247E‑121 1.6074E‑168 7.2797E‑191 2.1796E‑216 3.4427E‑243
F4 4.78844E‑09 2.42029E‑10 4.97603E‑51 3.37586E‑58 1.05869E‑85 5.01127E‑98 1.4792E‑106 8.7552E‑127
F5 28.70319141 28.41110891 28.02387665 24.66922068 28.81369914 23.19309231 28.55704875 23.64091015
F6 0 0 0 0 0 0 0 0
F7 0.000272223 0.001243581 0.000168009 0.000191357 2.52893E‑05 2.42018E‑05 4.91583E‑05 0.000110357
F8 −6585.887624 −6602.34042 −8065.980309 −9206.070817 −8220.373482 −9350.304939 −6827.237998 −10094.43083
F9 0 0 0 0 0 0 0 0
F10 1.02749E‑10 8.60156E‑11 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15
F11 0 0 0 0 0 0 0 0
F12 0.395989404 0.008500108 0.114831156 7.42445E‑07 0.223673566 4.61258E‑10 0.105689638 3.94851E‑08
F13 2.995377503 0.195516639 2.979128781 0.097371549 2.976471966 0.010992274 2.9762112 0.240193412
F14 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838
F15 0.000516476 0.000307486 0.000307486 0.000307486 0.000307486 0.000307486 0.000307486 0.001223173
F16 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453
F17 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358
F18 3 3 3 3 3 3 3 3
F19 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148
F20 −3.321263723 −3.20310205 −3.321989525 −3.20310205 −3.321994373 −3.321995172 −3.203100353 −3.20310205
F21 −10.14426658 −10.15319968 −5.055197729 −10.15319968 −10.15319967 −10.15319968 −10.15319968 −10.315319968
F22 −10.38733962 −10.40294057 −10.40294057 −10.40294057 −10.40294057 −10.40294057 −10.40294057 −10.40294057
F23 −10.53576953 −10.53640982 −10.53640982 −10.53640982 −10.53640982 −10.53640982 −10.53640284 −10.53640982
SI 16 14 16 13
POA: Pelican optimization algorithm, DE: Differential evolution, SA: Search agent

TABLE 5: POA versus POA‑DE results for 80 SA
Function Maximum number of iterations

100 500 100 1000
POA POA‑DE POA POA‑DE POA POA‑DE POA POA‑DE

F1 1.10087E‑18 6.35165E‑21 1.5474E‑110 1.4112E‑124 3.5709E‑176 4.7273E‑203 3.2398E‑224 1.3994E‑255
F2 2.66845E‑10 2.18443E‑10 4.80324E‑53 2.51132E‑60 2.11834E‑89 6.4643E‑109 4.9799E‑112 8.4084E‑130
F3 7.89952E‑18 7.25637E‑21 1.4617E‑114 1.0093E‑123 1.458E‑174 2.241E‑189 3.9415E‑228 1.6495E‑237
F4 4.06298E‑09 1.62514E‑10 1.68652E‑54 2.84401E‑58 2.39672E‑84 1.54687E‑98 3.4455E‑106 1.2882E‑119
F5 28.78665385 27.75183764 27.96056999 23.72066394 28.58014219 23.35552802 28.80080497 22.5407497
F6 0 0 0 0 0 0 0 0
F7 0.000183214 0.00046826 5.21957E‑05 0.000267952 1.93001E‑05 4.18375E‑05 4.34409E‑05 2.89613E‑06
F8 −6611.55237 −7473.179641 −7089.851035 −9527.994796 −8402.996499 −10631.92435 −7543.986097 −10393.55237
F9 0 0 0 0 0 0 0 0
F10 1.03606E‑11 4.31521E‑11 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15
F11 0 0 0 0 0 0 0 0
F12 0.434235978 0.009326528 0.186761494 8.6929E‑11 0.134381986 2.3543E‑12 0.204381175 1.25909E‑20
F13 2.608189819 0.062913512 1.538478871 4.31207E‑10 2.172645757 6.71697E‑12 2.975194915 0.09737116
F14 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838
F15 0.001275838 0.000307486 0.000307486 0.000307486 0.000307486 0.000307486 0.001223173 0.000307486
F16 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453
F17 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358
F18 3 3 3 3 3 3 3 3
F19 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148
F20 −3.321919745 −3.321995172 −3.321994915 −3.321995172 −3.321994196 −3.321995172 −3.32199447 −3.20310205
F21 −10.152767 −10.15319968 −10.15319965 −10.15319968 −5.055197729 −10.15319968 −10.15319968 −10.15319968
F22 −10.39964661 −10.40294057 −10.40294057 −10.40294057 −10.40293405 −10.40294057 −10.40294057 −10.40294057
F23 −10.53569662 −10.53640982 −10.5364098 −10.53640982 −10.53640982 −10.53640982 −10.53640982 −10.53640982
SI 17 13 13 14

