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1. INTRODUCTION

Among our senses, vision is the dominant one, playing an 
essential role in every aspect and phase of  our lives. When 
vision is impaired, the quality of  life and the ability to perform 

daily tasks are also affected. The World Health Organization 
reports that at least 2.2 billion people worldwide suffer from 
near or distant vision impairment. It is either untreated or 
could have been avoided in at least 1 billion of  these cases [1].

For ophthalmologists and healthcare centers, designing 
a computer-aided diagnosis strategy to identify retinal 
disorders is highly beneficial, as it enables early detection and 
ensures proper patient treatment [2]. Fortunately, automated 
analysis and diagnosis have been made possible by machine 
learning (ML) algorithms, which let ophthalmologists detect 
diseases early [3]. To address the practical needs of  many 
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patients with retinal illnesses, artificial intelligence (AI) and 
ophthalmology treatment are being combined. A branch of  
ML, i.e., deep learning (DL), finds widespread use in AI. 
One of  its best solutions is convolutional neural networks 
(CNNs), which are excellent at automatically extracting 
features and learning [4]. Currently, CNNs have a great role 
in classifying and diagnosing medical images. The current 
success of  DL technology in ML drives new research and 
development initiatives to enhance computer-aided diagnosis 
performance and expand its application to a broader range 
of  complicated clinical tasks.

In general, retinal fundus color images are utilized to help 
clinicians diagnose diseases out of  all types of  ophthalmic 
data, like fluorescein angiography and optical coherence 
tomography. The tissue behind the eyeball, which includes 
the optic disc/cup, macula, and blood vessels, is called 
the retina. The morphological variability in retinal fundus 
images may illustrate several ocular diseases, such as diabetic 
retinopathy (DR), glaucoma, cataracts, and more [5]. 
Fig. 1 shows color fundus images exhibiting some retinal 
pathologies and morphologies. Special proteins make up the 
transparent lens in the front of  the eye. When these proteins 
degrade and produce foggy areas on the lens, cataracts 
develop. The patches may enlarge over time, resulting in 
blurred vision [6]. According to “The Lancet Global Health,” 
100 million people in the world have cataracts, 17 million 
of  them are blind, and 83 million have a visual impairment 
because of  cataracts. People with diabetes are more likely 
to develop DR, which is an eye disorder that affects blood 
vessels of  the retina and can lead to complete blindness 
and vision loss [7]. DR is a microvascular complication 

of  diabetes mellitus (DM) that affects one in three people 
with DM [8]. A few of  the retinal anomalies that DR may 
produce are microaneurysms, hard exudates, soft exudates 
or cotton wool spots, hemorrhages, neovascularization 
(NV), and diabetic macular edema (DME). DR is classified 
into five stages based on the presence of  clinical features: 
mild nonproliferative DR (NPDR), moderate NPDR, severe 
NPDR, PDR, and DME [9], [10].

A class of  disorders known as glaucoma that damages the 
optic nerve in the eye, which can lead to blindness or visual 
loss [11]. It occurs when excess fluid accumulates in the 
anterior region of  the eye, raising intraocular pressure and 
harming the optic nerve [12]. Glaucoma cannot be cured; 
it is impossible to restore lost vision, but it is feasible to 
prevent further vision loss with medication and/or surgery. 
According to a recent study titled “Prevalence of  Glaucoma 
among US Adults in 2022,” which was published in JAMA 
Ophthalmology, 4.22 million Americans suffer from 
glaucoma [13].

Recently, numerous state-of-the-art ML and DL models 
or solutions have been developed for the detection, 
segmentation, and classification of  retinal disorders. In 
the field of  fundus image diagnosis, various studies have 
been conducted by researchers. More studies focused on 
specific eye diseases and their stages of  development than 
on classifying different types of  eye diseases. Some studies 
have attempted to distinguish between a healthy eye fundus 
and one affected by a single disorder; i.e., the authors 
made a binary classification [14]-[22]. In health care, binary 
classification is commonly used to distinguish between 
healthy and ill patients. Another line of  research explored 
fundus photographs to classify several eye diseases, i.e., 
multiclass classification. In Nawaz et al. [23], the authors 
proposed a CNN model for classifying retinal diseases into 32 
classes. Another study [24] proposed a method for automated 
glaucoma assessment that is made via a classification 
approach. Utilizing pretrained or customized Deep CNN 
(DCNN) models for classifying three [25], four [26]-[32], or 
five [33], [34] eye disease categories. Regarding DR screening, 
a lot of  work has been carried out by researchers for grading 
DR into three [20] or five [35]-[38] stages. A  third group 
established methodologies for identifying multilabel fundus 
diseases, i.e., multilabel multiclass classification [39]-[42]. In 
practice, a fundus image is likely to contain many fundus 
disorders, making this kind of  fundus image classification 
a more prevalent and valuable challenge. The fourth group 
focused on identification and/or segmentation of  retinal 
blood vessels or optic disk/cup, which is vital for the 

Fig. 1. Retinal fundus images in various conditions sourced from the 
eye disease classification dataset [45]: (a) normal; (b) glaucoma; 

(c) diabetic retinopathy; (d) cataract.
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diagnosis and treatment of  various eye diseases [43], [44]. 
This paper presents a hybrid approach for classifying four 
classes of  eye diseases using multiclass classification. We used 
a benchmark multi-class dataset, eye disease classification 
(EDC), which contains 4,217 samples of  4 eye disease types. 
The proposed DL framework begins with the preprocessing 
step, including cropping the circular region of  interest, 
normalization, augmentation, and resizing. Subsequently, 
a hybrid CNN model was designed by combining two pre-
trained architectures to extract spatial features from the input 
images. Then, outputs from both models are concatenated 
to combine their learned representations, resulting in a more 
comprehensive feature set, i.e., feature fusion. A multihead 
attention (MHA) layer is applied to enhance important 
features by allowing the model to focus on key areas in the 
combined feature map. Finally, fully connected (FC) layers 
apply the classification.

