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1. INTRODUCTION

According to estimates by clinical pathology laboratories, 
the number of  patients whose personal information was 
revealed reached 2.2 million, and the number of  patients 
whose banking information was affected reached 34,500 [1]. 
With the increasing demand for outsourced applications, 

data privacy on the Internet has become crucial. While 
customers benefit from these services by uploading their 
data to be evaluated and obtaining results, their data are 
exposed to third-party services [2]. Hospitals and healthcare 
organizations increasingly collect data due to the increasing 
use of  this data in health research and personalized medicine 
based on big data technologies [3]. The amount and risk of  
cyberattacks on patients’ medical data stored in the cloud 
are increasing daily.

The healthcare sectors focus on digitizing healthcare 
information because it improves care efficiency, making it 
more affordable and accessible. In the healthcare sector, 
hospitals or healthcare facilities keep a digital record of  each 
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patient called an electronic health record (EHR) that contains 
all demographic, clinical, historical, reporting data, progress 
notes, problems, medications, vital signs, immunizations, 
laboratory data, and radiology reports [2], [4]. A  large 
percentage of  patients allow their data to be used to support 
research and improve the quality of  healthcare, but at the 
same time, they are concerned about privacy, misuse, and 
mishandling of  their data [5]. For information to be secure, 
it must have the security characteristics of  confidentiality, 
integrity, and availability [6]. To prevent data breaches, 
encryption is a vital component of  information security 
systems, thus protecting private data from unauthorized 
access and ensuring integrity [7].

2. LITERATURE REVIEW

2.1. Data Security and Privacy Challenges
In multi-party environments such as the cloud, all parties are 
at risk of  threats, whether the provider or the user. Therefore, 
the minimum requirement for data security is to be stored in 
its encrypted state [8]. Customers are very concerned about 
the content of  data sent to the cloud or stored in the service 
provider’s servers because it is easily accessible to service 
providers. If  digital records are handled in a way that ensures 
their privacy during acquisition, storage, and computing, then 
complete privacy has been achieved. However, while privacy 
can be achieved during acquisition and storage, achieving 
privacy is challenging during processing [2].

2.2. Homomorphic Encryption as a Solution
When encrypted data are required to be used, it must be 
decrypted, which exposes it to risk at that moment, so 
homomorphic encryption is a solution to ensure its privacy 
and security [2]. Fully homomorphic encryption (FHE) is 
one of  the most widely adopted encryption techniques, 
focusing on privacy at the highest levels [9]. This technique 
focuses on two aspects: data encryption and the ability to 
handle data that has been encrypted through mathematical 
operations without the need to decrypt it, thus ensuring its 
complete confidentiality.

The main types of  homomorphic encryption schemes are 
divided according to the number and type of  operations into 
Partial, Somewhat, and Full. In Partial, only one operation, 
either addition or multiplication (not both), is applied to the 
encrypted data an unlimited number of  times. Examples 
of  these are Rivest-Shamir-Adleman (RSA), ElGamal, and 
Paillier. In Somewhat, a limited number of  mathematical 
operations are applied to the encrypted data a limited number 

of  times. Finally, the full technique involves both addition 
and multiplication utilized simultaneously and an unlimited 
number of  times [10].

As for the functions and use cases, the benefit of  FHE is 
that it supports functions, such as searching, sorting, max, 
and min. However, despite the proposed attempts that have 
improved the efficiency and performance of  FHE schemes, 
it is still difficult to implement them in a real service without 
disturbing the user. Although somewhat homomorphic 
encryption or leveled-FHE has achieved acceptable 
performance in some applications, the bootstrapping 
techniques still need improvement, as do the multiplication 
operations, which negatively affect performance [10]. Due to 
this feature, data encrypted with this technique can be handed 
over to third parties to perform any meaningful operation [3].

2.3. Related Work
In certain cases, user data becomes vulnerable, such as during 
pandemics when patients cannot reach hospitals, so they 
contact doctors using technology over the network to obtain 
information about the diagnosis [11]. This is done remotely 
through the presence of  devices that provide accurate 
medical data and support the Internet of  Things, which can 
then send readings of  blood pressure, oxygen, temperature, 
etc. [12]. Carpov et al. developed a mobile application that 
encrypts users’ data with a FHE algorithm and transmits it 
to the cloud [9]. Their implementation focused on analyzing 
and evaluating cardiac risk factors in the cloud by processing 
encrypted health data uploaded in a secure and privacy-
preserving manner. They processed the data exchange 
between the doctor and the patient through an architecture 
that enables the patient to grant authorization to the doctor 
to access the results through a private FHE key.

