
UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 77

1. INTRODUCTION

According to estimates by clinical pathology laboratories,
the number of patients whose personal information was
revealed reached 2.2 million, and the number of patients
whose banking information was affected reached 34,500 [1].
With the increasing demand for outsourced applications,

data privacy on the Internet has become crucial. While
customers benefit from these services by uploading their
data to be evaluated and obtaining results, their data are
exposed to third-party services [2]. Hospitals and healthcare
organizations increasingly collect data due to the increasing
use of this data in health research and personalized medicine
based on big data technologies [3]. The amount and risk of
cyberattacks on patients’ medical data stored in the cloud
are increasing daily.

The healthcare sectors focus on digitizing healthcare
information because it improves care efficiency, making it
more affordable and accessible. In the healthcare sector,
hospitals or healthcare facilities keep a digital record of each

Enhanced Integer-Based Homomorphic
Encryption Scheme with Windowing
Mechanism for Securing Electronic Health
Records
Abdulrahman Tawfeeq Jalal, Mohammed Anwar Mohammed
Department of Computer Science, College of Science, University of Sulaimani, Sulaymaniyah, Iraq

A B S T R A C T
The frequent breaches of healthcare data annually make robust encryption mechanisms crucial, especially those that
preserve the usefulness of the data while ensuring privacy. This study addresses specific integer-based homomorphic
encryption systems and their critical vulnerabilities. The vulnerability identified in these systems is the possibility of
decryption using other values, such as factors or primes, instead of the claimed unique secret key. We propose an
enhanced cryptographic formula to address this vulnerability using a double random value technique that ensures decryption
depends solely on the designated secret key. We also apply a windowing technique for prime selection to enhance the
key properties against pattern detection attacks. Security analysis shows that the enhanced system prevents decryption
using values other than the dedicated key while maintaining additive and multiplicative homomorphism. Performance
evaluations show that the improved system maintains decryption times and ciphertext expansion ratios similar to the
original system, with a reasonable decryption time reduction. Statistical testing results using the National Institute of
Standards and Technology tests demonstrate the robustness of the proposed approach compared to the original, with
the windowing technique exhibiting superior randomness properties.

Index Terms: Homomorphic Encryption, Windowing Mechanism, Electronic Health Records, Privacy Preserving,
Synthetic Healthcare Data

Access this article online

DOI: 10.21928/uhdjst.v9n2y2025.pp77-91 E-ISSN: 2521-4217

P-ISSN: 2521-4209

Copyright © 2025 Jalal and Mohammed. This is an open access
article distributed under the Creative Commons Attribution Non-
Commercial No Derivatives License 4.0 (CC BY-NC-ND 4.0)

ORIGINAL RESEARCH ARTICLE UHD JOURNAL OF SCIENCE AND TECHNOLOGY

Corresponding author’s e-mail:  Abdulrahman Tawfeeq Jalal, Department of Computer Science, College of Science, University of Sulaimani,
Sulaymaniyah, Iraq. E-mail: abdulrahman.jalal@univsul.edu.iq

Received: 15-05-2025	 Accepted: 28-07-2025	 Published: 25-08-2025

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

78	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

patient called an electronic health record (EHR) that contains
all demographic, clinical, historical, reporting data, progress
notes, problems, medications, vital signs, immunizations,
laboratory data, and radiology reports [2], [4]. A large
percentage of patients allow their data to be used to support
research and improve the quality of healthcare, but at the
same time, they are concerned about privacy, misuse, and
mishandling of their data [5]. For information to be secure,
it must have the security characteristics of confidentiality,
integrity, and availability [6]. To prevent data breaches,
encryption is a vital component of information security
systems, thus protecting private data from unauthorized
access and ensuring integrity [7].

2. LITERATURE REVIEW

2.1. Data Security and Privacy Challenges
In multi-party environments such as the cloud, all parties are
at risk of threats, whether the provider or the user. Therefore,
the minimum requirement for data security is to be stored in
its encrypted state [8]. Customers are very concerned about
the content of data sent to the cloud or stored in the service
provider’s servers because it is easily accessible to service
providers. If digital records are handled in a way that ensures
their privacy during acquisition, storage, and computing, then
complete privacy has been achieved. However, while privacy
can be achieved during acquisition and storage, achieving
privacy is challenging during processing [2].

2.2. Homomorphic Encryption as a Solution
When encrypted data are required to be used, it must be
decrypted, which exposes it to risk at that moment, so
homomorphic encryption is a solution to ensure its privacy
and security [2]. Fully homomorphic encryption (FHE) is
one of the most widely adopted encryption techniques,
focusing on privacy at the highest levels [9]. This technique
focuses on two aspects: data encryption and the ability to
handle data that has been encrypted through mathematical
operations without the need to decrypt it, thus ensuring its
complete confidentiality.

The main types of homomorphic encryption schemes are
divided according to the number and type of operations into
Partial, Somewhat, and Full. In Partial, only one operation,
either addition or multiplication (not both), is applied to the
encrypted data an unlimited number of times. Examples
of these are Rivest-Shamir-Adleman (RSA), ElGamal, and
Paillier. In Somewhat, a limited number of mathematical
operations are applied to the encrypted data a limited number

of times. Finally, the full technique involves both addition
and multiplication utilized simultaneously and an unlimited
number of times [10].

As for the functions and use cases, the benefit of FHE is
that it supports functions, such as searching, sorting, max,
and min. However, despite the proposed attempts that have
improved the efficiency and performance of FHE schemes,
it is still difficult to implement them in a real service without
disturbing the user. Although somewhat homomorphic
encryption or leveled-FHE has achieved acceptable
performance in some applications, the bootstrapping
techniques still need improvement, as do the multiplication
operations, which negatively affect performance [10]. Due to
this feature, data encrypted with this technique can be handed
over to third parties to perform any meaningful operation [3].

2.3. Related Work
In certain cases, user data becomes vulnerable, such as during
pandemics when patients cannot reach hospitals, so they
contact doctors using technology over the network to obtain
information about the diagnosis [11]. This is done remotely
through the presence of devices that provide accurate
medical data and support the Internet of Things, which can
then send readings of blood pressure, oxygen, temperature,
etc. [12]. Carpov et al. developed a mobile application that
encrypts users’ data with a FHE algorithm and transmits it
to the cloud [9]. Their implementation focused on analyzing
and evaluating cardiac risk factors in the cloud by processing
encrypted health data uploaded in a secure and privacy-
preserving manner. They processed the data exchange
between the doctor and the patient through an architecture
that enables the patient to grant authorization to the doctor
to access the results through a private FHE key.