The remainder of  the research paper is organized as follows. 
The related works are presented in Section 2. Section 3 
provides a detailed description of  the specific steps and 
methods employed in the proposed system. Results are in 
Section 4, discussions are in Section 5, and Section 6 presents 
the conclusion.

2. RELATED WORKS

In the last few years, researchers have made significant 
advances in the field of  fundus image processing for the 
identification and categorization of  retinal abnormalities. To 
minimize ophthalmologists’ burden and increase diagnosis 
consistency, automated eye disease diagnostics were 
investigated. These efforts were driven by the application 
of  sophisticated ML and DL models. More specifically, the 
CNN architecture and its variations were widely proposed 
in publications for the classification of  retinal diseases using 
fundus images on both public and commercial datasets. 
This section reviews relevant studies that employed various 
strategies and techniques to address this challenge. Rather 
than classifying many eye disorders separately, there are 
more researchers who concentrate on particular eye diseases, 
their developmental stages, and multilabel retinal disease 
classification. For example, using publicly accessible datasets 
and quality evaluation, a new dataset (MuReD) including 
2208  samples for 20 classes was developed for multilabel 
EDC by Rodriguez et al. [40]. In addition, the authors 
refined a transformer-based model through significant 
experimentation that can detect and classify multiple retinal 
diseases.

Ouda et al. [42] classified multilabel ocular diseases from 
fundus images using the retinal fundus multi-disease image 
dataset that contains 45 types of  eye abnormalities and 
3200 samples. A framework named ML-CNN was proposed, 
whose general architecture has FC, pooling, and convolution 
layers. The model’s performance was evaluated using K-fold 
cross-validation (CV) with 2, 5, and 10 values of  K to confirm 
the outcome attained. The average and highest accuracy rate 
was 94.3, obtained by 10-fold CV. Kadum et al. [32] designed 
a hybrid feature extraction methodology based on color 
fundus images for EDC. The dataset used in this work was 
EDC  [45]. Three techniques were applied for the feature 
extraction process, after which a single vector is created by 
combining the extracted features. The task of  classification is 
performed using two classifier models, which are K-Nearest 
Neighbors and support vector machine (SVM). The SVM 
classifier can classify instances with a 99.88% accuracy rate.

The study by Guo et al. [33] proposed a pre-trained DL 
model called MobileNetV2 for extracting features of  fundus 
images and transfer learning (TL) for classifying five common 
labels in the eye disease dataset. A portion of  the dataset’s 
classes were utilized; in total, there are only 250 samples in 
the dataset [46]. According to their findings, even with a very 
tiny quantity of  data, MobileNetV2 can classify various eye 
disorders with noteworthy results thanks to TL. According 
to experimental findings, the system’s average accuracy, 
sensitivity, and specificity on the test data are 96.2%, 90.4%, 
and 97.6%, respectively.

An automated cataract detection method, developed by 
Junayed et al. [47], named CataractNet. The proposed system 
is based on 4 blocks of  deep neural network (DNN) to 
analyze fundus images; convolutional and max-pooling layers 
make up each of  the model’s four blocks, a 16-layer DL neural 
network in total. The utilized dataset comes from a number 
of  standard fundus imaging datasets that have been released 
during the last 20 years, including HRF, FIRE, ACHIKO-I, 
IDRiD, and DRIVE. The CataractNet model demonstrated 
competitive performance when compared to five pretrained 
CNN models, obtaining an average of  99.13% in terms of  
accuracy.

A hybrid DL network model for DR diagnosis is presented in 
this research [48]. In the segmentation phase, an open-closed 
watershed management strategy is used to segment the 
blood vessels and the optic disc. In the last phase, i.e., the 
classification phase, the Binocular Siamese-like hybrid 
(AlexNet, GoogleNet, and SVM) model is introduced to 
recognize the normal and DR images. The accuracy achieved 
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by the suggested hybrid neural network on the DB0 and DB1 
datasets was 94% and 94.83%, respectively.

Mahmoud et al. [21] introduced an automated hybrid 
inductive ML algorithm for DR screening, namely 
HIMLA. The model only categorizes fundus images as 
either healthy or unhealthy. The features are extracted 
and classified using multiple instance learning. The 
suggested method obtained a 96.62% accuracy rate, a 
95.31% sensitivity rate, and a 96.88% specificity rate 
when evaluated on the CHASE dataset. This research, 
conducted by Thanki [17], presents a DNN-  and ML-
based system to evaluate retinal fundus images for 
glaucomatous classification. Several ML classifiers were 
employed to classify and assess the deep features of  
fundus images that have been extracted using a DNN. 
According to experimental findings, the combination of  a 
logistic regression-based classifier and DNN works better 
together than current glaucomatous screening methods, 
with increasing sensitivity and accuracy.