Based on the increasing need for secure remote healthcare 
during pandemics, Kumar et al. proposed a hybrid approach 
of  multi-party computing and homomorphic encryption to 
secure health data [11]. Their model addressed the aspect 
of  secure architecture that ensures the results between the 
patient and the doctor. This prevents eavesdropping across 
different systems’ entities and ensures trust among the 
patient community. They achieved the partial homomorphic 
encryption approach by adopting the Paillier encryption 
scheme. Despite the security, reliability, and patient-centric 
approach, it is relatively slow due to processing long 
ciphertexts instead of  plain data.

Scheibner et al. presented a system that combines 
homomorphic encryption and secure multiparty computation 
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to address the limitations of  traditional approaches to 
enhancing privacy during medical data sharing [13]. 
The authors developed a new homomorphic multiparty 
encryption approach that enables secure, flexible processing 
while meeting data anonymization and legal requirements 
under the General Data Protection Regulation (GDPR). This 
is done by efficiently transitioning between homomorphic 
encryption, represented by local computation, and interactive 
protocols, defined by multiparty computation. Their 
analysis showed that homomorphic multiparty encryption 
provides an effective solution compared to using the two 
techniques alone, and they acknowledged the limitations of  
computational complexity as one of  the drawbacks of  full 
homomorphic encryption.

Guo et al. stated that privacy issues exist in the model training 
and the pre-diagnosis stage in machine learning [14]. They 
designed a pre-diagnosis scheme that provides healthcare 
services using logistic regression called Privacy-Preserving 
Online Medical Pre-diagnosis in a privacy-preserving 
manner by employing homomorphic encryption techniques. 
A  homomorphic encryption scheme called Boneh-Goh-
Nissim was applied to protect the confidentiality of  the 
feature vector x and the pre-diagnosis model ω. Their analysis 
showed that the proposal resisted security threats and privacy 
concerns. Furthermore, it is efficient and cost-effective 
regarding computational and communication burdens [14].

Anwar and Salman proposed a FHE algorithm to protect data 
privacy on the cloud based on a Super-increasing Sequence. 
Each character in the plaintext is converted to its  American 
Standard Code for Information Interchange (ASCII) code 
and encrypted using the C = S (2 × q × r) + m algorithm 
to produce a ciphertext. They added r as a random value 
for the noise added to the ciphering process and evaluated 
the randomness through well-known National Institute of  
Standards and Technology (NIST) tests [15]. Their research 
results showed that their algorithm performs better than 
other proposed algorithms, as it can encrypt larger files. As 
for security, a super-increasing sequence with a subset sum 
problem that was used provides high security. However, they 
faced challenges regarding the encrypted file’s size, which is 
larger than the plaintext file. Furthermore, the decryption 
process takes longer than the encryption process [15].

Sinha et al. proposed a privacy-aware surveillance system that 
ensures secure patient data sharing, leading to timely and 
effective responses to crisis scenarios (e.g., the COVID-19 
pandemic). The proposed new encryption mechanism is based 
on a fully homomorphic and secure encryption scheme using 

the ElGamal algorithm. The effectiveness of  the contact 
tracing method was analyzed, and the results showed that the 
proposed solution effectively provides security and adequate 
support for the computational needs of  contact tracing [16].

Mohammed and Abed proposed a FHE algorithm that 
uses n prime numbers instead of  two. They convert each 
character in the plaintext to its ASCII code and encrypt it 
using the C = M + r × L × n model [17]. The key consists 
of  L (a large prime integer), r (a random number added as 
noise), and n (a set of  prime numbers multiplied together). 
Results showed better performance in encrypting different 
file sizes. The proposed method was compared with the 
DGHV and SDC schemes, showing superior performance. 
The security level is high due to using n as a multiplier for the 
i-Prime Modular Operation. However, the authors mention 
limitations related to encrypted text size, affecting storage 
space and the decryption process [17].

