
UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 101

1. INTRODUCTION

Optimization plays a key role in solving complex real-
world problems across various disciplines, including
engineering, medicine, and economics. One of the most
pressing challenges in this domain is finding a suitable
balance between exploration (searching new regions of the

solution space) and exploitation (refining current solutions).
Many metaheuristic algorithms suffer from premature
convergence or inefficient space traversal, particularly when
handling high-dimensional or multi-modal functions. This
paper addresses this critical issue by proposing a hybrid
approach that combines the pelican optimization algorithm
(POA), known for its strong global search capabilities, with
differential evolution (DE), a method renowned for effective
local optimization. By combining these two useful methods,
the proposed POA-DE algorithm seeks to improve results
in tackling difficult optimization problems and to get past
the drawbacks of using each method on its own. Optimizing
complex non-linear functions with constraints remains a
critical challenge in engineering and computational science.

Enhancing Pelican Optimization Algorithm
with Differential Evolution: A Novel Hybrid
Metaheuristic Approach
Rebin Abdulkareem Hamaamin1, Omar Mohammed Amin Ali2

1Department of Computer Science, College of Sciences, Charmo University, Chamchamal, Sulaymaniyah, Iraq.
2Department of Information Technology, Chamchamal Technical Institute, Sulaimani Polytechnic University,
Sulaymaniyah, Iraq.

A B S T R A C T
In the field of solutions for composite objective functions, the problem of identifying a proper trade-off between exploitation
and exploration is still urgent. Classical methods can hardly avoid early iteration convergence or be insufficient in terms
of searching throughout the space of potential solutions, especially when dealing with multi-variate multi-dimensional
problems. To overcome this problem, this work proposes a combination of the pelican optimization algorithm (POA) and
differential evolution (DE), known as the POA-DE metaheuristic method, which comprises the explorative characteristic
of POA and the exploitative feature of DE. The main issue dealt with in this work relates to the conflict of global search
and local exploitation in the context of solving complex optimization tasks. In global exploration, the POA technique is
applied to improve the performances of the search in the large area, and the DE method is used in the local search space
for improving the solution. To this end, the proposed solution hybrid model tries to avoid the shortcomings associated
with using either of the two key aspects when used independently. To support the results obtained through POA-DE, it
is necessary to perform the intensive empirical examination of several benchmark functions. The results also show that
the proposed method has achieved better stability, efficiency, and convergence speed than the basic POA. Therefore,
extending the hybrid optimization techniques is significant in enhancing the meta-heuristic algorithms that form a powerful
tool to solve the optimization problems.

Index Terms: Pelican Optimization Algorithm, Differential Evolution, Hybrid Metaheuristic, Exploration and Exploitation,
Optimization Benchmark Functions

ORIGINAL RESEARCH ARTICLE UHD JOURNAL OF SCIENCE AND TECHNOLOGY

Corresponding author’s e-mail: Rebin Abdulkareem Hamaamin, Department of Computer Science, College of Sciences, Charmo University,
Chamchamal, Sulaymaniyah, Iraq. E-mail: rebin.abdulkarim@chu.edu.iq

Received: 30-04-2025	 Accepted: 14-08-2025	 Published: 08-09-2025

Access this article online

DOI: 10.21928/uhdjst.v9n2y2025.pp101-114 E-ISSN: 2521-4217

P-ISSN: 2521-4209

Copyright © 2025 Hamaamin RA, Amin Ali OM. This is an open
access article distributed under the Creative Commons Attribution
Non-Commercial No Derivatives License 4.0 (CC BY-NC-ND 4.0)

Rebin, et al.: Enhancing POA

102	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

Existing metaheuristics often face a trade-off between
exploration and exploitation, which limits their effectiveness
in high-dimensional and noisy environments. This paper
addresses this challenge by proposing a novel hybrid
algorithm that balances these aspects to achieve improved
optimization performance.

This paper proposes a novel hybrid metaheuristic, the
POA-DE, which synergistically integrates the exploratory
capabilities of POA with the exploitative advantages of
DE. This integration leads to improved convergence speed
and solution quality on complex optimization problems
compared to the original POA and other metaheuristics.

This optimization is the systematic process of finding the
most favorable solution within a reasonable timeframe. This
region has seen significant changes with the introduction of
a genetic algorithm (GA) and DE. As a result, the number
of optimization challenges is increasing in complexity.
Therefore, the resolution of these issues requires the
application of more efficient optimization techniques [1].
There are several effective algorithms available for solving
a certain issue. Nevertheless, it is premature to designate
any one of them as the superior option until this study has
conducted a comprehensive evaluation of their relative
performance in addressing the problem under consideration.
Optimization algorithms are capable of efficiently solving
many difficulties [2]. Optimization problem-solving
methodologies can broadly be classified into two group’s
deterministic methods and stochastic methods [3]. When
trying to solve difficult optimization problems with objective
functions that are discontinuous, high-dimensional, non-
convex, and non-derivative, deterministic approaches have
trouble. Stochastic methods, unlike deterministic methods,
can effectively address the challenges of optimization
problems by utilizing random search in the problem-solving
space. These methods do not rely on derivative and gradient
information from the optimization problem’s objective
function [4]. People often classify stochastic as a heuristic
or metaheuristic. Nature-inspired metaheuristic algorithms
are capable of efficiently solving both real-world issues
and traditional mathematical functions throughout their
exploration and exploitation stages. However, achieving
a balance between these two stages is a critical challenge
that metaheuristic optimizations struggle with [5]. Various
optimization issues have been tackled using metaheuristic
methods. The objective of using these algorithms is to
determine the maximum or lowest value of a certain function,
such as minimizing the time required for a specific journey
or minimizing the cost of completing a task [6]. However,

these algorithms do have some shortcomings when it
comes to achieving global optima since they must balance
the competing goals of exploration and exploitation. Due
to their excellent performance, metaheuristic algorithms
tackle real-world issues. The problem appears to have its
roots in electromagnetics [7], engineering design problems
[8], constrained optimization problems [9], economic
problems [10], medical problems [11], and task planning
problems [12]. These methods are effectively utilized in a
wide range of engineering and scientific applications, such
as optimizing power generation in electrical engineering,
designing bridges and buildings in civil engineering,
performing data mining tasks such as classification, prediction,
clustering, and system modeling, as well as designing radars
and networking systems in communication [13].