Nawaz et al. [23] used a DL-based CNN model to classify 
retinal diseases by making effective use of  memory. 
A benchmark dataset called Eye Net [49], which contains 
32 kinds of  retinal disorders, was used to assess the model. 
Authors mention that the designed model, compared to other 
methods, uses less memory consumption and yields superior 
results with a 95% accuracy rate.

In this study Vadduri and Kuppusamy [26], segmentation 
techniques like the Tyler Coye Algorithm, Otsu thresholding, 
and circular hough transform are used to extract important 
regions of  interest such as the macular region, blood vessels, 
and optic nerve from the raw fundus images. In addition, 
the comparison was performed between the optimal result 
among four distinct pre-trained models (Xception, VGG-16, 
ResNet50, and EfficientNetB7) and the newly proposed 
DCNN architecture for multiclass classification of  the fundus 
dataset. EfficientNetB7 achieved an accuracy of  91.39%, 
while the proposed model performed even better, reaching 
an accuracy of  96.94%.

The work presented in Albelaihi and Ibrahim [27] used a DL 
model, namely the DeepDiabetic framework, for multiclass 
classification of  four types of  retinal fundus images. The 
authors trained five models using three different methods 
of  image data augmentation (non-augmented, online, 
and offline augmented images). The performance of  the 
architectures was examined on 1228  samples from six 
distinct datasets, and the EfficientNetB0 model attained an 

accuracy of  98.76%, which performs better than the other 
four specified models.

Wahab Sait et al. [50] proposed a DL-based EDC model 
for multiclass classification of  fundus images. The authors 
employed a single-shot detection technique for feature 
extraction purposes and the whale optimization algorithm 
with the Levy flight and wavelet mutation approaches for 
feature selection. Furthermore, for EDC, an optimized 
ShuffleNetV2 model was used. The proposed model 
was evaluated on two benchmark datasets, ocular disease 
intelligent recognition (ODIR) and EDC. The accuracy and 
Kappa values of  the suggested EDC model were 99.1 and 
96.4 in the ODIR dataset and 99.4 and 96.5 in the EDC 
dataset, respectively. Prasher et al. [51] offered two CNN TL 
models (MobileNetV3 and EfficientNetB0) for multiclass 
prediction of  eye disorders. EDC, the open-source Kaggle 
repository, is where the dataset was acquired [45]. Using an 
Adam optimizer with 100 epochs, MobileNetV3 obtained 
73% accuracy on 15 epochs, while EfficientNetB0 achieved 
94% accuracy on the remaining epochs.

Babaqi et al. [30] presented a traditional CNN as well as a 
TL method based on a pre-trained EfficientNet model for 
detecting and classifying four eye disease categories. This study 
was also evaluated on the EDC dataset [45]. The proposed 
EfficientNet achieved a higher accuracy rate than the traditional 
CNN architecture, 94% and 84%, respectively. The authors 
demonstrate that while CNN by itself  is insufficient for 
classifying eye conditions, TL greatly improves its effectiveness. 
Applying TL to the pre-trained models has made it feasible to 
train the model with fewer resources and assist in preventing 
the need to reinvent the wheel compared to CNN models [52].

To identify the most effective algorithm for classifying eye 
diseases, three distinct DL-based models were employed 
in this research [53], including VGG-16, VGG-19, and 
EfficientNetB0. Training was performed on the EDC 
dataset [45]. The highest accuracy rate was obtained with 
the EfficientNetB0 model before and after applying the 
normalization process on the fundus images.

Vardhan et al. [54] explored various pre-trained models, 
including Inception v3, VGG19, and ResNet50, on fundus 
images for multiclass classification on the Kaggle EDC 
dataset. All three models were evaluated on the dataset 
without TL and achieved a validation accuracy of  66.39%, 
65.50%, and 57.04%, respectively. However, the three CNN 
models with TL have achieved higher validation accuracy of  
87.69%, 92.56%, and 83.79%, respectively.
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3. MATERIALS AND METHODS

This study implemented several neural network models 
to develop the most effective model for EDC. These 
models are referred to as pre-trained models. Due to 
their strong generalization capabilities and training on 
large benchmark datasets like ImageNet, they provide 
a valuable starting point for new tasks. We trained 
CNN architectures, including Xception, VGG-16/19, 
ResNet50/101/152, ResNet50/101/152V2, InceptionV3, 
InceptionResNetV2, MobileNetV1/V2, MobileNetV3Small/
Large, DenseNet121/169/201, NASNet Mobile/Large, 
EfficientNetB0/B1/B7, and ConvNeXtTiny/Small/Base/
Large, using the TL technique with weights learned from 

ImageNet. Among all the evaluated models, DenseNet169 
and MobileNetV1 yielded better results. Therefore, we 
adopted a hybrid strategy that integrated these two models 
to design a framework for automatically classifying fundus 
disorders. In the proposed hybrid model, features were 
extracted independently by DenseNet169 and MobileNetV1. 
Global average pooling occurs after each backbone, and the 
feature vectors are concatenated to form a single unified 
representation. This concatenated feature vector is further 
transformed via a MHA layer, which helps the model focus 
on different positions of  the fused representation and learn 
inter-feature relationships. The enhanced output through 
attention is ultimately processed through a FC layer and 
a softmax function for classification. Fig.  2 shows where 

Fig. 2. Implementation of the feature fusion and attention mechanism in the proposed hybrid model.
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and how features are fused and attention is applied. The 
methodology of  the proposed system consists of  three 
primary phases, which we explain in detail in this section. 
The workflow of  the proposed method is presented in Fig. 3. 
It begins with a description of  the Kaggle EDC dataset and 
its preparation for the preprocessing phase, followed by 
feeding the preprocessed images to the hybrid-TL models 
for feature extraction. Finally, dense layers were employed 
to classify the diseases.