Based on the increasing need for secure remote healthcare
during pandemics, Kumar et al. proposed a hybrid approach
of multi-party computing and homomorphic encryption to
secure health data [11]. Their model addressed the aspect
of secure architecture that ensures the results between the
patient and the doctor. This prevents eavesdropping across
different systems’ entities and ensures trust among the
patient community. They achieved the partial homomorphic
encryption approach by adopting the Paillier encryption
scheme. Despite the security, reliability, and patient-centric
approach, it is relatively slow due to processing long
ciphertexts instead of plain data.

Scheibner et al. presented a system that combines
homomorphic encryption and secure multiparty computation

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 79

to address the limitations of traditional approaches to
enhancing privacy during medical data sharing [13].
The authors developed a new homomorphic multiparty
encryption approach that enables secure, flexible processing
while meeting data anonymization and legal requirements
under the General Data Protection Regulation (GDPR). This
is done by efficiently transitioning between homomorphic
encryption, represented by local computation, and interactive
protocols, defined by multiparty computation. Their
analysis showed that homomorphic multiparty encryption
provides an effective solution compared to using the two
techniques alone, and they acknowledged the limitations of
computational complexity as one of the drawbacks of full
homomorphic encryption.

Guo et al. stated that privacy issues exist in the model training
and the pre-diagnosis stage in machine learning [14]. They
designed a pre-diagnosis scheme that provides healthcare
services using logistic regression called Privacy-Preserving
Online Medical Pre-diagnosis in a privacy-preserving
manner by employing homomorphic encryption techniques.
A homomorphic encryption scheme called Boneh-Goh-
Nissim was applied to protect the confidentiality of the
feature vector x and the pre-diagnosis model ω. Their analysis
showed that the proposal resisted security threats and privacy
concerns. Furthermore, it is efficient and cost-effective
regarding computational and communication burdens [14].

Anwar and Salman proposed a FHE algorithm to protect data
privacy on the cloud based on a Super-increasing Sequence.
Each character in the plaintext is converted to its American
Standard Code for Information Interchange (ASCII) code
and encrypted using the C = S (2 × q × r) + m algorithm
to produce a ciphertext. They added r as a random value
for the noise added to the ciphering process and evaluated
the randomness through well-known National Institute of
Standards and Technology (NIST) tests [15]. Their research
results showed that their algorithm performs better than
other proposed algorithms, as it can encrypt larger files. As
for security, a super-increasing sequence with a subset sum
problem that was used provides high security. However, they
faced challenges regarding the encrypted file’s size, which is
larger than the plaintext file. Furthermore, the decryption
process takes longer than the encryption process [15].

Sinha et al. proposed a privacy-aware surveillance system that
ensures secure patient data sharing, leading to timely and
effective responses to crisis scenarios (e.g., the COVID-19
pandemic). The proposed new encryption mechanism is based
on a fully homomorphic and secure encryption scheme using

the ElGamal algorithm. The effectiveness of the contact
tracing method was analyzed, and the results showed that the
proposed solution effectively provides security and adequate
support for the computational needs of contact tracing [16].

Mohammed and Abed proposed a FHE algorithm that
uses n prime numbers instead of two. They convert each
character in the plaintext to its ASCII code and encrypt it
using the C = M + r × L × n model [17]. The key consists
of L (a large prime integer), r (a random number added as
noise), and n (a set of prime numbers multiplied together).
Results showed better performance in encrypting different
file sizes. The proposed method was compared with the
DGHV and SDC schemes, showing superior performance.
The security level is high due to using n as a multiplier for the
i-Prime Modular Operation. However, the authors mention
limitations related to encrypted text size, affecting storage
space and the decryption process [17].

2.4. Compliance with Regulations and Standards
18 elements can directly and uniquely identify an individual
as defined by the Health Insurance Portability and
Accountability Act (HIPAA), such as name, social security
number, and phone number. Until the mid-2000s, and based
on HIPAA, removing all these fields was considered the
simplest and most adequate way to protect privacy and de-
identify data [18]. The same case concerns the GDPR, which
focuses on personal data relating to a specific, identified,
or identifiable person [19]. Homomorphic encryption thus
complies with data protection regulations and privacy laws
such as HIPAA in healthcare and GDPR in finance [20]. The
provisions of the regulation guarantee the right to access
information related to processing and allow data subjects to
monitor how their data are used [21].

3. PROBLEM STATEMENT

Despite encryption being a vital component of information
security systems, specific existing integer-based homomorphic
encryption schemes contain critical mathematical
vulnerabilities. Specifically, schemes using formulations:

C = S⋅ (q⋅2⋅r)+M� (1)

C = M+r⋅L⋅n� (2)

C = M+L(rK+i)� (3)

Where:
•	 C = Ciphertext

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

80	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

•	 M = Message/Plaintext
•	 L = Large prime integer
•	 K = Secret key
•	 r = Noise/random number
•	 i = Counter/iteration variable
•	 n = Product of multiple prime numbers
•	 S = Parameter greater than the sum of the super-

increasing sequence
•	 q = Sum of chosen numbers from the transformed

sequence

Equation (1) in [15], Equation (2) in [17], and Equation (3)
in [22], [23] are susceptible to unauthorized decryption when
attackers utilize factors that exceed m, effectively bypassing
the intended secret prime key. This vulnerability contradicts
the fundamental security model of FHE, which aims to
protect sensitive healthcare data from privacy disclosure
risks during server-side processing. In addition, present
implementations fail to specify secure methods for random
number generation and lack resistance to pattern detection
attacks. With the increasing digitization of healthcare
information and application outsourcing, this security gap
poses significant risks to patient data privacy. Therefore,
an enhanced encryption scheme that eliminates these
vulnerabilities while maintaining homomorphic properties
is urgently needed.

4. THEORETICAL FRAMEWORK

4.1. Math Model
The encryption scheme is homomorphic when: E(m1) ★
E(m2) = E (m1 ★ m2), ∀m1, m2 ∈ M. Where E is the cipher
algorithm, M is the plaintext to be encrypted, and ★ is the
mathematical operation. This means encrypting m1 and m2
and then performing the operation ★ on their results is the
same as performing the operation ★ on m1 and m2 first
and then encrypting the result.

4.2. Noise and Circuit Depth
The noise component is an essential element in the FHE
encryption process to ensure that many possible ciphertexts
are obtained for each message that needs to be encrypted
and thus ensure semantic security [9]. In FHE encryption,
there is a direct proportion between noise and the number
of homomorphic operations, where a substantial increase
in noise has a negative effect and makes it difficult to
decrypt correctly. In particular, multiplication increases noise
significantly compared to addition, and the encrypted data has

to be refreshed regularly by bootstrapping [2]. This depends
on the circuit depth; the number of operations (addition and
multiplication) can be performed in sequence while still being
able to decrypt correctly.