POA: Pelican optimization algorithm, DE: Differential evolution, SA: Search agent
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100, 500, 800, and 1000. In all the cases, as shown in Fig. 1, 
when SA is set at 20, POA-DE has superior performance 
to POA across the board, and the differences are enhanced 
with more iterations. The two regions circled in red in the 
figure represent such enhancements; POA-DE’s superior 
optimization results over the POA mechanism are indicated 
here. The same observation can be made when comparing 
the results presented in Fig. 2, where the results for SA = 30 
are shown, which points to the fact that, in most of  the test 
function cases, as well as at higher iteration numbers, POA-
DE outperforms POA. This is the reason why the specific 
substantial enhancements pointed out by me underscore the 
efficiency of  the studied hybrid design with a moderately 
larger quantity of  populace. Figs.  3 and 4 sustain this 
emphasis on tremendous enhancements for SA values of  
50 and 80, respectively. As indicated by the red crosses, the 
number of  significant improvements starts to appear more 

frequently as the iteration count increases. This implies that 
with a large population size, the hybrid algorithm has more 
ability to search and optimally solve complex functions. The 
hybrid algorithm outperforms all the other algorithms in each 
of  the settings, and the largest SA of  80 yields significant 
improvements from the POA to the POA-DE, as seen in 
Fig. 4. These figures combined show that POA-DE has a 
substantial improvement over the original POA, although 
the number of  significant improvements increases with 
population size and iteration count, effectively substantiating 
the use of  the hybrid model in the different test functions.

6. REAL-WORLD APPLICATION

To evaluate the real-world effectiveness of  the proposed 
POA-DE algorithm, it was applied to practical engineering 

Fig. 1. Significant improvements in optimization performance: POA versus POA-DE for 20 SA. POA: Pelican 
optimization algorithm, DE: Differential evolution, SA: Search agent.
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and healthcare problems. These applications show that 
POA-DE works better and finds solutions faster than 

the original POA and other similar methods, especially in 
complex situations with many variables and limitations.

Fig. 2. Significant improvements in optimization performance: POA versus POA-DE for 30 SA. POA: Pelican 
optimization algorithm, DE: Differential evolution, SA: Search agent.
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6.1. Medical Diagnosis–Feature Selection for Cancer 
Classification
POA-DE was employed to optimize feature selection for 
the Wisconsin breast cancer diagnostic dataset. This dataset 
involves diagnosing tumors as benign or malignant using 30 
real-valued features. Feature selection was modeled as a binary 
optimization problem, aiming to maximize classification 
accuracy and minimize the number of  selected features. 
A support vector machine served as the classifier, with 10-fold 
cross-validation to evaluate performance, as shown in Table 6.

The results show that POA-DE not only improved 
classification accuracy by ~1.7% over POA but also achieved 

it using fewer features, which reduces computational burden 
and enhances model interpretability. Its robust search 
capability in high-dimensional and noisy medical data makes 
it a promising candidate for clinical decision support systems.