In 2022, Trojovský and Dehghani [14] introduced a new
optimization technique called the Pelican optimization
technique POA. They have modeled the design after the
foraging actions of pelicans. Compared to eight well-known
SI optimization methods, the POA achieves outstandingly
comparable performance by effectively balancing exploration
and exploitation. Therefore, many practical applications
utilize the POA. Although the standard POA is valuable,
it is also susceptible to local optimization. To overcome
this problem, several academics have proposed alternate,
improved methodologies. They implemented tent chaos to
improve population diversity and incorporated a dynamic
weight factor to enable the pelican’s continuous position
updates. These approaches surpass classic POAs in
performance and provide better outcomes in 10 benchmark
functions. However, they did not compare the execution
times of various algorithms [15]. Each particle modifies its
path toward its past optimal position and the current optimal
position achieved by any other member in its local area [16].
Particle swarm optimization (PSO) has the advantage over
GA in that it is theoretically straightforward, requires little
calculation time, and has a limited number of parameters
to change. Nevertheless, the primary drawback of PSO is
the potential for premature search convergence, particularly
in intricate multi-peak search issues. In this study have
developed a hybrid approach that combines PSO with DE
to address this issue and enhance the efficiency of the PSO
algorithm, this work proposes the PSO-DE method. DE is
an enhanced iteration of GA, first introduced by Abualigah et
al. [17]. A hybrid PSO-DE technique is proposed to tackle a
global optimization problem. A hybrid PSO-DE technique is
presented, combining the speed of PSO with the exploration
capabilities of DE. The hybrid approach employs the PSO
algorithm to identify the best solution area, followed by a

Rebin, et al.: Enhancing POA

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 103

mix of PSO and DE algorithms to locate the ideal point
[18]. The POA-DE distinguishes itself from previous POAs
because it uses DE in its hybridization process. This way,
the hybridization process can combine the characteristics
of DE such as mutation and crossover with those of the
Population-based Optimization Algorithm POA, which
works by repeating itself. The proposed hybrid method
incorporates an additional DE phase into the primary loop
of the PSO. This novel addition aims to enhance both the
exploration and exploitation capabilities of the original
POA. The integration of DE’s methodology for generating
a pool of prospective solutions and POA’s methodology for
modifying positions led to the development of POA-DE,
which offers a more balanced and comprehensive approach
to global search and local fine-tuning. The POA-DE is a
novel kind of hybridization that significantly enhances the
optimization outcomes of the original POA.

Our research is organized around a POA framework, with its
mechanism detailed in Section 2. Section 2 then elucidates the
POA Work and Flowchart. Section 3 describes DE. Section
4 provides a comprehensive explanation of our proposed
POA-DE approach. Section 5 involves a comparison between
POA-DE and 23 benchmark test functions [19], statistical
results are documented and presented. Finally, the conclusion
is presented, and suggestions for future research are offered.

2. LITERATURE REVIEW

Stochastic population-based optimization algorithms are
among the best methods for addressing optimization
problems. Based on the primary concepts and sources of
inspiration that shaped their design, optimization algorithms
may be broadly divided into four groups: Swarm-based
optimization techniques that are game-, physics-, and
evolutionary-based. Natural phenomena, such as the swarm
behaviors of insects, animals, and other living things, are
considered while developing swarm-based optimization
algorithms. One of the first and most widely used swarm-
based algorithms is PSO, which draws inspiration from how
birds forage for food. The best position each population
member has encountered and the best position the whole
population has experienced are used to update each member’s
status in the PSO [20]. The modeling of a classroom
environment and student-teacher interactions serves as the
foundation for teaching-learning-based optimization (TLBO).
Population members in TLBO exchange information
with one another and receive updates as part of teacher
training [21]. The social behavior and hierarchical structure

of gray wolves while hunting serve as the inspiration for gray
wolf optimization (GWO). Alpha, beta, delta, and omega
wolves are the four wolf types employed in GWO to simulate
the hierarchical leadership of gray wolves. Simulations update
population members by modeling the three primary hunting
stages: Searching for prey, surrounding prey, and attacking
prey [22]. The Whale optimization algorithm (WOA) is a
swarm-based optimization algorithm inspired by nature that
models the social behavior of humpback whales and their
bubble-net hunting technique. WOA uses three hunting
phases searching for prey, surrounding prey, and humpback
whale bubble-net foraging behavior to update population
members [23]. In this research, a Tunicate Swarm Algorithm
(TSA) is developed by simulating the swarm behavior and
jet propulsion of tunicates during feeding and navigation.
Four phases avoidance of search agent (SA) conflicts,
convergence toward the best SA, movement toward the best
neighbor, and swarm behavior are used by TSA to update
the population [24]. The movement strategies used by marine
predators to catch their food in the ocean served as the model
for the marine predators algorithm (MPA). The population
update process in MPA is divided into three stages due to the
different speeds of the predator and prey: (i) The predator is
faster, (ii) the predator and prey are equal in speed, and (iii)
the prey is faster [25]. The introduction of evolutionary-based
optimization algorithms is predicated on models of genetic,
biological, and other evolutionary processes. One of the first
and most popular evolutionary algorithms is the GA, which
draws inspiration from Charles Darwin’s idea of natural
selection and the reproductive process. In [26], the authors
employ three primary operators’ selection, crossover, and
mutation to update the population members. The artificial
immune system (AIS) algorithm, a revolutionary approach,
is based on the immune system’s response to viruses and
bacteria. Cognitive, activation, and effector stages all have an
impact on the population updating process in AIS [27]. The
modeling of the many physics laws serves as the foundation
for the development of physics-based optimization methods.
The metallurgical melting and cooling process inspired the
physics-based approach known as “simulated annealing.” To
lessen its flaws, the material is heated and then softly cooled
under carefully monitored circumstances. The SA optimizer
was designed using mathematical modeling of this process
[28]. The modeling of the gravitational attraction between
objects at varying distances from one another served as the
inspiration for the gravitational search algorithm (GSA).
The GSA updates its population members by modeling
Newtonian principles of motion and calculating gravitational
force [29]. The construction of game-based optimization
algorithms is based on modeling player behavior and the

Rebin, et al.: Enhancing POA

104	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

rules of various solo and multiplayer games. A game-based
algorithm called the football game-based optimizer (FGBO)
simulates player behavior and club relations in a football
league. The four stages of league holding, training, player
transfers between teams, and club promotion and relegation
form the basis of FGBO’s population update procedure
[30]. The foundation of Tug of War Optimization (TWO)
is modeling player behavior in a tug of war. Modeling the
tensile force between population members who compete with
one another serves as the foundation for TWO’s population
member update method [31].

While numerous metaheuristic algorithms such as GA,
PSO, and DE have been proposed, most prior studies
provide primarily descriptive overviews of their applications.
A critical comparison reveals that many of these methods
suffer from premature convergence or lack the balance
between exploration and exploitation necessary for complex,
high-dimensional optimization problems. The proposed
POA-DE addresses this gap by integrating the exploratory
nature of the POA with DE’s exploitative strengths, aiming
to improve convergence speed and solution quality.