4.3. Architecture and Quality
The security model on which FHE is based essentially
consists of two parties: The user who owns the data with the
privacy and the software service provider. The purpose and
function of FHE is to protect user data from the risks of
privacy disclosure that may be exposed to it on the server [9].
The quality and performance of this model depend on the
evaluation results of three main criteria: security, speed, and
simplicity. The scheme should be consistent, understandable,
and within the standards and best practices followed by other
practitioners in the field, and thus, be simple, applicable, and
producible [10].

5. MATERIALS AND METHODS

5.1. Data Collection
There are significant challenges in accessing high-quality
datasets due to data use agreements, privacy concerns,
ethics reviews, and costs. Therefore, synthetic data offers an
attractive alternative to address these concerns [19]. Synthetic
data is artificially generated using a trained model that
replicates real data according to its distributions (shape and
variance) and structure (attributes’ correlations) [24]. When
synthetic data is derived from sensitive medical information,
the challenge is to ensure that it cannot access details that
would lead to the re-identification of individuals [19]. Synthea
is an open-source synthetic health simulator that generates
synthetic EHRs, and it was proposed by Walonoski et al. as
an approach to simulate patient information in JSON and
CSV format [25].

5.2. Original Scheme Analysis
In the proposed encryption scheme [17], the text is encrypted
in a homomorphic way using equation (2), where m is the
plaintext message; specifically, the character’s ASCII value.

The plaintext is recovered using the modular operation. Let
us derive this step-by-step:

C mod L = (M+r⋅L⋅n) mod L� (4)

Then, using the basic property of modular arithmetic:

(a+b) mod n = ((a mod n)+(b mod n)) mod n� (5)

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 81

We get:

C mod L = ((M mod L)+((r⋅L⋅n) mod L)) mod L� (6)

Based on the fact that any number multiplied by a coefficient
is divisible by it, then the noise term becomes zero:

((r⋅L⋅n) mod L) = 0� (7)

Then the equation simplifies to:

C mod L = ((M mod L)+ 0) mod L� (8)

Since m ∈ [0, L-1] according to [17], it concludes:

C mod L = (M mod L) = M� (9)

The advantage of this scheme is that it supports homomorphic
encryption. It does not require noise management and
bootstrapping to reduce noise growth, especially with the
multiplication process, as the modulus operation eliminates it.

For addition, taking mod L, let the noise term disappear:

C_add = C1+C2 = (M1+r1⋅L⋅n)+(M2+r2⋅L⋅n) =
M1+M2+nL(r1+r2)� (10)

C_add mod L = (M1+M2+nL(r1+r2)) mod L = M1+M2� (11)

For multiplication, taking mod L eliminates any term contains
noise:

C_mul = C1×C2 = (M1+r1⋅L⋅n)(M2+r2⋅L⋅n)� (12)

C_mul = (M1⋅M2)+(M1⋅r2⋅L⋅n)+(M2⋅r1⋅L⋅n)+(r1⋅r2⋅L2⋅n2)
� (13)

C_mul mod L = M1⋅M2� (14)

However, the authors did not specify how the random numbers
are generated and how secure they are. As for security, no
proven and tested method has been adopted to produce
secure random numbers for cryptographic use. In addition, we
identified a critical mathematical vulnerability in this scheme
and similar schemes. Any factor of the terms used in the key
then m can be used in decryption instead of L, which is claimed
to be the only secret big prime integer key used in decryption.

Let f be any factor of the term r × n such that f > M. Then:

C mod f = (M+r⋅L⋅n) mod f � (15)

Since r ⋅ L ⋅ n ≡ 0 (mod f) (as f divides r or n), this simplifies to:

C mod f = M� (16)

For example, using n = 114197120264498507, which is the
product of (1009, 1013, 2153, 6553, 7919) primes, then all
possible keys that can be used in decryption other than L are 31
keys (primes and products of primes). When the attacker does
not need to know all the primes used, then using n of them
will be a disadvantage. Unlike RSA, someone needs to get the
value of p and q to calculate d and decrypt the message [26].

5.3. Enhanced Scheme Design
Encryption process:

C = M+(r1⋅L)+(r2⋅L⋅W(n))� (17)

Where:
•	 L = Secret large prime key
•	 n = Composite large value of prime numbers
•	 r1, r2 = Large random numbers
•	 W(n) = Product of prime numbers in the current window

Decryption process:

M = C mod L� (18)

M = (M+(r1⋅L)+(r2⋅L⋅W(n))) mod L� (19)

M = (M+(0)+(0)) = M, when M< L� (20)

5.4. Random Number Generator (RNG)
We evaluate two approaches for generating the random
values r1 and r2: First, Counter_Deterministic Random Bit
Generator (CTR_DRBG) is a counter-mode deterministic
random bit generator implemented based on NIST
specifications. Second, Java SecureRandom is a built-in
cryptographically secure pseudo-RNG in Java.

5.5. Windowing Technique for Prime Selection
One of the reasons for increasing the size of the ciphertext
is to adopt a set n that contains an uncontrolled number of
prime numbers. Therefore, we propose an enhanced FHE
scheme that provides a technique for adopting specific prime
numbers from the n set. This is done by employing a dynamic
prime window mechanism while maintaining homomorphic
properties. Instead of using a full fixed set of prime numbers
when encrypting each character, a sliding window W of size
k is defined, where the size of k < n. A subrange of primes
is extracted for each ASCII character, and the window shifts
according to a deterministic function.