6.2. Renewable Energy–Optimal Placement of Wind 
Turbines
POA-DE was applied to optimize the layout of  wind turbines 
in a wind farm to maximize energy output while considering 
wake effect losses, turbine spacing constraints, and land area 
limitations. The wind flow was simulated based on prevailing 
direction and velocity using a simplified Jensen wake model, 
as shown in Table 7.

Fig. 4. Significant improvements in optimization performance: POA versus POA-DE for 80 SA. 
POA: Pelican optimization algorithm, DE: Differential evolution, SA: Search agent.

Fig. 3. Significant improvements in optimization performance: POA versus POA-DE for 50 SA. POA: Pelican optimization 
algorithm, DE: Differential evolution, SA: Search agent.



Rebin, et al.: Enhancing POA

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 113

TABLE 7: Performance comparison of POA‑DE 
and other metaheuristics in wind farm layout 
optimization
Algorithm Energy output 

(MWh/year)
Improvement (%) Runtime (s)

POA‑DE 14,275 +12.1 78.6
POA 12,735 ___ 84.2
DE 13,154 +3.3 92.4
PSO 13,079 +2.7 101.5

POA: Pelican optimization algorithm, DE: Differential evolution, PSO: Particle swarm 
optimization

TABLE 6. Comparison of POA‑DE and other 
algorithms for feature selection in breast cancer 
classification
Algorithm Accuracy (%) Selected 

features
Standard 
deviation

POA‑DE 98.6 7 0.41
POA 96.9 9 0.57
GA 94.5 11 0.81
PSO 95.8 10 0.66

POA: Pelican optimization algorithm, DE: Differential evolution, PSO: Particle swarm 
optimization, GA: Genetic algorithm

Objective function:
•	 Maximize total annual energy production
•	 Penalize overlap or suboptimal spacing that increases 

wake losses.

The hybrid POA-DE produced layouts that generated up to 
12.1% more energy compared to the original POA and also 
converged faster to near-optimal solutions. This application 
highlights POA-DE’s ability to efficiently solve complex, 
non-linear, constrained engineering problems, contributing to 
the planning of  sustainable renewable energy infrastructures.

7. CONCLUSION

This research presents a novel metaheuristic technique called 
POA-DE. This novel technique integrates advantageous 
aspects from both algorithms, leading to enhanced 
optimization performance in terms of  solution quality and 
convergence as compared to the original POA. The results 
of  the trials conducted on several benchmark functions 
demonstrate POA-DE’s effectiveness in tackling complex 
optimization issues. The effectiveness of  combining DE’s 
exploitative capabilities with POA’s exploratory qualities to 
enhance metaheuristic optimization approaches has been 
demonstrated. Future research will focus on enhancing 
and advancing numerous areas, including the following: 

initially, the algorithm’s performance will be evaluated by 
subjecting it to a substantial collection of  intricate real-world 
optimization problems. This will allow for the assessment 
of  the technique’s adaptability and reliability. Furthermore, 
diverse methodologies for configuring distinct parameters 
and implementing various types of  adaptivity for the 
algorithm will be explored. One recommended area for 
future research is the integration of  POA-DE with other 
metaheuristic approaches to provide more advanced and 
versatile optimization algorithms. Furthermore, it would 
be beneficial to do research on parallel and distributed 
computing approaches to effectively use them for optimizing 
large-scale algorithms and improving their performance. 
Future work will focus on several key directions to address 
current limitations. These include applying the algorithm to 
real-world optimization tasks to assess practical robustness, 
conducting parameter sensitivity analyses, exploring adaptive 
mechanisms, and extending the comparison with other 
advanced metaheuristics. In addition, incorporating statistical 
tests will ensure that performance improvements are 
significant and not due to randomness. These enhancements 
aim to further establish POA-DE as a reliable and scalable 
optimization framework.
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