2.4. Compliance with Regulations and Standards
18 elements can directly and uniquely identify an individual 
as defined by the Health Insurance Portability and 
Accountability Act (HIPAA), such as name, social security 
number, and phone number. Until the mid-2000s, and based 
on HIPAA, removing all these fields was considered the 
simplest and most adequate way to protect privacy and de-
identify data [18]. The same case concerns the GDPR, which 
focuses on personal data relating to a specific, identified, 
or identifiable person [19]. Homomorphic encryption thus 
complies with data protection regulations and privacy laws 
such as HIPAA in healthcare and GDPR in finance [20]. The 
provisions of  the regulation guarantee the right to access 
information related to processing and allow data subjects to 
monitor how their data are used [21].

3. PROBLEM STATEMENT

Despite encryption being a vital component of  information 
security systems, specific existing integer-based homomorphic 
encryption schemes contain critical mathematical 
vulnerabilities. Specifically, schemes using formulations:

C = S⋅ (q⋅2⋅r)+M� (1)

C = M+r⋅L⋅n� (2)

C = M+L(rK+i)� (3)

Where:
•	 C = Ciphertext
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•	 M = Message/Plaintext
•	 L = Large prime integer
•	 K = Secret key
•	 r = Noise/random number
•	 i = Counter/iteration variable
•	 n = Product of  multiple prime numbers
•	 S = Parameter greater than the sum of  the super-

increasing sequence
•	 q = Sum of  chosen numbers from the transformed 

sequence

Equation (1) in [15], Equation (2) in [17], and Equation (3) 
in [22], [23] are susceptible to unauthorized decryption when 
attackers utilize factors that exceed m, effectively bypassing 
the intended secret prime key. This vulnerability contradicts 
the fundamental security model of  FHE, which aims to 
protect sensitive healthcare data from privacy disclosure 
risks during server-side processing. In addition, present 
implementations fail to specify secure methods for random 
number generation and lack resistance to pattern detection 
attacks. With the increasing digitization of  healthcare 
information and application outsourcing, this security gap 
poses significant risks to patient data privacy. Therefore, 
an enhanced encryption scheme that eliminates these 
vulnerabilities while maintaining homomorphic properties 
is urgently needed.

4. THEORETICAL FRAMEWORK

4.1. Math Model
The encryption scheme is homomorphic when: E(m1) ★ 
E(m2) = E (m1 ★ m2), ∀m1, m2 ∈ M. Where E is the cipher 
algorithm, M is the plaintext to be encrypted, and ★ is the 
mathematical operation. This means encrypting m1 and m2 
and then performing the operation ★ on their results is the 
same as performing the operation ★ on m1 and m2 first 
and then encrypting the result.

4.2. Noise and Circuit Depth
The noise component is an essential element in the FHE 
encryption process to ensure that many possible ciphertexts 
are obtained for each message that needs to be encrypted 
and thus ensure semantic security [9]. In FHE encryption, 
there is a direct proportion between noise and the number 
of  homomorphic operations, where a substantial increase 
in noise has a negative effect and makes it difficult to 
decrypt correctly. In particular, multiplication increases noise 
significantly compared to addition, and the encrypted data has 

to be refreshed regularly by bootstrapping [2]. This depends 
on the circuit depth; the number of  operations (addition and 
multiplication) can be performed in sequence while still being 
able to decrypt correctly.

4.3. Architecture and Quality
The security model on which FHE is based essentially 
consists of  two parties: The user who owns the data with the 
privacy and the software service provider. The purpose and 
function of  FHE is to protect user data from the risks of  
privacy disclosure that may be exposed to it on the server [9]. 
The quality and performance of  this model depend on the 
evaluation results of  three main criteria: security, speed, and 
simplicity. The scheme should be consistent, understandable, 
and within the standards and best practices followed by other 
practitioners in the field, and thus, be simple, applicable, and 
producible [10].

5. MATERIALS AND METHODS

5.1. Data Collection
There are significant challenges in accessing high-quality 
datasets due to data use agreements, privacy concerns, 
ethics reviews, and costs. Therefore, synthetic data offers an 
attractive alternative to address these concerns [19]. Synthetic 
data is artificially generated using a trained model that 
replicates real data according to its distributions (shape and 
variance) and structure (attributes’ correlations) [24]. When 
synthetic data is derived from sensitive medical information, 
the challenge is to ensure that it cannot access details that 
would lead to the re-identification of  individuals [19]. Synthea 
is an open-source synthetic health simulator that generates 
synthetic EHRs, and it was proposed by Walonoski et al. as 
an approach to simulate patient information in JSON and 
CSV format [25].