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

82	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

We implemented a random windowing approach for the
prime selection to enhance security. For each encryption
operation, we select a subset of n primes based on:

Window size:

K(seed) = kmin+((seed) mod (kmax-kmin+1))� (21)

Window offset:

O seed seed
k k

mod n K seed
max min

() =
− +

− () +()







()

�
1

1 � (22)

Where:
•	 kmin = Minimum window size
•	 kmax = Maximum window size
•	 seed = Deterministic value

5.6. Experimental Setup
To evaluate the performance and security of our enhanced
scheme, we designed a comprehensive test suite with the
following components:
1.	 Security analysis: We do a vulnerability check regarding

the identified gap with a demo example
2.	 Homomorphic property verification: We test the

enhanced scheme regarding homomorphic encryption
properties (addition and multiplication)

3.	 We evaluate the selected RNGs randomness properties
using the NIST Statistical Test Suite and choose the more
secure one

4.	 Performance testing: We measure encryption and
decryption times and ciphertext expansion ratios across
file sizes ranging from 100 bytes to 10 MB

5.	 We check the role and effectiveness of the windowing
technique

6.	 We apply the technique to practical use cases.

5.7. Testbed
1.	 Hardware Configuration

a.	 Operating System: Windows 10
b.	 Architecture: 64-bit operating system, x64-based

processor
c.	 Processor: Intel(R) Core (TM) i7-6600U CPU @

2.60GHz 2.81 GHz
d.	 Memory: 8.00 GB installed RAM (7.88 GB usable)

2.	 Software Environment
a.	 Programming language: Java (version 20.0.2)

b.	 Cryptographic libraries:
	 i. �Java Secur i ty API for SecureRandom

implementation
	 ii. �Custom implementation of CTR_DRBG based

on NIST SP 800-90A
c.	 Analysis Tools:
	 i. NIST Statistical Test Suite (STS)
	 ii. �Cygwin64 terminal environment for running

NIST tests

6. EXPERIMENTS

6.1. Random Number Generation
Hardware or software can produce binary sequences based on
cryptographic randomness for random number generation.
The generated random number can be used to create keys
in cryptographic applications, and common cryptosystems
may generate keys randomly and employ them. However, the
produced number may have patterns that can be predicted.
Hence, tests must be done to check for non-randomness in
the generated sequence. The NIST statistical package can
be used with 15 tests to test the randomness and identify
weaknesses or patterns in the produced binary sequences.

A RNG uses a non-deterministic source based on entropy and
processing functions. Any resulting weakness in the entropy
source is overcome using the distillation process, thus avoiding
producing non-random numbers such as those containing long
strings of zeros or ones. On the other hand, the pseudo-RNG
relies on deterministic functions to generate pseudorandom
numbers through one or more random and unpredictable seed
inputs [27]. Pseudorandom numbers appear more random
compared to random numbers generated from physical sources.
These transformations introduce additional randomness and
eliminate the associations between inputs and outputs, so the
statistical properties of the output of a pseudo-RNG may be
better. They can be generated faster than an RNG [27].

Key requirements such as randomness, unpredictability,
uniformity, scalability, and consistency should be satisfied to
develop a new random bit sequence generation technique [27].
Regarding unpredictability, there are two types: forward and
backward unpredictability. Forward unpredictability means
that if the seed is unknown and the previous random
numbers in the sequence are known, the next number must
be unpredictable. Backward unpredictability means that
knowing which values were generated does not lead to the
possibility of determining the seed.

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 83

Based on NIST SP 800-90A, we can use approved DRBG
techniques, such as Hash, Hash-based Message Authentication
Code, or CTR. We chose Counter-Deterministic Random Bit
Generator for its performance; it uses an approved block
cipher with Advanced Encryption Standard and runs at its
native speed [28].

A special key K, a counter V, and a block cipher lock box
are the basic components of CTR-DRBG. The counter V
is encrypted with key K using our block cipher; the output
becomes the first random number. The key is kept secret,
and the counter will not be reset until it reaches the specified
large number limit. In addition, knowing one random number
does not lead to the next number without knowing the key.
CTR-DRBG has four core functions: Update, Instantiate,
Reseed, and Generate (Fig. 1) [28].

On the other hand, we have SecureRandom library that
complies with the statistical RNG tests specified in FIPS 140-2
and security requirements for cryptographic modules [29]. For
seed management, it is handled internally by Java SecureRandom
based on platform security standards. As mentioned, even if
set seed is not called, the first call to next bytes will force the
SecureRandom object to create a self-seed [29]. SecureRandom
automatically seeds itself from operating system entropy
sources such as/dev/urandom on Linux/Unix systems and
Microsoft CryptoAPI on Windows [30]. Thus, when we don’t
have a better seeding data source, and SecureRandom uses a
highly random data source to seed automatically and securely,
we can rely on it, avoiding manual seed management.

Regarding testing RNG using NIST, the recommended
minimum input size for the Frequency (Monobit) Test,
Runs Test, and Cumulative Sums Test is 100 bits. On the
other hand, the input size for the Universal test ranges from
387,840 bits to 1,059,061,760 bits based on the block size [27].
Hence, based on that, we choose to generate sequences of
10,342,400 bits in total at least to test the generated numbers
by all tests in the suite properly. For each statistical test, the
minimum rate to pass the test is approximately equal to 8 for
a sample size of 10 binary sequences [27].

6.2. Vulnerability Check and Security Enhancement
C mod f = (M+(r1⋅L)+(r2⋅L⋅n)) mod f � (23)

Case 1: Decryption failure when f is a factor of n

C mod f = (M+(noise)+(0)) ≠ M� (24)

Case 2: Decryption failure when f is a factor of r1

C mod f = (M+(0)+(noise)) ≠ M� (25)

Demo Example: Message M1 = 2, Secret key L = 151 (prime
number greater than M1), n = 10403 (101 × 103), r1 = 847,
and r2 = 548:

Equation (17): C1 =
2+(847×151)+(548×151×10403) = 860955343

Equation (18): M1 = C1 mod L = 860955343 mod 151 = 2

Testing decryption with potential factor values of r1 and r2
× n factors (e.g., 1, 7, 11, 77, 121, 847, 101, 103, 274) does
not successfully recover M1. Hence, decryption now relies
solely on the value of the secret key L.

6.3. Homomorphic Properties Verification
Additive Property, based on Equation (17):

C_add = C1+C2 = (M1+(r1⋅L)+(r2⋅L⋅n))+
(M1+(r3⋅L)+(r4⋅L⋅n))

C_add = (M1+M2)+L(r1+r3)+nL(r2+r4)

Decryption of Sum, based on Equations (5), (18):

C_add mod L = ((M1+M2)+ L⋅(r1+r3)+L⋅n⋅(r2+r4)) mod L

C_add mod L = ((M1+M2)+0+0) = M1+M2
(assuming M1+M2<L)

Multiplicative Property, based on Equation (17):

C_mul = C1×C2 = (M1+(r1⋅L)+(r2⋅L⋅n))×(M1+(r3⋅L)+(r
4⋅L⋅n))

C_mul = M1M2+L(r3M1+r1M2)+nL(r4M1+r2M2)+L2(r1r
3)+nL2(r1r2+r2r3)+L2n2(r2r4)

Decryption of Product, based on Equations (5), (18):

C_mul mod L = M1M2+0+0+0+0+0 = M1M2 (assuming
M1⋅M2<L)

7. RESULTS AND DISCUSSION

7.1. NIST Results for RNGs
We evaluated both CTR_DRBG and Java SecureRandom
using the NIST statistical test suite. The tests were conducted
using 10 separate bitstreams, each containing 1,034,240 bits
in a binary file. Table 1 summarizes the comparative results.