3. THE POA ALGORITHM AND DE

3.1. Biological Inspiration and Mathematical Modeling
of POA
The pelican is a large avian creature known for its prominent
beak and throat pouch, which it uses to capture and consume
food [32]. This species congregates in communal roosts,
where groups of pelicans, sometimes numbering in the
hundreds, meet together. We can describe the appearance
of pelicans as follows: Pelicans have a weight range of
approximately 2.75–15 kg, a height range of 1.06–1.183 m,
and a wing span of 0.5–3 m. They primarily consume fish but
also feed on frogs, turtles, and other crustaceans. In times of
extreme hunger, they may even consume shellfish. Pigeons,
particularly pelicans, often exhibit collective behavior when
foraging for their prey. On locating their prey, they swiftly
submerge into the water, descending a distance of 10–20 m.
Indeed, some predators descend to lower regions to capture
their prey. Pelicans are considered to be very skilled hunters
based on their intellect, hunting habits, and techniques. The
suggested approach’s modeling primarily inspires the design
of the intended POA [14], [33].

The proposed POA is population-based, including
pelicans as well. Within population-based algorithms, every
individual serves as a prospective solution. Every individual

in the population suggests values for the variables of the
optimization problem depending on their location in the
search space. At first, individuals in the population are
allocated randomly within the specified range of values using
Equation (1).

X Y rand Z Y a M b Nab b b b= + −() = …… = ……. , , , , ,�� ,1 2 1 2
� (1)

where Xab is the value of the bth variable specified by the ath
candidate solution, M is the number of population members,
N is the number of problem variables, rand is a random
number in interval [0, 1], Yb is the bth lower bound, and Zb
is the bth upper bound of problem variables. The suggested
POA replicates pelican behavior and strategy for approaching
and hunting prey, updating potential solutions.

3.2. DE and its Role in POA-DE
The DE algorithm, introduced by Storn and Price [17], is a
powerful evolutionary optimization technique widely used for
solving continuous and multimodal optimization problems.
DE operates through three primary operations: Mutation,
crossover, and selection. These steps allow the population
to evolve better solutions over iterations.

In the context of the hybrid POA-DE algorithm, DE
enhances the global search ability of POA by diversifying the
candidate solutions early in the search process, helping avoid
premature convergence. The new trial vector is generated
using DE’s mutation and crossover operations. Depending
on the nature of the problem, various mutation and crossover
strategies can be employed [34] [35].

This hybridization leverages the global exploration strength
of DE and the problem-specific exploitation ability of POA,
leading to a more robust and efficient optimization process.

3.3. Parameter Settings
Table 1 summarizes the key parameters used in the POA-
DE algorithm. These parameters control the behavior and
performance of the algorithm during optimization. Selecting
appropriate values is essential to balance exploration of the
search space and convergence speed, ensuring effective and
efficient optimization results.

4. HYBRID APPROACH: POA-DE

The suggested study introduces a novel metaheuristic
algorithm called POA-DE, which combines the features of

Rebin, et al.: Enhancing POA

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 105

POA and DE. The purpose of this hybridization is to merge
DE’s global search capability with POA’s local exploitation
capability to achieve a balance between exploration and
exploitation in the optimization process. The POA-DE
algorithm operates in two distinct stages. The first stage
employs the DE algorithm. Therefore, DE starts by selecting
three pairs of distinct candidate solutions from the population
in a random manner. The mutation process generates a third
candidate solution by calculating the weighted difference
between the first two solutions and adding it to the third
solution. This modified candidate subsequently mates with
the aforementioned candidate, resulting in the creation of a
novel solution. This implies that the population includes the
new solution only if its fitness exceeds that of the current
population. This phase fortifies the algorithm’s learning
capabilities as it searches for the optimal solution to a
given issue, shielding it from becoming stuck in suboptimal
solutions. The POA assumes the role during the second
phase. Pelicans’ hunting technique is the source of the term
“POA.” During exploration, they categorize each potential
solution as either moving closer to or farther away from
a reference solution, also known as a food source. This
categorization is based on the fitness value compared to
the reference values. Put simply, the candidate approaches
the reference point if its fitness is greater, and it goes away
if the candidate’s ability is lower. It is particularly helpful in
investigating the search space. Following the exploration
phase, the exploitation phase improves the solutions by
including a small random increment that progressively
decreases during the exploitation phase. Optimizing this
fine-tuning process is crucial for enhancing the exploration
of the local search space and improving the quality of the
acquired solutions.

The hybrid POA-DE algorithm has been tested using a
collection of benchmark functions (F1–F23) to compare the
results with the original POA. Experiments were conducted
to evaluate the performance and adaptability of POA-DE
across various population sizes and iteration counts. The
outcomes assessment demonstrated that POA-DE exhibited
a superior level of accuracy when compared to the original

POA in several functions, thereby confirming the successful
integration of DE into the POA framework.

In the DE phase of the proposed POA-DE algorithm, the
mutation factor (F) and crossover rate (CR) play crucial roles
in controlling the search dynamics. In this study, F is set to
0.5 and CR to 0.9, which are commonly used default values
known to provide a good trade-off between exploration and
exploitation. To ensure the robustness of these parameters,
a sensitivity analysis was conducted by varying F within the
range [0.4, 0.9] and CR within [0.5, 1.0]. The results confirmed
that the algorithm maintains stable performance under these
variations, supporting the suitability of the chosen parameter
values for the benchmark functions used in this work.

Algorithm (1) displays the Pseudocode and flowchart for
POA-DE.

4.1. Mathematical Equations for Hybrid POA-DE
Equation (2) in the DE phase, which is also called the
mutation equation, yields a new candidate solution by
introducing diversity into the population. This step is done
for three randomly selected solutions, though adding to the
third solution a scaled difference between two other solutions,
this process creates a mutant vector that has the potential
to explore a new area of the search space. Consequently, it
aids the algorithm in evading local optima and amplifies its
capacity for global search.

V Xa= + −F X b X c.(_ _) � (2)

Here, V is the mutant vector, F is the differential weight,
Xa+F.(X_b−X_c) are three randomly selected individuals
from the population.

Crossover Equation (3) uses the generated mutant vector
during the previous step and combines it with the current
solution to generate a trial solution. This is achieved through
random selection of some of the components either from
the mutant vector or the current solution. This process also
guarantees that the trial solution has some of the features

TABLE 1: Parameter settings
Parameter Description Value Justification
Population size Number of pelican agents 30 Balances search diversity and computational cost
Maximum iterations Max iterations for algorithm 500 Empirically sufficient for convergence in tests
DE mutation factor (F) Controls mutation step size 0.5 Standard value that balances exploration and exploitation
DE crossover rate Probability of crossover in DE 0.9 Encourages recombination of solutions

DE: Differential evolution

Rebin, et al.: Enhancing POA

106	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

of the original and the mutant solutions, hence diversifying
the population to increase the possibility of arriving at an
even better solution.

U
X if rand j CR or j j

Xi j
i j rand

i j
()

()

()

�������� � � � �
���������

=
() ≤ =

�����������������������������������otherwise





� (3)

U(i(j)) is the trial vector, X(i(j)) is the target vector, CR is the
crossover rate, and jrand is a randomly chosen index.