3.1. Dataset Description
We obtained the eye_disease_classification dataset, or EDC, 
from the Kaggle source to evaluate the proposed system. 
The dataset holds 4,217 image samples for 3 types of  eye 
diseases, including cataracts, glaucoma, and DR, as well as 
normal fundus cases. Fig. 1 shows one sample for each class 
in the dataset. The dataset is relatively balanced, with around 
1,000 images in each class. These samples were gathered 
from a variety of  sources, including HRF, Kaggle ODIR, 
IDRiD, and other datasets. The images in the dataset vary 

in resolution, but all of  them have an RGB mode. Table 1 
presents a detailed description of  the dataset.

3.2. Dataset Pre-processing
Preprocessing describes the transformations performed 
on raw data to prepare the dataset before supplying it to 
an ML model. It is an essential phase in the ML process 
that can greatly improve results and is among the elements 
influencing ML’s performance on a given task. The model’s 
outcomes heavily depend on data diversity, quality, and 
quantity [55]. The process began with cropping the circular 
region of  interest from the fundus images, specifically the 
retina, using a feature extraction technique known as the 
Hough circle transform (HCT), which is used to identify 
circles in an image. Although the original purpose of  the 
Hough transform (HT) was to detect lines, it has evolved 
to recognize further analytical shapes, including circles and 
ellipses [56]. Before applying HCT, it was necessary to convert 
the images to grayscale and apply a Gaussian blur to eliminate 
noise, as excessive noise can introduce confusion and make 

Fig. 3. Overall proposed system.

TABLE 1: Detailed information about eye disease classification dataset
Classes Samples (percentage) Image resolution distribution

256×256 (%) 512×512 (%) 1848×1224 (%) 2464×1632 (%) 2592×1728 (%)
Normal 1074 (25.5) 100
DR 1098 (26.0) 100
Glaucoma 1007 (23.9) 59.6 30.4 0.5 2.2 7.3
Cataract 1038 (24.6) 61.7 28.7 0.5 1.8 7.3
Total 4217 (100) 29.4 65.8 0.2 1.0 3.6
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calculations difficult. HCT identifies a circle characterized by 
parameters (x, y, and r), where r denotes the radius and (x, y) 
represent the center of  the fundus photographs. Finally, the 
fundus image was cropped based on the circle’s bounding 
box. Originally, the images in the dataset varied in dimensions 
as they were sourced from multiple datasets and captured 
using different cameras.

In the second step, the images were resized to 224×224 
pixels to standardize them. Resizing ensures uniformity in the 
input data and enhances feature extraction while also aiding 
uniformity in model learning. In the third step, the pixel values 
of  the images were normalized before passing them to the 
feature extraction process. This standardizes or converts data 
to a common scale, typically ranging from [0–255] to [0–1]. 
This process ensures a comparable distribution for every input 
pixel, resulting in faster training convergence [47] and better 
performance. Augmentation is used to balance dataset samples 
across classes and expand the diversity of  the dataset by 
applying various transformations. This study employed online 
augmentation, also known as on-the-fly augmentation, which 
performs a variety of  dynamic transformations randomly 
supplied to the model during each training epoch. Since the 
transformations are applied dynamically rather than storing 
them in memory, online transformations are executed on 
batches of  the dataset and then fed to the model during each 
iteration. This method boosts the diversity of  the training data 
and helps the model generalize better to unseen data, as well as 
reduces the risk of  overfitting. Table 2 lists the augmentation 
types and features employed in the proposed work. Fig. 4 
presents multiple transformations of  fundus images for each 
class to illustrate the effects of  the augmentation technique.

3.3. Feature Extraction and Classification
The proposed feature extraction process employs a hybrid 
CNN model that combines the strengths of  two CNN 
architectures, DenseNet169 and MobileNetV1, along with 
TL. DenseNet169 belongs to the Densely Connected 
Convolutional Network (DenseNet) family of  models. It 

is a feed-forward CNN with a depth of  169 layers, and its 
parameters are relatively low compared to other models. 
DenseNet establishes direct connections between any two 
layers that share the same feature-map size, allowing all layers 
to access each other’s features.

Table  3 lists the configurations of  DenseNet169 and 
MobileNetV1 on ImageNet. Their architectures can be seen 
in Figs. 5 and 6. For a detailed comparison of  trainable and 
non-trainable parameters, as well as model sizes, including 
the proposed hybrid model, see Table 4. The Google team 
developed MobileNets, a simple and efficient CNN model for 
mobile vision applications, which utilizes depthwise separable 
convolution and performs well without requiring extensive 
computational resources. DenseNet is, in some ways, more 
complex than MobileNet due to its dense connectivity 
pattern, which necessitates more memory and computational 
power. Conversely, it simplifies feature learning by reusing 
features across layers, making it efficient in terms of  
parameter usage. Refer to Table  3, which illustrates the 
parameter and size comparison of  both DenseNet169 and 
MobileNetV1 models, as well as the proposed hybrid model.