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

84	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

A P-value of “0.01” is considered the minimum acceptable
threshold to pass the NIST test, with stronger random properties
when it is close to 1 (Fig. 2). We note that both generators passed
all statistical tests successfully, demonstrating their suitability for
cryptographic applications. In the Runs test, while CTR_DRBG
has a higher P-value, SecureRandom passes with all 10 sequences
(10/10), whereas CTR_DRBG failed in one with 9/10. Based
on these results, we chose SecureRandom for implementation.

7.2. Performance Comparison
We tested the original n-Primes Homomorphic Encryption
Algorithm for encryption and decryption times, ciphertext

size, and the expansion ratio (Table 2). We use the following
parameters: L = 11579208923731619542[truncated] (256 bits),
n (product of primes) = 26959942480324040277[truncated]
(224 bits), random number bit length = 128 bits. Hence, the
combined security level is ~608 bits.

Then we tested the Enhanced Scheme using the following
parameters (Table 3): L = 11579208923731619542[truncated]
(256 bits), available primes pool = 32 primes (each ~75 bits),
window parameters k_min = 2, k_max = 4 (uses 2-4 primes
per encryption), security level of n = 151-301 bits (depending
on window size), and random number bit length = 128 bits

Fig. 1. Counter-deterministic random bit generator (CTR-DRBG) architecture.

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 85

for each r1 and r2. Hence, the effective combined security
level is ~535-685 bits and ~610 on average.

For larger files such as the tested file (10 MB), the improved
system requires more time in encryption, representing
a performance cost 2.89 times higher than the original
system (Fig. 3). This additional processing time is due to the
computational complexity of the enhanced scheme, which
focuses on improving security. Two random values were used,
in addition to a windowing approach, which means that the
increased security impacted performance.

The decryption time is similar between the two schemes,
but the enhanced scheme shows a slightly better advantage
for the largest scanned file size. Consequently, decryption
times remain comparable between the two schemes (Fig. 4).
It should be noted that the calculated time is only for the
decryption process using mod; the time required to retrieve
the encrypted data from storage is not included.

As for ciphertext size, both systems achieved an expansion
size of around 183× for all file sizes, indicating that the added
security measures do not significantly impact this factor.
The y-axis range is intentionally narrowed to (182–185) to
highlight the slight differences (Fig. 5).

7.3. Windowing Technique Role
To test the effectiveness of this technique for security, we
chose to test the generated keys using the NIST test suite.

For the first original n Prime technique, we generated keys
of a 1,000,000-bit sequence binary file using the r × L × n

Fig. 2. National Institute of Standards and Technology statistical
test P-values for CTR_DRBG and SecureRandom generators

across selected tests (minimum threshold P ≥ 0.01 for passing).
CTR_DRBG: Counter_Deterministic random bit generator.

TABLE 1: Comparison of NIST test results for
RNGs
Statistical
tests

CTR_DRBG SecureRandom
P‑value Proportion P‑value Proportion

Frequency
(monobit)

0.122325 10/10 0.534146 10/10

Block
frequency

0.739918 10/10 0.350485 10/10

Cumulative
sums
(forward)

0.017912 10/10 0.213309 10/10

Cumulative
sums
(reverse)

0.350485 9/10 0.739918 10/10

Runs 0.911413 9/10 0.739918 10/10
Longest run
of ones

0.739918 10/10 0.739918 10/10

Rank 0.213309 10/10 0.350485 10/10
Fast Fourier
transform

0.350485 10/10 0.534146 10/10

Overlapping
template

0.534146 10/10 0.122325 10/10

Universal
statistical

0.911413 10/10 0.739918 10/10

Approximate
entropy

0.122325 10/10 0.213309 10/10

Serial (1) 0.739918 10/10 0.911413 10/10
Serial (2) 0.008879 10/10 0.534146 9/10
Linear
complexity

0.350485 10/10 0.534146 10/10

NIST: National Institute of Standards and Technology, RNGs: Random number
generators, CTR_DRBG: Counter_Deterministic random bit generator

TABLE 2: N‑prime scheme performance test
File size Encryption

(ms)
Decryption

(ms)
Cipher

size
Expansion

100.00
Bytes

44 0 17.87 KB 183.01×

500.00
Bytes

69 2 89.35 KB 182.99×

1.00 KB 8 39 182.97 KB 182.97×
2.00 KB 24 5 365.90 KB 182.95×
5.00 KB 56 8 914.78 KB 182.96×
10.00 KB 39 7 1.79 MB 182.96 ×
20.00 KB 54 25 3.57 MB 182.95×
50.00 KB 106 31 8.93 MB 182.95×
100.00
KB

214 92 17.87 MB 182.95×

200.00
KB

635 119 35.73 MB 182.95 ×

500.00
KB

770 300 89.33 MB 182.95×

1.00 MB 1364 608 182.95 MB 182.95×
2.00 MB 3583 1356 365.91 MB 182.95×
5.00 MB 8358 3238 914.77 MB 182.95×
10.00 MB 14668 8578 1.79 GB 182.95×

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

86	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

term, where n is pre-computed by multiplying three 76-bit
primes. Then, we generated another similar file using the
r1 × L + r2 × L × W(n) term of the enhanced technique,
but without windowing; n is fixed, pre-computed, and
equal to the one used first. Finally, we generated the third
bin file based on the enhanced technique with windowing
(window size = 3 primes) applied over n from a set that
contains 32 different 76-bit length primes. We tested all files
with 10 separate bitstreams, each containing 100,000 bits
(Table 4).

The enhanced windowing technique shows the best
randomness properties of keys. It won the most tests (Fig. 6),
has the highest average P-value (Fig. 7), shows the most
consistent randomness across different tests (Fig. 8), and has
the largest area on the polar graph (Fig. 9).