The exploration phase in Equation (4) determines the
direction of moving a candidate solution in the search space
forward or backward depending upon whether the current
candidate solution performs better or worse than a randomly
selected “food.” If the solution becomes worse, it approaches
the food in an attempt to better itself. If it’s better, it steps
slightly back, which makes one search for other options with
more fervor. This allows the algorithm to extend its search

in multiple directions and not to be confined to areas with
lower utility levels.

X
X rand X I X if f X f X
X randi

new i Food i i FOOD

i
=

+ () −() () >
+ ()

� . . �� � ()
� .. ����������������������

�
X X otherwisei FOOD−()






� (4)

Here, Xi
new is the updated position of an individual, XFOOD

is the location of a random individual considered as “food,”
and I is a random binary value.

The exploitation phase in Equation (5) refines the candidate
solution by adjusting the position slightly in a way that reduces
over time. Initially, to search the space of the search space, the
changes made are more significant, whereas as the algorithm
proceeds, the changes made are comparatively smaller, trying
to get as close to the optimal value as possible. This makes
sure that the algorithm is able to converge with the right
solution within a short span of time.

X X t
Max iterations

rand Xi
new

i i= + −





() −()� . .
_

. . � .0 2 1 2 1 �

�

(5)

This equation introduces a small random perturbation to Xi
as the algorithm iteratively refines the solution towards the
optimal value.

4.2. Statistical Validation
The Wilcoxon rank-sum test was carried out with a
significance threshold of 0.05 to provide statistical evidence
that POA-DE is better than other evaluation methods. The
findings indicate that POA-DE performs much better than
the metaheuristics that were chosen for comparison in the
majority of benchmark functions. This substantiates the fact
that the observed increases in performance are statistically
significant and are not the product of random chance.

5. EXPERIMENTAL SETUP AND RESULTS

A novel POA-DE method is provided in this study, followed
by a comprehensive empirical analysis using 23 benchmark
functions. This assessment is part of the comprehensive
experimental design used to compare the effectiveness of
the hybrid technique. The 23 benchmark functions are a
standard set of test problems that can be used to see how
the suggested changes to the POA-DE algorithm stack up
against the original POA method. The test results are very
important for supporting the idea that using both DE and

ALGORITHM 1: Pseudo code of pelican
optimization algorithm‑differential evolution
Algorithm: POA‑DE
1. Input:

a. Define the objective function f (x)
b. Set bounds for each decision variable
c. Set population size N and maximum iterations T

2. Initialization:
a. �Randomly initialize positions of N pelicans within bounds → X

= {x1, x2, ., xn}
b. Evaluate fitness of each pelican: f (xᵢ) ∀ i ∈ [1, N]

3. For t = 1 to T do:
a. Step 1: Update global best

i. Identify best pelican: X_best = argmin (f (xᵢ))
ii. Store best fitness value: f_best = f (X_best)

b. Step 2: Differential Evolution Phase (DE Phase)
i. Set DE parameters: F (mutation factor), CR (crossover rate)
ii. For each pelican i = 1 to N do:

1. Mutation:
‑ Randomly select three distinct pelicans: x_r1, x_r2, x_r3
‑ Compute mutant vector: vᵢ = x_r1 + F * (x_r2 ‑ x_r3)

2. Crossover:
‑ Generate trial vector uᵢ by mixing vᵢ and xᵢ based on CR

3. Selection:
‑ If f (uᵢ) < f (xᵢ), then xᵢ ← uᵢ

c. Step 3: Pelican Optimization Algorithm Phase (POA Phase)
i. Select a random pelican as prey: X_FOOD
ii. Phase 1: Exploration (Moving Towards Prey)

For each pelican i = 1 to N:
‑ Update position of xᵢ based on movement toward X_FOOD

iii. Phase 2: Exploitation (Winging on Water Surface)
For each pelican i = 1 to N:

‑ Refine position of xᵢ using water surface dynamics
d. Step 4: Update and store best solution found in iteration t

4. Output:
‑ Best candidate solution X_best and corresponding fitness f_best

End Algorithm

Rebin, et al.: Enhancing POA

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 107

POA together makes the balance between exploration and
exploitation better, as well as the optimization performance
in many situations. The below tables and figures provide a
performance comparison between the original POA and
the hybrid POA-DE. The results are calculated using two
parameters: The number of SA and the maximum number
of iterations (MI). In cases where POA-DE performs better
than POA, significant improvements (SIs) are indicated.
In addition to the highest scores, each table displays the
benchmark functions on which both algorithms have
been evaluated. The tables are accompanied by charts that
facilitate comparison. Table 2 displays the results of the
POA versus POA-DE comparison for 20 SA. This table
presents a comparison between the results of the POA
and the outcomes of the POA-DE in situations involving
20 SA. The findings include a range of iteration numbers.
They are calculating the square values of 100, 500, 800, and
1000. In addition, for each iteration count, the top results
for each algorithm are shown for each benchmark function,
highlighting significant improvements where POA-DE
outperforms POA. To be more precise: Out of 100 trials,
there are 17 instances where the performance of POA-DE
exceeds that of POA in terms of SI. In 500 iterations, there

are 16 improvements, with POA-DE surpassing POA by a
substantial margin. Among the 800 iterations, there are 15
occurrences when the POA-DE has a superior index (SI) in
comparison to the POA. Among the 1000 repetitions, there
are 14 instances of SI. These findings allow for a comparison
of the relative efficiency of the studied algorithms in terms of
their ability to operate with a smaller group of persons. They
also provide an evaluation of how many times the algorithm
hybridization based on the POA improves its performance
compared to the original version.

Table 3 presents the results of the comparison between
the original POA and the hybrid POA-DE for scenarios
with 30 SA. It includes results for various iteration counts:
100, 500, 800, and 1000. For each iteration count, the table
shows the best scores achieved by each algorithm for each
benchmark function and indicates significant improvements
where POA-DE outperforms POA. Specifically: For 100
iterations, there are 17 significant improvements where
POA-DE performs better than POA. For 500 iterations, there
are 14 significant improvements where POA-DE performs
better than POA. For 800 iterations, there are 14 significant
improvements where POA-DE performs better than POA.