In our research, both models were initialized with pre-trained 
ImageNet weights, excluding the top classification layers. 
Both TL models were set up to pull out important details 
from images in the EDC dataset without changing their 
existing weights. The output shape of  the extracted feature 
tensor for DenseNet169 and MobileNetV1 is (7, 7, 1664) and 
(7, 7, 1024), respectively. Subsequently, the outputs of  both 
models were fused – feature fusion – to combine their learned 
representations and create a more comprehensive feature 
set. Feature fusion, in this context, means combining various 
visual cues or features that represent different aspects of  
visual characteristics, aiming to create a more comprehensive 
representation of  features [57]. Thus, the extracted features 
from both models were concatenated along the channel axis 
to form a (7, 7, 2688) feature tensor.

Following that, we employ the self-attention mechanism 
using multiple attention heads. This mechanism (MHA) was 
originally introduced by Ashish Vaswani et al. [58]. It allows 
the model to jointly attend to information from different 
representation subspaces at different positions. This process 
improves the model’s ability to identify different relationships 
within the features. In our work, an MHA layer was added to 
help the model simultaneously attend to different parts of  
the combined feature maps and further improve the feature 
representation. To make the concatenated feature tensor 
compatible with the MHA layer, it was reshaped into (49, 

TABLE 2: A summary of the augmentation types 
with their features/ranges
Augmentation Feature/range
Horizontal flip 100%
Vertical flip 100%
Rotation 0°, 90°, 180°, or 270°
Brightness adjustment Δ ∈ [−0.1, 0.1]
Contrast adjustment Factor ∈ [0.8, 1.2]
Zoom (Resize and Crop) Resize to 234×234;

Crop to 224×224
Pixel value clipping [0,1]
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2688), where “49” represents the flattened spatial dimensions 
of  (7, 7) and “2688” denotes the total number of  feature 
channels from both models. After applying the attention, the 
output was reshaped back to its original spatial dimensions.

After feature extraction and attention-based enhancement, the 
final step in the proposed system is to classify eye diseases by 
incorporating FC layers for multiclass classification. The output 

from the attention mechanism is passed through several layers, 
including dense, batch normalization, and dropout layers. The 
feature tensor was flattened to create a 1D vector. Two dense 
layers with 256 and 128 neurons and rectified linear unit (ReLU) 
activation were applied, followed by batch normalization and 
dropout layers. Finally, a dense layer with a softmax activation 
function was added to predict class probabilities based on the 
number of  classes in the dataset.

Fig. 4. Retinal fundus images with various augmented versions generated through random transformations.

Fig. 5. DenseNet-169 architecture including layers.
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3.4. Implementation Details
In our study, we experimented with both Adam and SGD 
optimizers. However, SGD delivered better results in 
enhancing the model’s overall performance. The training 

process was configured to stop early if  the validation 
accuracy did not improve after 5 iterations. Furthermore, 
other hyperparameter configurations that achieved the best 
accuracy for the proposed model are shown in Table 5. The 

TABLE 3: DenseNet169 (left) and MobileNetV1 (right) architecture
Layers Tensor 

size
Kernel size and parameters Layers Tensor size Kernel size and 

parameters
Convolution 112×112 7×7 Conv, stride 2, ReLU Convolution 112×112 3×3 × 3×32, stride 2
Pooling 56×56 3×3 Max Pool, stride 2 Block 1 DW Conv 112×112 3×3 × 32 DW, stride 1
Dense Block 1 56×56 [1×1, 3×3]×6 (Conv), Dropout 0.2 PW Conv 112×112 1×1 × 32×64, stride 1
Transition Layer 1 56×56

28×28
1×1 Conv
2×2 AvgPool, stride 2

Block 2 DW Conv 56×56 3×3 × 64 DW, stride 2
PW Conv 56×56 1×1 × 64×128, stride 1

Dense Block 2 28×28 [1×1, 3×3]×12 (Conv), Dropout 0.2 Block 3 DW Conv 56×56 3×3 × 128 DW, stride 1
Transition Layer 2 28×28

14×14
1×1 Conv2×2 AvgPool, stride 2 PW Conv 56×56 1×1 × 128×128, stride 1

Block 4 DW Conv 28×28 3×3 × 128 DW, stride 2
Dense Block 3 14×14 [1×1, 3×3]×32 (Conv), Dropout 0.2 PW Conv 28×28 1×1 × 128×256, stride 1
Transition Layer 3 14×14

7×7
1×1 Conv
2×2 AvgPool, stride 2

Block 5 DW Conv 28×28 3×3 × 256 DW, stride 1
PW Conv 28×28 1×1 × 256×256, stride 1

Dense Block 4 7×7 [1×1, 3×3]×32 (Conv), Dropout 0.2 Block 6 DW Conv 14×14 3×3 × 256 DW, stride 2
Classifier 1×1 7×7 GlobalAvgPool PW Conv 14×14 1×1 × 256×512, stride 1

1000 1000D FC, Softmax Block
7–11

DW Conv 14×14 3×3 × 512 DW, stride 1
PW Conv 14×14 1×1 × 512×512, stride 1

Block 12 DW Conv 7×7 3×3 × 512 DW, stride 2
PW Conv 7×7 1×1 × 512×1024, stride 1

Block 13 DW Conv 7×7 3×3 × 1024 DW, stride 2
PW Conv 7×7 1×1 × 1024×1024, stride 1

Classifier 1×1 7×7 GlobalAvgPool
1000 1000D FC, Softmax

Conv: Convolution, ReLU: Rectified linear unit, DW: Depthwise, PW; Pointwise, FC: Fully connected

Fig. 6. MobileNetV1 architecture.