TABLE 3: Enhanced scheme performance test
File size Encryption

(ms)
Decryption

(ms)
Cipher

size
Expansion

100.00
Bytes

71 0 17.98 KB 184.13×

500.00
Bytes

37 1 89.57 KB 183.44×

1.00 KB 22 2 183.76 KB 183.76×
2.00 KB 21 4 365.23 KB 182.61×
5.00 KB 48 6 919.09 KB 183.82×
10.00 KB 66 7 1.79 MB 183.66×
20.00 KB 108 14 3.58 MB 183.34×
50.00 KB 205 36 8.96 MB 183.52×
100.00 KB 447 65 17.90 MB 183.34×
200.00 KB 829 126 35.83 MB 183.43×
500.00 KB 2013 312 89.56 MB 183.43×
1.00 MB 4060 617 183.42 MB 183.42×
2.00 MB 7994 1260 366.86 MB 183.43 ×
5.00 MB 21024 3222 917.15 MB 183.43×
10.00 MB 42416 6793 1.79 GB 183.41×

TABLE 4: Comparison of NIST test results
regarding key generation
NIST test Fixed n

prime
Enhanced
with W (n)

Enhanced
without W (n)

Frequency 0.002043
(9/10)

0.350485
(10/10)

0.122325
(10/10)

Block frequency 0.017912
(9/10)

0.017912
(10/10)

0.350485
(10/10)

CUMULATIVE sums
(1)

0.008879
(9/10)

0.213309
(10/10)

0.739918
(10/10)

Cumulative sums (2) 0.002043
(10/10)

0.534146
(10/10)

0.122325
(10/10)

Runs 0.534146
(10/10)

0.739918
(10/10)

0.739918
(10/10)

Longest run 0.350485
(10/10)

0.350485
(10/10)

0.066882
(10/10)

Rank 0.534146
(10/10)

0.911413
(10/10)

0.534146
(10/10)

FFT 0.350485
(10/10)

0.534146
(10/10)

0.911413
(10/10)

Overlapping
template

0.739918
(10/10)

0.911413
(10/10)

0.739918
(10/10)

Approximate entropy 0.213309
(10/10)

0.350485
(10/10)

0.066882
(10/10)

Serial (1) 0.739918
(10/10)

0.213309
(10/10)

0.035174
(10/10)

Serial (2) 0.534146
(10/10)

0.213309
(10/10)

0.213309
(10/10)

Linear complexity 0.017912
(10/10)

0.739918
(10/10)

0.035174
(10/10)

NIST: National Institute of Standards and Technology, FFT: Fast Fourier Transform

Fig. 3. Encryption time comparison between original and enhanced
n-Primes homomorphic encryption schemes across different file sizes.

Fig. 4. Decryption time comparison between original and enhanced
n-Primes homomorphic encryption schemes across different file sizes.

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 87

Logically, using dynamic subsets adds variability, not just
mathematical robustness. This technique adds a layer of
randomness because each encryption operation uses a
different value of n, making it more difficult to detect
patterns in ciphertexts. We also chose to have a set of primes
and then extract subsets from it instead of trying to generate
the primes on the fly when needed, which is computationally
expensive.

7.4. Security versus Performance Tradeoff
There is a clear trade-off between security and performance
in the enhanced encryption scheme, as computational
overhead is added to address vulnerability in decryption
attacks using factors instead of a dedicated key. Further
computational overhead is added when using windowing

Fig. 5. Ciphertext expansion ratio comparison between original and
enhanced n-Primes schemes across different file sizes.

Fig. 7. Average National Institute of Standards and Technology
P-values for original, enhanced without windowing, and enhanced

with windowing techniques.

Fig. 6. Number of National Institute of Standards and Technology tests
won by original, enhanced without windowing, and enhanced with

windowing techniques.

Fig. 9. Security level of the generated keys based on National Institute
of Standards and Technology statistical tests.

Fig. 8. Number of National Institute of Standards and Technology
tests achieving solid randomness (P > 0.1) for each key

generation technique.

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

88	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

techniques to make the ciphertexts’ own random properties
resistant to pattern detection attacks (Fig. 10). Our improved
scheme offers greater security benefits and may be preferred
in applications where confidentiality is the priority and
performance is secondary. The windowing approach also
provides a limited solution by reducing the ciphertext size to
a minimum acceptable level or increasing it to a certain level
by modifying the window size parameters. This allows for a
tailored balance between security and performance, but its
impact remains limited.

8. USE CASES

8.1. Medication Cost Analysis
Patient records contain numerical data, such as body mass
index, blood pressure, glucose levels, medication doses,
treatment rates, and healthcare expenditures, that a third
party may need to perform operations on. Synthea™
provides a dataset in CSV and JSON files containing patient
demographics, clinical notes, medications, encounters, and
regulatory data [31].

Analyzing medication costs typically requires access to
sensitive financial data. Research needs (such as access
to spending patterns, cost variations, and improvement
opportunities) conflict with privacy requirements. We
implemented our integer-based homomorphic encryption
to enable statistical analysis of costs, such as measuring total
spending and average costs for each type of medication,
without revealing individual patient data.

The analysis was performed on a dataset of 42989 medication
records, with 131 unique medication descriptions. Cost values
were represented in decimals with up to two decimal places,
ranging from $0.99 to $7015.8 per medication. Since our
homomorphic encryption scheme operates on integers, we
had to scale the data as a preprocessing step by converting
the decimal cost values to integers by multiplying them by 100
(e.g., $10.25 ← 1025 cents). Then, after applying encryption
to these integers and performing homomorphic operations
over them, we scale back the results by dividing them by
100 (Fig. 11).

We computed the total spending cost grouping per description
by applying homomorphic addition to the encrypted values.
Then, we computed the average by plaintext division post-
decryption. We compared the results of the homomorphic
operations with calculations on plain text data to verify
accuracy. As shown in Table 5, our implementation achieved
perfect accuracy. As for operational efficiency, performance
metrics were recorded with an encryption time of 657 ms for
42,989 records and a decryption time of 7 ms for statistical
results.

8.2. CHADS2 Score Calculation
The CHADS2 score is used as a validated tool for predicting
stroke risk in patients with Atrial Fibrillation (AF). Five
risk factors are assessed with a score ranging from 0 to 6:
Congestive heart failure (1 point), hypertension (1 point),
age ≥75 years (1 point), diabetes (1 point), and prior
stroke/transient ischemic attack (2 points) [32]. Scores of
≥ 3 indicate an increased risk of stroke, which may require
anticoagulation [33].

CHADS2Score = C+H+A+D+(S×2)� (26)

Patients with AF were identified in the conditions dataset
by searching case descriptions (34 out of 1,171 patients).
Risk factors (CHADS2 components) were then extracted
for each AF patient. We encoded each risk factor as 1 if
present and 0 if absent, then homomorphically encrypted
the values. Finally, we calculated the score using E(C), E(H),
E(A), E(D), and E(S).