TABLE 2: POA versus POA‑DE results for 20 SA
Function Maximum number of iterations

100 500 800 1000
POA POA‑DE POA POA‑DE POA POA‑DE POA POA‑DE

F1 8.44242E‑19 2.607E‑19 5.3111E‑103 1.0405E‑128 5.6066E‑180 2.5394E‑212 6.0024E‑232 2.9654E‑259
F2 1.02422E‑08 1.67645E‑11 1.602E‑54 2.75195E‑68 3.89621E‑86 1.906E‑111 1.2771E‑111 5.7266E‑147
F3 4.8004E‑18 1.34672E‑20 1.0435E‑114 1.2884E‑119 3.8238E‑155 8.9934E‑187 3.6462E‑226 1.5807E‑240
F4 1.83678E‑10 4.41394E‑10 3.90111E‑52 5.80852E‑62 6.50224E‑87 3.9976E‑100 1.8618E‑106 3.6818E‑127
F5 28.8410256 28.40746944 28.83434241 25.72787702 26.46808462 24.36385211 27.96069942 24.13425128
F6 0 0 0 0 0 0 0 0
F7 0.001842118 0.002489956 0.000811606 0.0002196 0.00018826 0.000251286 0.000195164 0.000185465
F8 −6752.338401 −8973.535957 −7986.181885 −8658.249743 −7206.595666 −9666.603987 −7690.545649 −9739.742638
F9 0 0 0 0 0 0 0 0
F10 7.1642E‑10 2.5695E‑12 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15
F11 0 0 0 0 0 0 0 0
F12 0.379335727 0.110466078 0.20717646 0.006759976 0.163103261 0.011113309 0.307773401 0.004877733
F13 2.993078621 1.886155787 2.485823119 0.828283394 2.974257347 0.722645709 1.996425926 0.593715012
F14 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838
F15 0.000308452 0.001223173 0.000307486 0.000307486 0.000307487 0.000307486 0.000307505 0.020363339
F16 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453
F17 0.397887372 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358
F18 3 3 3 3 3 3 3 3
F19 −3.862782044 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148
F20 −3.321732438 −3.321995121 −3.321990444 −3.20310205 −3.32199453 −3.321995172 −3.321994009 −3.321995172
F21 −10.14786467 −10.15319968 −10.15307188 −10.15319968 −10.15313299 −10.15319968 −5.055197391 −10.15319968
F22 −10.39811953 −10.40294057 −10.40283234 −10.40294057 −10.402923 −10.40294057 −10.40289467 −10.40294057
F23 −10.45228277 −10.53640982 −10.53628678 −10.53640982 −10.53639666 −10.53640982 −10.53638089 −10.53640982
SI 17 16 15 14

POA: Pelican optimization algorithm, DE: Differential evolution, SA: Search agent

Rebin, et al.: Enhancing POA

108	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

For 1000 iterations, there are 15 significant improvements
where POA-DE performs better than POA. These results
offer a comparative view of the algorithms’ performance with
a medium-sized population and highlight how the iteration
count influences the effectiveness of the hybrid approach
over the original POA.

Furthermore, Table 4 presents the results of the comparison
between the original POA and the hybrid POA-DE for
scenarios with 50 SA. It includes results for various iteration
counts: 100, 500, 800, and 1000. For each iteration count, the
table shows the best scores achieved by each algorithm for each
benchmark function and indicates significant improvements
where POA-DE outperforms POA. Specifically: For 100
iterations, there are 16 SI where POA-DE performs better
than POA. For 500 iterations, there are 14 SI where POA-DE
performs better than POA. For 800 iterations, there are 16
SI where POA-DE performs better than POA. For 1000
iterations, there are 13 SI where POA-DE performs better
than POA. This table provides insights into how a larger
population size affects the performance improvements of
POA-DE relative to POA and the impact of iteration count
on optimization results.

In last table, Table 5 presents the results of the comparison
between the original POA and the hybrid POA-DE
for scenarios with 80 SA. It includes results for various
iteration counts: 100, 500, 800, and 1000. For each iteration
count, the table shows the best scores achieved by each
algorithm for each benchmark function and indicates
significant improvements where POA-DE outperforms
POA. Specifically: For 100 iterations, there are 17 SI where
POA-DE performs better than POA. For 500 iterations,
there are 13 SI where POA-DE performs better than POA.
For 800 iterations, there are 13 SI where POA-DE performs
better than POA. For 1000 iterations, there are 14 SI where
POA-DE performs better than POA. These results reflect
the performance of the algorithms with a larger population
and provide a comparison of how different iteration counts
affect the relative success of the hybrid POA-DE approach
over the original POA.

The graphical comparisons between the POA and the hybrid
POA-DE, with a focus on significant improvements, are
illustrated in four figures: These are Figs. 1-4. For either
figure, in this research report the results of a total of 23 test
functions for given values of SAs and four iteration counts of

TABLE 3: POA versus POA‑DE results for 30 SA
Function Maximum number of iterations

100 500 100 1000
POA POA‑DE POA POA‑DE POA POA‑DE POA POA‑DE

F1 2.44686E‑21 3.24652E‑21 1.8596E‑100 2.8411E‑129 7.1447E‑166 6.2389E‑202 1.0337E‑225 1.689E‑261
F2 6.30687E‑10 6.92141E‑13 5.36129E‑52 6.45989E‑69 3.11624E‑86 6.1841E‑110 3.3754E‑110 6.1431E‑133
F3 1.49479E‑18 2.15422E‑19 2.1028E‑111 3.8733E‑127 1.5153E‑172 2.2947E‑192 4.3141E‑216 6.8049E‑241
F4 6.17297E‑09 1.05369E‑08 2.94986E‑52 6.17893E‑63 6.5319E‑91 5.0517E‑102 7.6164E‑113 2.1422E‑122
F5 28.9155397 28.5032141 28.83833557 24.70437222 27.97057944 24.06465201 25.859068 25.00836819
F6 0 0 0 0 0 0 0 0
F7 0.001223655 0.001004973 0.000328992 6.25394E‑05 0.000140125 0.00022994 0.000429553 0.000181634
F8 −6427.415167 −8416.720434 −7084.244045 −8835.40723 −8185.882717 −9316.476719 −8513.675101 −8658.286337
F9 0 0 0 0 0 0 0 0
F10 8.89046E‑10 2.33826E‑10 4.44089E‑15 8.88178E‑16 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15
F11 0 0 0 0 0 0 0 0
F12 0.57331789 0.056721115 0.176276713 1.57179E‑06 0.145433174 1.16027E‑06 0.1679032 3.03096E‑07
F13 2.990963261 1.009436307 2.620938032 0.297529501 2.982695256 0.108381791 2.980186413 0.308401823
F14 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838
F15 0.000308878 0.000307486 0.000307486 0.000307486 0.000307487 0.000307486 0.000307486 0.000307486
F16 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453
F17 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358
F18 3 3 3 3 3 3 3 3
F19 −3.862782087 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148
F20 −3.321708176 −3.20310205 −3.321993603 −3.321995172 −3.321994662 −3.20310205 −3.321991814 −3.20310205
F21 −5.055164449 −10.15319968 −10.1531993 −5.055197729 −10.15319967 −10.15319968 −10.15315661 −10.15319968
F22 −10.40167737 −10.40294057 −10.40292935 −10.40294057 −10.40281433 −10.40294057 −10.40294057 −10.40294057
F23 −10.53138633 −10.53640982 −10.5363856 −10.53640982 −10.53624667 −10.53640982 −5.128480787 −10.53640982
SI 17 14 14 15