TABLE 4: Pre‑trained models and proposed hybrid model parameters
Model Trainable parameters Non‑trainable parameters Total parameters Model size
DenseNet169 0 12,642,880 12,642,880 48.23 MB
MobileNetV1 0 3,228,864 3,228,864 12.32 MB
Proposed (hybrid) 17,131,588 16,135,552 33,267,140 126.90 MB
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training process in the proposed framework was carried out 
using Tesla T4 GPU runtime on Google’s cloud servers, 
“Colab notebook” using Python v3.10.12 and Keras API 
over TensorFlow v2.17.1. A personal laptop was used for all 
experiments with these specifications: Windows 10 Pro 64, 
Intel Core i7, 8 GB RAM, and NVIDIA GeForce GT 650 M.

To build the most accurate and effective system for identifying 
eye diseases, the fundus image dataset was exposed to various 
CNN architecture versions. Several models were trained along 
with hyperparameter tuning, and their results were recorded 

regardless of  whether they performed poorly or positively. The 
CNN models used were the common TL pre-trained models 
on the ImageNet dataset. The best-performing models among 
these hyperparameter tuning models were integrated to construct 
a hybrid framework for extracting deep features from fundus 
images. Furthermore, adjustments were performed to the top 
layers by increasing and decreasing the number of  layers and 
neurons, and experimenting with different learning rates, dropouts, 
and batch sizes was also done to achieve optimal outcomes.

4. RESULTS

After preprocessing the dataset to prepare it for training 
and testing, we experimented with several data split ratios to 
divide the dataset into two subsets: Training and validation. 
These ratios included 70:30, 75:25, and 80:20, with the best 
results obtained using 75:25. In total, 3162 samples were used 
for training and 1055 samples for testing. Table 6 displays all 
the parameters used in the training process for each model.

Each pre-trained DL model shown in Table 6 was trained 
and evaluated separately with different split strategies, epochs, 
layers, neurons, and other parameters to accomplish the best 
results. Among all the pre-trained DL models, DenseNet169 

TABLE 5: Hyperparameter configuration
Configuration Specification
Input shape (224, 224, 3)
Classifier Softmax
Loss function Sparse categorical crossentropy
Optimizer SGD
Batch size 16
Learning rate 0.00001
Early stopping Monitor=‘val_accuracy’

Patience=5
Checkpoint Monitor=‘val_accuracy’

save_weights_only=True
save_best_only=True

Total epochs 40

TABLE 6: Pre‑trained dl models with their parameters and details performance
Model Learning rate Batch size dropout Split Epochs ACC V ACC
ResNet50 1e‑2, 1e‑3, 1e‑4, 1e‑5 8, 16, 32, 64 0.2, 0.5 80:20 40 71.25 79.27
ResNet50V2 1e‑4, 1e‑5 32 0.1, 0.2, 0.3 75:25 20 95.34 89.57
ResNet101 1e‑3, 1e‑4, 1e‑5, 5e‑6 32, 64, 128 0.2 80:20, 75:25 30 83.22 81.04
ResNet101V2 1e‑3, 1e‑4, 1e‑5 32 0.2, 0.3 75:25 40 95.50 88.91
ResNet102 1e‑5 64 ‑ 75:25 25 74.00 72.00
ResNet102V2 1e‑5 32 0.2 75:25 40 92.60 89.29
EfficientNetB0 1e‑3 32 0.2 75:25 10 26.88 26.07
EfficientNetB1 1e‑3, 1e‑4 32 ‑ 75:25 25 69.79 74.12
EfficientNetB7 1e‑4 32 ‑ 75:25 15 29.29 30.88
InceptionV3 1e‑5, 5e‑6 32 0.1, 0.2, 0.3 75:25 40 93.15 86.35
InceptionResNetV2 1e‑3, 1e‑4, 1e‑5 32 0.1, 0.2, 0.3 75:25 30 97.29 89.48
Xception 1e‑3, 1e‑4, 1e‑5 32 0.2 75:25 25 94.50 88.53
vgg16 1e‑4, 1e‑5, 5e‑6 16, 32, 64 0.1, 0.2 75:25 40 84.25 89.29
vgg19 1e‑5, 1e‑6, 5e‑6 16 0.1, 0.2 75:25 50 90.53 87.11
ConvNeXtTiny 1e‑4, 1e‑5 16, 32, 64 0.2 75:25 25 64.37 72.99
ConvNeXtSmall 1e‑4, 5e‑5 32 ‑ 75:25 25 67.94 69.38
ConvNeXtBase 1e‑3 16, 32 ‑ 75:25 15 61.53 67.96
ConvNeXtLarge 1e‑3 16, 32 ‑ 75:25 25 65.43 69.19
DenseNet121 1e‑4, 1e‑5, 5e‑6 32 0.1, 0.2 75:25 25 91.13 90.90
DenseNet169 1e‑4, 1e‑5, 5e‑6, 5e‑5 32, 64 0.1, 0.2, 0.3, 0.4 75:25 25 92.44 91.09
DenseNet201 1e‑4, 1e‑5 16 0.1, 0.2, 0.3 75:25 25 89.67 91.00
MobileNetV1 1e‑3, 1e‑4, 5e‑4, 1e‑5 16, 32, 64 0.1, 0.2, 0.3, 0.5 75:25 15 97.24 91.09
MobileNetV2 1e‑3, 1e‑4, 5e‑4, 1e‑5 32 0.1, 0.2, 0.3, 0.5 75:25 25 98.10 90.81
MobileNetV3Small 1e‑3, 1e‑4, 1e‑5, 5e‑5 8, 32 ‑ 75:25 45 73.59 76.02
MobileNetV3Large 1e‑3, 1e‑4, 5e‑5 8, 32 ‑ 75:25 40 77.54 79.62
NASNetMobile 1e‑3, 1e‑4, 1e‑5, 5e‑5 32 0.1, 0.2, 0.3 75:25 20 94.52 90.33
NASNetLarge 1e‑3, 1e‑4, 1e‑5, 5e‑5 32 0.2 75:25 20 97.47 88.15