The results of calculating encrypted CHADS2 scores showed
100% accuracy compared to plaintext calculations for 34 AF
patients identified. 85.3% of these patients were classified
as high risk. The total processing time was 309 ms, with
98.4% spent on encryption, 1.3% on decryption, and <1%
on calculation.

Fig. 10. Encryption and decryption time comparison between fixed
primes (without windowing) and windowing approaches for the 10 MB

file using the enhanced n Primes scheme.

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 89

However, the current technique faces challenges as related
math operations require dealing with categorical data. For
instance, identifying a patient with AF requires decrypting
this information during comparison and encoding, which
compromises privacy. Similarly, identifying descriptive risk
factors required matching for “hypertension,” “diabetes,”
etc., which required displaying the data unencrypted.

Binary encoding can ensure complete privacy through
additional specific structured storage (Fig. 12). One drawback of
this method is its storage cost, as it requires as many columns as
the expected number of descriptions—about 131 in the current
conditions’ dataset. For example, a patient with diabetes would
have a value of 1, while the remaining 130 descriptions would
have a value of 0. All these values would be homomorphically
encrypted, which would greatly increase storage requirements.

9. LIMITATIONS

Integer-Only Operations: Converting floating-point values to
integers requires a specific system-level scale value; otherwise,

metadata for each numerical field must be retained for use
in the scale-back process. Therefore, the results need careful
conversion back to the original units after decryption.

Limited Operations: Supporting homomorphic addition
and multiplication is insufficient for performing other
statistical operations (e.g., division and ≥ in the applied use
cases). Therefore, complex calculations (such as correlation,
regression, variance, etc.) cannot be performed directly on
the encrypted data.

Grouping Impact on Security: When operations are required
on groups (e.g., aggregating and calculating the average for
each medication), metadata such as descriptions should
remain unencrypted. Alternatively, it should be encrypted
with the same parameters and random numbers to obtain
the same ciphertext for each description to enable grouping
based on ciphertexts.

10. FUTURE WORK

After implementing the technique, we introduced floating-
point numbers to observe how it handles them. The
encryption and decryption were successful, but the decimal
parts remained visible in the ciphertext. For example, 2.24
as plaintext becomes 860955343.24 ciphertext, with the
fractional value “0.24” still intact. Therefore, it is important
to investigate this issue further and to establish mathematical
methods for securely encrypting the fractional parts in future
work.

Fig. 12. Data structure required to apply homomorphic operations over binary encoded categorical data to ensure full privacy.

Fig. 11. Medication cost analysis workflow.

TABLE 5: Accuracy comparison for selected
medications
Medication description Average

after
decryption

Plaintext
average

Error %

Insulin Lispro 100 UNT/ML $1,410.89 $1,410.89 0.000000
Simvastatin 10 MG $5,891.26 $5,891.26 0.000000
Acetaminophen 325 MG $7.05 $7.05 0.000000
Hydrochlorothiazide 25 MG $2,448.78 $2,448.78 0.000000

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

90	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

We also carried out an initial investigation into the
homomorphic properties using floating-point numbers,
finding that they work for addition but not for multiplication.
Therefore, further mathematical analysis is necessary to
determine if the current encryption formula needs specific
adjustments.

When decrypting 860955343.24, the expected value was
2.24, but the actual result was 2.24000000954, with a slight
difference in precision. However, identifying the cause of
this discrepancy and assessing the potential for significant
deviations are essential for defining acceptable error limits.

11. CONCLUSIONS

This study addressed a key vulnerability that allows using
factors for unauthorized decryption instead of the assigned
secret key in integer-based homomorphic encryption
schemes. Security analyses demonstrated that our improved
encryption formula mitigates this vulnerability by ensuring
that decryption relies solely on the assigned secret key
while preserving additive and multiplicative homomorphic
properties. NIST analyses also demonstrated that the
random window technique strengthens the scheme against
pattern detection attacks by introducing variability and
random properties into the ciphertext generation process.
Performance evaluations showed that the enhanced scheme
maintains close decryption times and identical ciphertext
expansion ratios to the original scheme, with slightly
improved decryption performance for larger files despite the
additional security measures. The medication cost analysis use
case achieved optimal accuracy in homomorphic processes
with reasonable performance metrics. Future research should
focus on expanding the system to support more complex
statistical operations directly on encrypted data, improving
computational efficiency for real-time applications, and
developing support for handling floating-point values. Despite
these limitations, our research contributes significantly to
creating more secure homomorphic cryptosystems for
healthcare applications.

REFERENCES

[1]	 J. R. Paragas. “An Enhanced Cryptographic Algorithm in Securing
Healthcare Medical Records. In: 2020 Third International
Conference on Vocational Education and Electrical Engineering
(ICVEE)”. IEEE, Piscataway, pp. 1-6, 2020.

[2]	 K. Munjal and R. Bhatia. “A systematic review of homomorphic
encryption and its contributions in healthcare industry”. Complex
and Intelligent Systems, vol. 9, no. 4, pp. 3759-3786, 2023.

[3]	 J. Scheibner, M. Ienca, S. Kechagia, J. R. Troncoso-Pastoriza,
J. L. Raisaro, J. P. Hubaux, J. Fellay, E and Vayena. “Data
protection and ethics requirements for multisite research with
health data: A comparative examination of legislative governance
frameworks and the role of data protection technologies”. Journal
of Law and the Bioscience, vol. 7, no. 1, p. lsaa010, 2020.

[4]	 C. S. Kruse, B. Smith, H. Vanderlinden and A. Nealand. “Security
techniques for the electronic health records”. Journal of Medical
System, vol. 41, no. 8, p. 127, 2017.

[5]	 C. Brall, C. Berlin, M. Zwahlen, K. E. Ormond, M. Egger and E.
Vayena. “Public willingness to participate in personalized health
research and biobanking: A large-scale Swiss survey”. PLoS One,
vol. 16, no. 4, p. e0249141, 2021.

[6]	 C. K. Yee and M. F. Zolkipli. “Review on confidentiality, integrity
and availability in information security”. Journal of ICT Education,
vol. 8, no. 2, pp. 34-42, 2021.

[7]	 A. A. Abdullah, R. Khalaf and M. Riza. “A realizable quantum
three-pass protocol authentication based on hill-cipher algorithm”.
Mathematical Problems in Engineering, vol. 2015, p. 481824,
2015.

[8]	 S. Murthy and C. R. Kavitha. “Preserving Data Privacy in Cloud
Using Homomorphic Encryption. In: 2019 3rd International
conference on Electronics, Communication and Aerospace
Technology (ICECA)”. IEEE, Piscataway, pp. 1131-1135, 2019.