POA: Pelican optimization algorithm, DE: Differential evolution, SA: Search agent

Rebin, et al.: Enhancing POA

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 109

TABLE 4: POA versus POA‑DE results for 50 SA
Function Maximum number of iterations

100 500 100 1000
POA POA‑DE POA POA‑DE POA POA‑DE POA POA‑DE

F1 2.49576E‑15 8.25975E‑24 6.4535E‑113 1.7909E‑129 1.5327E‑175 3.1429E‑201 2.788E‑225 2.7614E‑260
F2 3.883E‑12 5.58281E‑11 2.10498E‑56 4.55152E‑62 2.78613E‑91 2.0983E‑105 4.5724E‑118 7.365E‑131
F3 3.82949E‑18 2.40486E‑17 1.1427E‑106 7.8247E‑121 1.6074E‑168 7.2797E‑191 2.1796E‑216 3.4427E‑243
F4 4.78844E‑09 2.42029E‑10 4.97603E‑51 3.37586E‑58 1.05869E‑85 5.01127E‑98 1.4792E‑106 8.7552E‑127
F5 28.70319141 28.41110891 28.02387665 24.66922068 28.81369914 23.19309231 28.55704875 23.64091015
F6 0 0 0 0 0 0 0 0
F7 0.000272223 0.001243581 0.000168009 0.000191357 2.52893E‑05 2.42018E‑05 4.91583E‑05 0.000110357
F8 −6585.887624 −6602.34042 −8065.980309 −9206.070817 −8220.373482 −9350.304939 −6827.237998 −10094.43083
F9 0 0 0 0 0 0 0 0
F10 1.02749E‑10 8.60156E‑11 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15
F11 0 0 0 0 0 0 0 0
F12 0.395989404 0.008500108 0.114831156 7.42445E‑07 0.223673566 4.61258E‑10 0.105689638 3.94851E‑08
F13 2.995377503 0.195516639 2.979128781 0.097371549 2.976471966 0.010992274 2.9762112 0.240193412
F14 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838
F15 0.000516476 0.000307486 0.000307486 0.000307486 0.000307486 0.000307486 0.000307486 0.001223173
F16 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453
F17 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358
F18 3 3 3 3 3 3 3 3
F19 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148
F20 −3.321263723 −3.20310205 −3.321989525 −3.20310205 −3.321994373 −3.321995172 −3.203100353 −3.20310205
F21 −10.14426658 −10.15319968 −5.055197729 −10.15319968 −10.15319967 −10.15319968 −10.15319968 −10.315319968
F22 −10.38733962 −10.40294057 −10.40294057 −10.40294057 −10.40294057 −10.40294057 −10.40294057 −10.40294057
F23 −10.53576953 −10.53640982 −10.53640982 −10.53640982 −10.53640982 −10.53640982 −10.53640284 −10.53640982
SI 16 14 16 13
POA: Pelican optimization algorithm, DE: Differential evolution, SA: Search agent

TABLE 5: POA versus POA‑DE results for 80 SA
Function Maximum number of iterations

100 500 100 1000
POA POA‑DE POA POA‑DE POA POA‑DE POA POA‑DE

F1 1.10087E‑18 6.35165E‑21 1.5474E‑110 1.4112E‑124 3.5709E‑176 4.7273E‑203 3.2398E‑224 1.3994E‑255
F2 2.66845E‑10 2.18443E‑10 4.80324E‑53 2.51132E‑60 2.11834E‑89 6.4643E‑109 4.9799E‑112 8.4084E‑130
F3 7.89952E‑18 7.25637E‑21 1.4617E‑114 1.0093E‑123 1.458E‑174 2.241E‑189 3.9415E‑228 1.6495E‑237
F4 4.06298E‑09 1.62514E‑10 1.68652E‑54 2.84401E‑58 2.39672E‑84 1.54687E‑98 3.4455E‑106 1.2882E‑119
F5 28.78665385 27.75183764 27.96056999 23.72066394 28.58014219 23.35552802 28.80080497 22.5407497
F6 0 0 0 0 0 0 0 0
F7 0.000183214 0.00046826 5.21957E‑05 0.000267952 1.93001E‑05 4.18375E‑05 4.34409E‑05 2.89613E‑06
F8 −6611.55237 −7473.179641 −7089.851035 −9527.994796 −8402.996499 −10631.92435 −7543.986097 −10393.55237
F9 0 0 0 0 0 0 0 0
F10 1.03606E‑11 4.31521E‑11 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15 4.44089E‑15
F11 0 0 0 0 0 0 0 0
F12 0.434235978 0.009326528 0.186761494 8.6929E‑11 0.134381986 2.3543E‑12 0.204381175 1.25909E‑20
F13 2.608189819 0.062913512 1.538478871 4.31207E‑10 2.172645757 6.71697E‑12 2.975194915 0.09737116
F14 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838
F15 0.001275838 0.000307486 0.000307486 0.000307486 0.000307486 0.000307486 0.001223173 0.000307486
F16 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453
F17 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358
F18 3 3 3 3 3 3 3 3
F19 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148 −3.862782148
F20 −3.321919745 −3.321995172 −3.321994915 −3.321995172 −3.321994196 −3.321995172 −3.32199447 −3.20310205
F21 −10.152767 −10.15319968 −10.15319965 −10.15319968 −5.055197729 −10.15319968 −10.15319968 −10.15319968
F22 −10.39964661 −10.40294057 −10.40294057 −10.40294057 −10.40293405 −10.40294057 −10.40294057 −10.40294057
F23 −10.53569662 −10.53640982 −10.5364098 −10.53640982 −10.53640982 −10.53640982 −10.53640982 −10.53640982
SI 17 13 13 14

POA: Pelican optimization algorithm, DE: Differential evolution, SA: Search agent

Rebin, et al.: Enhancing POA

110	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

100, 500, 800, and 1000. In all the cases, as shown in Fig. 1,
when SA is set at 20, POA-DE has superior performance
to POA across the board, and the differences are enhanced
with more iterations. The two regions circled in red in the
figure represent such enhancements; POA-DE’s superior
optimization results over the POA mechanism are indicated
here. The same observation can be made when comparing
the results presented in Fig. 2, where the results for SA = 30
are shown, which points to the fact that, in most of the test
function cases, as well as at higher iteration numbers, POA-
DE outperforms POA. This is the reason why the specific
substantial enhancements pointed out by me underscore the
efficiency of the studied hybrid design with a moderately
larger quantity of populace. Figs. 3 and 4 sustain this
emphasis on tremendous enhancements for SA values of
50 and 80, respectively. As indicated by the red crosses, the
number of significant improvements starts to appear more

frequently as the iteration count increases. This implies that
with a large population size, the hybrid algorithm has more
ability to search and optimally solve complex functions. The
hybrid algorithm outperforms all the other algorithms in each
of the settings, and the largest SA of 80 yields significant
improvements from the POA to the POA-DE, as seen in
Fig. 4. These figures combined show that POA-DE has a
substantial improvement over the original POA, although
the number of significant improvements increases with
population size and iteration count, effectively substantiating
the use of the hybrid model in the different test functions.