5.2. Original Scheme Analysis
In the proposed encryption scheme [17], the text is encrypted 
in a homomorphic way using equation (2), where m is the 
plaintext message; specifically, the character’s ASCII value.

The plaintext is recovered using the modular operation. Let 
us derive this step-by-step:

C mod L = (M+r⋅L⋅n) mod L� (4)

Then, using the basic property of  modular arithmetic:

(a+b) mod n = ((a mod n)+(b mod n)) mod n� (5)
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We get:

C mod L = ((M mod L)+((r⋅L⋅n) mod L)) mod L� (6)

Based on the fact that any number multiplied by a coefficient 
is divisible by it, then the noise term becomes zero:

((r⋅L⋅n) mod L) = 0� (7)

Then the equation simplifies to:

C mod L = ((M mod L)+ 0) mod L� (8)

Since m ∈ [0, L-1] according to [17], it concludes:

C mod L = (M mod L) = M� (9)

The advantage of  this scheme is that it supports homomorphic 
encryption. It does not require noise management and 
bootstrapping to reduce noise growth, especially with the 
multiplication process, as the modulus operation eliminates it.

For addition, taking mod L, let the noise term disappear:

C_add = C1+C2  = (M1+r1⋅L⋅n)+(M2+r2⋅L⋅n) = 
M1+M2+nL(r1+r2)� (10)

C_add mod L = (M1+M2+nL(r1+r2)) mod L = M1+M2� (11)

For multiplication, taking mod L eliminates any term contains 
noise:

C_mul = C1×C2 = (M1+r1⋅L⋅n)(M2+r2⋅L⋅n)� (12)

C_mul = (M1⋅M2)+(M1⋅r2⋅L⋅n)+(M2⋅r1⋅L⋅n)+(r1⋅r2⋅L2⋅n2)
� (13)

C_mul mod L = M1⋅M2� (14)

However, the authors did not specify how the random numbers 
are generated and how secure they are. As for security, no 
proven and tested method has been adopted to produce 
secure random numbers for cryptographic use. In addition, we 
identified a critical mathematical vulnerability in this scheme 
and similar schemes. Any factor of  the terms used in the key 
then m can be used in decryption instead of  L, which is claimed 
to be the only secret big prime integer key used in decryption.

Let f be any factor of  the term r × n such that f  > M. Then:

C mod f = (M+r⋅L⋅n) mod f � (15)

Since r ⋅ L ⋅ n ≡ 0 (mod f) (as f divides r or n), this simplifies to:

C mod f  = M� (16)

For example, using n = 114197120264498507, which is the 
product of  (1009, 1013, 2153, 6553, 7919) primes, then all 
possible keys that can be used in decryption other than L are 31 
keys (primes and products of  primes). When the attacker does 
not need to know all the primes used, then using n of  them 
will be a disadvantage. Unlike RSA, someone needs to get the 
value of  p and q to calculate d and decrypt the message [26].

5.3. Enhanced Scheme Design
Encryption process:

C = M+(r1⋅L)+(r2⋅L⋅W(n))� (17)

Where:
•	 L = Secret large prime key
•	 n = Composite large value of  prime numbers
•	 r1, r2 = Large random numbers
•	 W(n) = Product of  prime numbers in the current window

Decryption process:

M = C mod L� (18)

M = (M+(r1⋅L)+(r2⋅L⋅W(n))) mod L� (19)

M = (M+(0)+(0)) = M, when M< L� (20)

5.4. Random Number Generator (RNG)
We evaluate two approaches for generating the random 
values r1 and r2: First, Counter_Deterministic Random Bit 
Generator (CTR_DRBG) is a counter-mode deterministic 
random bit generator implemented based on NIST 
specifications. Second, Java SecureRandom is a built-in 
cryptographically secure pseudo-RNG in Java.