Ismael and Sozan: Deep Learning-Based Eye Disease Diagnosis from Fundus Images

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 71

obtained 92.44 and 91.09 for training and validation accuracy, 
and MobileNetV1 obtained 97.24 and 91.09, respectively. 
Both outperformed the other competitive models in terms of  
classification performance. Various learning rate and batch size 
values were used along with each single model in the training 
process, as shown in Table 6. Dropout layers were applied as 
needed in each custom top layer, with rates of  0.1, 0.2, 0.3, 0.4, and 
0.5. The Adam optimizer was used to train the pre-trained models, 
and for the hybrid model, we have used both Adam and SGD.

Fig. 7 demonstrates the performance of  the best-performing 
models within each group. For example, we only illustrated 
the line chart of  ResNet50V2 among all other versions of  
ResNets, as it achieved the highest accuracy.

We observed that a hybrid CNN model, designed by 
combining the DenseNet169 and MobileNetV1 architectures 

for extracting deep features from a fundus dataset, achieved a 
higher accuracy rate than other individual pre-trained models. 
The training and testing were performed repeatedly on the 
dataset with hyperparameter tuning. The experiments were 
carried out using batch sizes of  16 and 32, whereas also 
evaluating the performance of  the hybrid model using both 
Adam and SGD optimizers.

First, we experimented with Adam optimization. After 
running several tests, we assessed the hybrid model by adding 
two FC layers with ReLU and the last layer using the Softmax 
activation function. The accuracy of  97.28% and 92.99% for 
training and validation was achieved in the 17th epoch. See 
Fig. 8a1 and a2. The second experiment was performed with 
the SGD optimizer. The evaluation was performed using the 
self-attention mechanism and FC layers. The accuracy of  

Fig. 7. Different transfer learning model’s performance.
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97.05% and 91.75% for training and validation was achieved 
in the 31st epoch. See Fig. 8b1 and b2.

We noticed that the training/validation accuracy and loss 
curves closely overlapped when using the Adam optimizer 
to test the model, as illustrated in Fig. 8a1 and a2. Therefore, 
we decided to consider another approach to address this 
problem. We applied offline data augmentation to upsample 
the dataset to 3000 samples to balance class distributions, 
i.e., 1250  samples/class. We also experimented with the 
70:30 ratio for data split, and the training and validation were 
conducted multiple times with different hyperparameters. 
Eventually, an efficient solution to the issue was to introduce 
a MHA layer and switch from the Adam to the SGD 
optimizer. In this way, the overlapping of  curves is removed 
in the performance graphs (Fig. 8b1 and b2). The proposed 
method performed better when compared to individual TL 
models, with average improvements of  1.9% in terms of  
validation accuracy.

The proposed model’s performance was evaluated using four 
quantitative performance metrics: accuracy, precision, recall 
(also called the true positive rate or sensitivity), F1-score, and 
area under the curve (AUC). The mathematical expression 
for these metrics is illustrated from Equations (1) to (4).

Accuracy Tp TN
Tp TN FP FN

�
�

� � �
� (1)

Precision �
�

� TP
TP� �FP�

� (2)

Recall TP
TP FN

�
�

� (3)

F score Precision x Recall
Precision Recall

1 2� �
�

x � � ���
� (4)

We have included a confusion matrix (Fig. 9a) that illustrates 
how our model performs across four categories: Cataract, 
glaucoma, normal, and DR. The model performs exceptionally 
well on DR and normal cases. It accurately identifies all DR 
samples (100%) and the majority of  normal ones (92%). In 
addition, cataract cases were identified with 94% accuracy, 
with a small percentage misclassified as glaucoma or normal. 
The model demonstrates strong performance, particularly 
in identifying DR and normal instances, which are crucial 
for early diagnosis and intervention. The receiver operating 
characteristic curve shown in Fig.  9b clearly emphasizes 
how well our classification model works across different 
eye conditions. AUC values exhibit exceptional diagnostic 
efficacy, with both cataract and DR attaining a perfect AUC 
of  1.0, signifying impeccable differentiation between positive 
and negative cases. Normal fundus images scored 0.98, while 
glaucoma registered at 0.97 – still very good, just slightly less 
than perfect. Overall, these high AUC values indicate that 
the model is highly capable of  distinguishing between the 
four classes and suggest it can generalize well to new data.