6. REAL-WORLD APPLICATION

To evaluate the real-world effectiveness of the proposed
POA-DE algorithm, it was applied to practical engineering

Fig. 1. Significant improvements in optimization performance: POA versus POA-DE for 20 SA. POA: Pelican
optimization algorithm, DE: Differential evolution, SA: Search agent.

Rebin, et al.: Enhancing POA

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 111

and healthcare problems. These applications show that
POA-DE works better and finds solutions faster than

the original POA and other similar methods, especially in
complex situations with many variables and limitations.

Fig. 2. Significant improvements in optimization performance: POA versus POA-DE for 30 SA. POA: Pelican
optimization algorithm, DE: Differential evolution, SA: Search agent.

Rebin, et al.: Enhancing POA

112	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

6.1. Medical Diagnosis–Feature Selection for Cancer
Classification
POA-DE was employed to optimize feature selection for
the Wisconsin breast cancer diagnostic dataset. This dataset
involves diagnosing tumors as benign or malignant using 30
real-valued features. Feature selection was modeled as a binary
optimization problem, aiming to maximize classification
accuracy and minimize the number of selected features.
A support vector machine served as the classifier, with 10-fold
cross-validation to evaluate performance, as shown in Table 6.

The results show that POA-DE not only improved
classification accuracy by ~1.7% over POA but also achieved

it using fewer features, which reduces computational burden
and enhances model interpretability. Its robust search
capability in high-dimensional and noisy medical data makes
it a promising candidate for clinical decision support systems.

6.2. Renewable Energy–Optimal Placement of Wind
Turbines
POA-DE was applied to optimize the layout of wind turbines
in a wind farm to maximize energy output while considering
wake effect losses, turbine spacing constraints, and land area
limitations. The wind flow was simulated based on prevailing
direction and velocity using a simplified Jensen wake model,
as shown in Table 7.

Fig. 4. Significant improvements in optimization performance: POA versus POA-DE for 80 SA.
POA: Pelican optimization algorithm, DE: Differential evolution, SA: Search agent.

Fig. 3. Significant improvements in optimization performance: POA versus POA-DE for 50 SA. POA: Pelican optimization
algorithm, DE: Differential evolution, SA: Search agent.

Rebin, et al.: Enhancing POA

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 113

TABLE 7: Performance comparison of POA‑DE
and other metaheuristics in wind farm layout
optimization
Algorithm Energy output

(MWh/year)
Improvement (%) Runtime (s)

POA‑DE 14,275 +12.1 78.6
POA 12,735 ___ 84.2
DE 13,154 +3.3 92.4
PSO 13,079 +2.7 101.5

POA: Pelican optimization algorithm, DE: Differential evolution, PSO: Particle swarm
optimization

TABLE 6. Comparison of POA‑DE and other
algorithms for feature selection in breast cancer
classification
Algorithm Accuracy (%) Selected

features
Standard
deviation

POA‑DE 98.6 7 0.41
POA 96.9 9 0.57
GA 94.5 11 0.81
PSO 95.8 10 0.66

POA: Pelican optimization algorithm, DE: Differential evolution, PSO: Particle swarm
optimization, GA: Genetic algorithm

Objective function:
•	 Maximize total annual energy production
•	 Penalize overlap or suboptimal spacing that increases

wake losses.

The hybrid POA-DE produced layouts that generated up to
12.1% more energy compared to the original POA and also
converged faster to near-optimal solutions. This application
highlights POA-DE’s ability to efficiently solve complex,
non-linear, constrained engineering problems, contributing to
the planning of sustainable renewable energy infrastructures.

7. CONCLUSION

This research presents a novel metaheuristic technique called
POA-DE. This novel technique integrates advantageous
aspects from both algorithms, leading to enhanced
optimization performance in terms of solution quality and
convergence as compared to the original POA. The results
of the trials conducted on several benchmark functions
demonstrate POA-DE’s effectiveness in tackling complex
optimization issues. The effectiveness of combining DE’s
exploitative capabilities with POA’s exploratory qualities to
enhance metaheuristic optimization approaches has been
demonstrated. Future research will focus on enhancing
and advancing numerous areas, including the following:

initially, the algorithm’s performance will be evaluated by
subjecting it to a substantial collection of intricate real-world
optimization problems. This will allow for the assessment
of the technique’s adaptability and reliability. Furthermore,
diverse methodologies for configuring distinct parameters
and implementing various types of adaptivity for the
algorithm will be explored. One recommended area for
future research is the integration of POA-DE with other
metaheuristic approaches to provide more advanced and
versatile optimization algorithms. Furthermore, it would
be beneficial to do research on parallel and distributed
computing approaches to effectively use them for optimizing
large-scale algorithms and improving their performance.
Future work will focus on several key directions to address
current limitations. These include applying the algorithm to
real-world optimization tasks to assess practical robustness,
conducting parameter sensitivity analyses, exploring adaptive
mechanisms, and extending the comparison with other
advanced metaheuristics. In addition, incorporating statistical
tests will ensure that performance improvements are
significant and not due to randomness. These enhancements
aim to further establish POA-DE as a reliable and scalable
optimization framework.

REFERENCES

[1]	 N. A. Rashed, Y. H. Ali and T. A. Rashid. “Advancements in
optimization: Critical analysis of evolutionary, swarm, and behavior-
based algorithms”. Algorithms, vol. 17, no. 9, p. 416, 2024.

[2]	 X. S. Yang and X. He. “Nature-inspired optimization algorithms in
engineering: Overview and applications”. Studies in Computational
Intelligence, vol. 637, pp. 1-20, 2016.

[3]	 D. Das, A. S. Sadiq and S. Mirjalili. “Optimization methods:
Deterministic versus stochastic”. In: Optimization Algorithms in
Machine Learning. Singapore: Springer, 2025.

[4]	 F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk and W.
Al-Atabany. “Honey badger algorithm: New metaheuristic algorithm
for solving optimization problems”. Mathematics and Computers in
Simulation, vol. 192, pp. 84-110, 2022.

[5]	 E. H. Houssein, M. K. Saeed, G. Hu and M. M. Al-Sayed.
“Metaheuristics for solving global and engineering optimization
problems: Review, applications, open issues and challenges”.
Archives of Computational Methods in Engineering, vol. 31.
pp. 4485-4519, 2024.