5.5. Windowing Technique for Prime Selection
One of  the reasons for increasing the size of  the ciphertext 
is to adopt a set n that contains an uncontrolled number of  
prime numbers. Therefore, we propose an enhanced FHE 
scheme that provides a technique for adopting specific prime 
numbers from the n set. This is done by employing a dynamic 
prime window mechanism while maintaining homomorphic 
properties. Instead of  using a full fixed set of  prime numbers 
when encrypting each character, a sliding window W of  size 
k is defined, where the size of  k < n. A subrange of  primes 
is extracted for each ASCII character, and the window shifts 
according to a deterministic function.
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We implemented a random windowing approach for the 
prime selection to enhance security. For each encryption 
operation, we select a subset of n primes based on:

Window size:

K(seed) = kmin+((seed) mod (kmax-kmin+1))� (21)

Window offset:

O seed seed
k k

mod n K seed
max min

( ) =
− +

− ( ) +( )







( )

�
1

1 � (22)

Where:
•	 kmin = Minimum window size
•	 kmax = Maximum window size
•	 seed = Deterministic value

5.6. Experimental Setup
To evaluate the performance and security of  our enhanced 
scheme, we designed a comprehensive test suite with the 
following components:
1.	 Security analysis: We do a vulnerability check regarding 

the identified gap with a demo example
2.	 Homomorphic property verification: We test the 

enhanced scheme regarding homomorphic encryption 
properties (addition and multiplication)

3.	 We evaluate the selected RNGs randomness properties 
using the NIST Statistical Test Suite and choose the more 
secure one

4.	 Performance testing: We measure encryption and 
decryption times and ciphertext expansion ratios across 
file sizes ranging from 100 bytes to 10 MB

5.	 We check the role and effectiveness of  the windowing 
technique

6.	 We apply the technique to practical use cases.

5.7. Testbed
1.	 Hardware Configuration

a.	 Operating System: Windows 10
b.	 Architecture: 64-bit operating system, x64-based 

processor
c.	 Processor: Intel(R) Core (TM) i7-6600U CPU @ 

2.60GHz 2.81 GHz
d.	 Memory: 8.00 GB installed RAM (7.88 GB usable)

2.	 Software Environment
a.	 Programming language: Java (version 20.0.2)

b.	 Cryptographic libraries:
	 i.  �Java  Secur i ty  API  for  SecureRandom 

implementation
	 ii.  �Custom implementation of  CTR_DRBG based 

on NIST SP 800-90A
c.	 Analysis Tools:
	 i.  NIST Statistical Test Suite (STS)
	 ii.  �Cygwin64 terminal environment for running 

NIST tests

6. EXPERIMENTS

6.1. Random Number Generation
Hardware or software can produce binary sequences based on 
cryptographic randomness for random number generation. 
The generated random number can be used to create keys 
in cryptographic applications, and common cryptosystems 
may generate keys randomly and employ them. However, the 
produced number may have patterns that can be predicted. 
Hence, tests must be done to check for non-randomness in 
the generated sequence. The NIST statistical package can 
be used with 15 tests to test the randomness and identify 
weaknesses or patterns in the produced binary sequences.

A RNG uses a non-deterministic source based on entropy and 
processing functions. Any resulting weakness in the entropy 
source is overcome using the distillation process, thus avoiding 
producing non-random numbers such as those containing long 
strings of  zeros or ones. On the other hand, the pseudo-RNG 
relies on deterministic functions to generate pseudorandom 
numbers through one or more random and unpredictable seed 
inputs [27]. Pseudorandom numbers appear more random 
compared to random numbers generated from physical sources. 
These transformations introduce additional randomness and 
eliminate the associations between inputs and outputs, so the 
statistical properties of  the output of  a pseudo-RNG may be 
better. They can be generated faster than an RNG [27].

Key requirements such as randomness, unpredictability, 
uniformity, scalability, and consistency should be satisfied to 
develop a new random bit sequence generation technique [27]. 
Regarding unpredictability, there are two types: forward and 
backward unpredictability. Forward unpredictability means 
that if  the seed is unknown and the previous random 
numbers in the sequence are known, the next number must 
be unpredictable. Backward unpredictability means that 
knowing which values were generated does not lead to the 
possibility of  determining the seed.
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Based on NIST SP 800-90A, we can use approved DRBG 
techniques, such as Hash, Hash-based Message Authentication 
Code, or CTR. We chose Counter-Deterministic Random Bit 
Generator for its performance; it uses an approved block 
cipher with Advanced Encryption Standard and runs at its 
native speed [28].