5. DISCUSSION

The findings from the preceding section indicate that 
the hybrid version of  the proposed system consistently 

Fig. 8. Accuracy and loss of the proposed hybrid model.
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outperforms the baseline models. This enhancement can 
be attributed to the complementary feature extraction 
capabilities of  both architectures. As shown in Figs. 7 and 8, 
the DenseNet169-MobileNetV1 hybrid model surpasses that 
of  individual pre-trained models in terms of  classification 
accuracy.

Various CNN frameworks, namely, DenseNet169, 
MobileNetV1, EfficientNetB0, and InceptionResNetV2, 
were tested in this research based on fundus image-based 
disease classification. DenseNet169 was selected because it 
allows for reusing deep features and flowing gradients through 
densely connected layers, which is crucial in capturing fine-
grained vascular and structural patterns in retinal images. 
MobileNetV1, by contrast, offers computational efficiency 
due to its depth wise separable convolutions, which can 
run in real-time on even resource-constrained devices. The 
two models had high individual performance on training 

and validation. Their architectural complementarity (depth 
of  DenseNet and efficiency of  MobileNet) became the 
driving force behind their fusion, which led to the creation 
of  a hybrid model that demonstrates high accuracy and, at 
the same time, has computational feasibility. This suggested 
that hybrid DL techniques could successfully challenge 
classification problems because they had higher feature 
extraction capabilities, especially in multiclass disease 
classification scenarios.

Several recent studies have explored DL-  and ML-based 
approaches for screening retinal diseases. For instance, 
Luo et  al. [59] developed a DCNN-based DR detection 
methodology based on the Google Inceptionv3 network, 
achieving an accuracy of  83.60%. Nawaldgi and Lalitha [24] 
proposed a method for staging the severity of  glaucoma. 
They extracted structural and texture features and used ML 
classifiers for classification, obtaining only 88.86% accuracy. 

Fig. 10. Comparison between the proposed approach and current methods.

Fig. 9. Receiver operating characteristic curve (a) and confusion matrix (b) produced by the proposed model.

ba
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The authors of  Butt et al. [20] achieved the maximum average 
accuracy of  89.29% by utilizing different ML classifiers 
for multiclass  DR detection. Similarly, Vardhan et al. [54] 
employed three CNN models with TL approaches; the 
maximum accuracy reported was 92.56%, achieved by 
the VGG19 model. For classifying all five stages of  DR 
using fundus images, a multitasking DNN based on the 
DenseNet architecture has been developed by Majumder and 
Kehtarnavaz [60], obtaining an accuracy of  86%. Wang et al. 
[39] utilized EfficientNet as a feature extractor and achieved 
90% accuracy. Liu et al. [61] detected glaucomatous discs 
from retinal images with performance comparable to that 
of  human experts by adopting the ResNet50 architecture 
with an accuracy of  92.7%. In contrast to previous works 
that relied solely on single-model architectures, our approach 
integrates multiple networks and surpasses these benchmarks 
by reaching 92.99% accuracy and 98.77% AUC. The 
superior performance suggests that combining multiple 
CNN architectures (like DenseNet169 and MobileNetV1) 
can significantly enhance feature learning and classification 
accuracy.

A comparative analysis (Fig. 10) further supports our findings, 
where our hybrid approach outperforms state-of-the-art 
methods across multiple metrics, such as accuracy (92.99%), 
precision (93.02%), recall (92.85%), F1-score (92.90%), and 
AUC (98.77%). These results emphasize the potential of  
hybrid DL models in assisting ophthalmologists with more 
accurate and automated diagnoses.

6. CONCLUSION

This study was conducted to classify four categories of  
eye diseases using most of  the pre-trained DL models and 
to develop a framework based on the top two models that 
performed optimally. The EDC dataset was used to evaluate 
the proposed system, achieving 92.99%, 93.02%, 92.85%, 
92.90%, and 98.77% for accuracy, precision, recall, F1-score, 
and AUC, respectively. The methodology of  our framework 
began with a preprocessing step that includes cropping the 
circular region of  interest, normalization, augmentation, and 
resizing. Subsequently, a hybrid CNN model was developed 
by combining the two selected architectures to extract spatial 
features from the dataset. Finally, after experimenting with 
various configurations of  FC layers and neurons, the top 
customized classification layers were finalized for the final 
prediction. This study presents a methodology for detecting 
multi-class eye diseases, an area that previous research has not 
fully explored. To further validate the model’s performance, 

we performed a comparative analysis. Our method surpasses 
a series of  pre-trained models and findings from other 
studies. Our approach to classifying eye diseases based on 
fundus images shows significant promise for early screening 
and diagnosis, and we believe it could help reduce healthcare 
costs and streamline the eye diagnosis process. In the future, 
we aim to expand our research to address a wider range of  
eye diseases by utilizing newly available datasets or those 
we plan to collect independently. In addition, we plan to 
develop a real-time application to assist healthcare centers 
in the early detection and diagnosis of  retinal diseases. By 
integrating advanced DL techniques with real-world clinical 
settings, we hope to enhance accessibility and efficiency in 
ophthalmic care.
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