[9]	 S. Carpov, T. H. Nguyen, R. Sirdey, G. Constantino and
F. Martinelli. “Practical Privacy-Preserving Medical Diagnosis
Using Homomorphic Encryption. In: 2016 IEEE 9th International
Conference on Cloud Computing (Cloud)”. IEEE, Piscataway,
pp. 593-599, 2016.

[10]	 A. Acar, H. Aksu, A. S. Uluagac and M. Conti. “A survey on
homomorphic encryption schemes: Theory and implementation”.
ACM Computing Surveys, vol. 51, no. 4, pp. 1-35, 2019.

[11]	 A. V. Kumar, M. S. Sujith, K. T. Sai, G. Rajesh and D. J. S. Yashwanth.
“Secure Multiparty Computation Enabled E-Healthcare System with
Homomorphic Encryption. In: IOP Conference Series: Materials
Science and Engineering”. IOP Publishing, United Kingdom,
p. 022079, 2020.

[12]	 W. Tang, J. Ren, K. Deng and Y. Zhang. “Secure data aggregation
of lightweight E-healthcare IoT devices with fair incentives”. IEEE
Internet Things Journal, vol. 6, no. 5, pp. 8714-8726, 2019.

[13]	 J. Scheibner, J. L. Raisaro, J. R. Troncoso-Pastoriza, M. Ienca,
J. Fellay, E. Vayena and J. P. Hubaux. “Revolutionizing medical
data sharing using advanced privacy-enhancing technologies:
Technical, legal, and ethical synthesis”. Journal Medical Internet
Research, vol. 23, no. 2, p. e25120, 2021.

[14]	 W. Guo, J. Shao, R. Lu, Y. Liu and A. A. Ghorbani. “A privacy-
preserving online medical prediagnosis scheme for cloud
environment,” IEEE Access, vol. 6, pp. 48946-48957, 2018.

[15]	 M. M. Anwar and A. F. Salman. “A new fully homomorphic
cryptosystem based on a super-increasing sequence”. Telfor
Journal, vol. 12, no. 1, pp. 50-55, 2020.

[16]	 K. Sinha, P. Majumder and S. K. Ghosh. “Fully Homomorphic
Encryption Based Privacy-Preserving Data Acquisition and
Computation for Contact Tracing. In: 2020 IEEE International
Conference on Advanced Networks and Telecommunications
Systems (ANTS)”. IEEE, Piscataway, pp. 1-6, 2020.

[17]	 M. A. Mohammed and F. S. Abed. “An improved fully homomorphic
encryption model based on N-primes”. Kurdistan Journal of Applied
Research, vol. 4, no. 2, pp. 40-49, 2019.

Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 91

[18]	 O. Mendelevitch and M. D. Lesh. “Fidelity and privacy of synthetic
medical data”. 2021. arXiv: arXiv:2101.08658.

[19]	 M. Giuffrè and D. L. Shung. “Harnessing the power of synthetic
data in healthcare: Innovation, application, and privacy”. NPJ
Digital Medicine, vol. 6, no. 1, p. 186, 2023.

[20]	 E. Mollakuqe, A. Parduzi, S. R. Orcid, V. Dimitrova,
S. J. R. Muharremi, M. H. Orcid and J. Qarkaxhija. “Applications of
homomorphic encryption in secure computation”. Open Research
Europe, vol. 4, no. 158, p. 158, 2024.

[21]	 J. Scheibner, M. Ienca and E. Vayena. “Health data privacy through
homomorphic encryption and distributed ledger computing: An
ethical-legal qualitative expert assessment study”. BMC Medical
Ethics, vol. 23, no. 1, p. 121, 2022.

[22]	 M. A. Mohammed and F. S. Abed. “Cloud storage protection
scheme based on fully homomorphic encryption”. ARO- Science
Journal Koya Univercity, vol. 8, no. 2, pp. 40-47, 2020.

[23]	 T. Al Attar and M. A. Mohammed. “Fully homomorphic encryption
scheme for securing cloud data”. UHD Journal Science Technology,
vol. 7, no. 2, pp. 40-49, 2023.

[24]	 M. Hernandez, G. Epelde, A. Alberdi, R. Cilla and D. Rankin,
“Synthetic data generation for tabular health records: A systematic
review”. Neurocomputing, vol. 493, pp. 28-45, 2022.

[25]	 J. Walonoski, M. Kramer, J. Nichols, A. Quina, C. Moesel, D. Hall,
C. Duffett, K. Dube, T. Gallagher and S. McLachlan. “Synthea:
An approach, method, and software mechanism for generating
synthetic patients and the synthetic electronic health care record”.
Journal of the American Medical Information Association, vol. 25,
no. 3, pp. 230-238, 2018.

[26]	 “RSA Algorithm in Cryptography”. Available from: https://www.

geeksforgeeks.org/rsa-algorithm-cryptography [Last accessed on
2025 Jul 17].

[27]	 L. E. Bassham 3rd, A. Rukhin, J. Soto, J. Nechvatal, M. Smid,
E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A.
Heckert, J. Dray and S. Vo. "A Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic
Applications". NIST Special Publication 800-22 Rev. 1a. National
Institute of Standards and Technology, Gaithersburg, MD, 2010.

[28]	 E. B. Barker and J. M. Kelsey. “Recommendation for Random
Number Generation Using Deterministic Random Bit Generators
(Revised)”. US Department of Commerce, Technology
Administration, National Institute, United States, 2007.

[29]	 “SecureRandom (Java Platform SE 8)”. Available from: https://
docs.oracle.com [Last accessed on 2025 Jul 25].

[30]	 “MSC63-J. Ensure that SecureRandom is properly seeded - SEI
CERT Oracle Coding Standard for Java - Confluence”. Available
from: https://wiki.sei.cmu.edu/confluence [Last accessed on 2025
Jul 25].

[31]	 “GitHub - Synthetichealth/Synthea: Synthetic Patient Population
Simulator”. Available from: https://github.com/synthetichealth/
synthea [Last accessed on 2025 Jun 16].

[32]	 B. F. Gage, A. D. Waterman, W. Shannon, M. Boechler, M. W. Rich
and M. J. Radford. “Validation of clinical classification schemes
for predicting stroke: Results from the national registry of atrial
fibrillation”. JAMA, vol. 285, no. 22, pp. 2864-2870, 2001.

[33]	 P. S. Goldman and M. D. Ezekowitz. “Anticoagulation in atrial
arrhythmias: Current therapy and new therapeutic options. In:
Electrophysiological Disorders of the Heart”. Elsevier, Netherlands,
pp. 1175-1180, 2012.