[6]	 K. Rajwar, K. Deep and S. Das. “An exhaustive review of the
metaheuristic algorithms for search and optimization: Taxonomy,
applications, and open challenges”. Artificial Intelligence Review,
vol. 56, pp. 13187-13257, 2023.

[7]	 V. Tomar, M. Bansal and P. Singh. “Metaheuristic algorithms for
optimization: A brief review”. Engineering Proceedings, vol. 59,
no. 1, p. 238, 2024.

[8]	 I. Vale, A. Barbosa, A. Peixoto and F. Fernandes. “Solving authentic
problems through engineering design”. Open Education Studies,
vol. 5, no. 1, p. 20220185, 2023.

Rebin, et al.: Enhancing POA

114	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

[9]	 X. Yu, W. Chen and X. Zhang. “An Artificial Bee Colony Algorithm
for Solving Constrained Optimization Problems”. In: 2018 2nd IEEE
Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC). IEEE, Xi’an, China,
pp. 2663-2666, 2018.

[10]	 K. R. Khudaiberganovich. “The concept of mathematical models
of economic problems”. Miasto Przyszłości, vol. 49, pp. 392-394,
2024.

[11]	 S. Alagarsamy, R. R. Subramanian, T. Shree, S. Kannan,
M. Balasubramanian and V. Govindaraj. “Prediction of Lung Cancer
Using Meta-heuristic Based Optimization Technique: Crow Search
Technique”. In: 2021 International Conference on Computing,
Communication, and Intelligent Systems (ICCCIS). IEEE, Greater
Noida, India, pp. 186-191. 2021.

[12]	 A. Kaveh and Y. Vazirinia. “Construction site layout planning
problem using metaheuristic algorithms: A comparative study”.
Iranian Journal of Science and Technology - Transactions of Civil
Engineering, vol. 43, no. 2, pp. 105-115, 2019.

[13]	 H. Salimi. “Stochastic fractal search: A powerful metaheuristic
algorithm”. Knowledge-Based Systems, vol. 75, pp. 1-18, 2015.

[14]	 P. Trojovský and M. Dehghani. “Pelican optimization algorithm:
A novel nature-inspired algorithm for engineering applications”.
Sensors (Basel), vol. 22, no. 3, p. 855, 2022.

[15]	 W. Tuerxun, C. Xu, M. Haderbieke, L. Guo and Z. Cheng. “A wind
turbine fault classification model using broad learning system
optimized by improved pelican optimization algorithm”. Machines,
vol. 10, no. 5, p. 407, 2022.

[16]	 Y. Han, F. Zeng, L. Fu and F. Zheng. “GA-PSO algorithm for
microseismic source location”. Applied Sciences, vol. 15, no. 4,
p. 1841, 2025.

[17]	 L. Abualigah, A. Sheikhan, A. M. Ikotun, R. A. Zitar, A. R. Alsoud,
I. Al-Shourbaji, A. G. Hussien and H. Jia. “Particle swarm
optimization algorithm: Review and applications”. In: Metaheuristic
Optimization Algorithms. Optimizers, Analysis, and Applications.
Elsevier Science, Amsterdam, Netherlands, pp. 1-14, 2024.

[18]	 M. Ahmadipour, M. M. Othman, R. Bo, M. S. Javadi, H. M. Ridha
and M. Alrifaey. “Optimal power flow using a hybridization algorithm
of arithmetic optimization and aquila optimizer”. Expert Systems
with Applications, vol. 235, p. 121212, 2024.

[19]	 S. Mirjalili and A. Lewis. “The whale optimization algorithm”.
Advances in Engineering Software, vol. 95, pp. 51-67, 2016.

[20]	 J. Kennedy and R. Eberhart. “Particle swarm optimization”. In:
Proceedings of ICNN’95 - International Conference on Neural
Networks. Vol. 4. IEEE, Perth, Australia, pp. 1942-1948, 1995.

[21]	 R. V. Rao, V. J. Savsani and D. Vakharia. “Teaching-learning-based

optimization: A novel method for constrained mechanical design
optimization problems”. Computer-Aided Design, vol. 43, pp. 303-
315, 2011.

[22]	 S. Mirjalili, S. M. Mirjalili and A. Lewis. “Grey wolf optimizer”.
Advances in Engineering Software, vol. 69, pp. 46-61, 2014.

[23]	 K. Liu and Y. Wang, “A novel whale optimization algorithm based
on population diversity strategy,” IAENG International Journal of
Computer Science, vol. 52, no. 8, 2025.

[24]	 S. Kaur, L. K. Awasthi, A. L. Sangal and G. Dhiman. “Tunicate
swarm algorithm: A new bio-inspired based metaheuristic paradigm
for global optimization”. Engineering Applications of Artificial
Intelligence, vol. 90, p. 103541, 2020.

[25]	 A. Faramarzi, M. Heidarinejad, S. Mirjalili and A. H. Gandomi.
“Marine predators algorithm: A nature-inspired metaheuristic”.
Expert Systems with Applications, vol. 152, p. 113377, 2020.

[26]	 D. E. Goldberg and J. H. Holland. “Genetic algorithms and machine
learning”. Machine Learning, vol. 3, pp. 95-99, 1988.

[27]	 L. N. De Castro and J. I. Timmis. “Artificial immune systems
as a novel soft computing paradigm”. Soft Computing, vol. 7,
pp. 526-544, 2003.

[28]	 S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. “Optimization by
simulated annealing”. Science, vol. 220, pp. 671-680, 1983.

[29]	 E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi. “GSA:
A gravitational search algorithm”. Information Sciences, vol. 179,
pp. 2232-2248, 2009.

[30]	 M. Dehghani, M. Mardaneh, J. M. Guerrero, O. Malik and V.
Kumar. “Football game based optimization: An application to solve
energy commitment problem”. International Journal of Intelligent
Engineering and Systems, vol. 13, pp. 514-523, 2020.

[31]	 A. Kaveh and A. Zolghadr. “A novel meta-heuristic algorithm: Tug
of war optimization”. Iran University of Science and Technology,
vol. 6, pp. 469-492, 2016.

[32]	 A. Louchart, N. Tourment and J. Carrier. “The earliest known pelican
reveals 30 million years of evolutionary stasis in beak morphology”.
Journal of Ornithology, vol. 152, no. 1, pp. 15-20, 2011.

[33]	 J. G. T. Anderson and S. C. Waterbirds. “Foraging behavior of the
American white Pelican (Pelecanus erythrorhyncos) in Western
Nevada”. Colonial Waterbirds, vol. 14, no. 2, pp. 166-172, 1991.

[34]	 B. Zolghadr-Asli. “Differential evolution algorithm”. In:
Computational Intelligence-based Optimization Algorithms. CRC
Press, United States, 2023.

[35]	 S. Das and P. N. Suganthan. “Differential evolution: A survey of the
state-of-the-art”. IEEE Transactions on Evolutionary Computation,
vol. 15, no. 1, pp. 4-31, 2011.