A special key K, a counter V, and a block cipher lock box 
are the basic components of  CTR-DRBG. The counter V 
is encrypted with key K using our block cipher; the output 
becomes the first random number. The key is kept secret, 
and the counter will not be reset until it reaches the specified 
large number limit. In addition, knowing one random number 
does not lead to the next number without knowing the key. 
CTR-DRBG has four core functions: Update, Instantiate, 
Reseed, and Generate (Fig. 1) [28].

On the other hand, we have SecureRandom library that 
complies with the statistical RNG tests specified in FIPS 140-2 
and security requirements for cryptographic modules [29]. For 
seed management, it is handled internally by Java SecureRandom 
based on platform security standards. As mentioned, even if  
set seed is not called, the first call to next bytes will force the 
SecureRandom object to create a self-seed [29]. SecureRandom 
automatically seeds itself  from operating system entropy 
sources such as/dev/urandom on Linux/Unix systems and 
Microsoft CryptoAPI on Windows [30]. Thus, when we don’t 
have a better seeding data source, and SecureRandom uses a 
highly random data source to seed automatically and securely, 
we can rely on it, avoiding manual seed management.

Regarding testing RNG using NIST, the recommended 
minimum input size for the Frequency (Monobit) Test, 
Runs Test, and Cumulative Sums Test is 100 bits. On the 
other hand, the input size for the Universal test ranges from 
387,840 bits to 1,059,061,760 bits based on the block size [27]. 
Hence, based on that, we choose to generate sequences of  
10,342,400 bits in total at least to test the generated numbers 
by all tests in the suite properly. For each statistical test, the 
minimum rate to pass the test is approximately equal to 8 for 
a sample size of  10 binary sequences [27].

6.2. Vulnerability Check and Security Enhancement
C mod f = (M+(r1⋅L)+(r2⋅L⋅n)) mod f � (23)

Case 1: Decryption failure when f  is a factor of  n

C mod f = (M+(noise)+(0)) ≠ M� (24)

Case 2: Decryption failure when f  is a factor of  r1

C mod f = (M+(0)+(noise)) ≠ M� (25)

Demo Example: Message M1 = 2, Secret key L = 151 (prime 
number greater than M1), n = 10403 (101 × 103), r1 = 847, 
and r2 = 548:

Equation (17): C1 = 
2+(847×151)+(548×151×10403) = 860955343

Equation (18): M1 = C1 mod L = 860955343 mod 151 = 2

Testing decryption with potential factor values of  r1 and r2 
× n factors (e.g., 1, 7, 11, 77, 121, 847, 101, 103, 274) does 
not successfully recover M1. Hence, decryption now relies 
solely on the value of  the secret key L.

6.3. Homomorphic Properties Verification
Additive Property, based on Equation (17):

C_add = C1+C2 = (M1+(r1⋅L)+(r2⋅L⋅n))+
(M1+(r3⋅L)+(r4⋅L⋅n))

C_add = (M1+M2)+L(r1+r3)+nL(r2+r4)

Decryption of  Sum, based on Equations (5), (18):

C_add mod L = ((M1+M2)+ L⋅(r1+r3)+L⋅n⋅(r2+r4)) mod L

C_add mod L = ((M1+M2)+0+0) = M1+M2 
(assuming M1+M2<L)

Multiplicative Property, based on Equation (17):

C_mul = C1×C2 = (M1+(r1⋅L)+(r2⋅L⋅n))×(M1+(r3⋅L)+(r
4⋅L⋅n))

C_mul = M1M2+L(r3M1+r1M2)+nL(r4M1+r2M2)+L2(r1r
3)+nL2(r1r2+r2r3)+L2n2(r2r4)

Decryption of  Product, based on Equations (5), (18):

C_mul mod L = M1M2+0+0+0+0+0 = M1M2 (assuming 
M1⋅M2<L)

7. RESULTS AND DISCUSSION

7.1. NIST Results for RNGs
We evaluated both CTR_DRBG and Java SecureRandom 
using the NIST statistical test suite. The tests were conducted 
using 10 separate bitstreams, each containing 1,034,240 bits 
in a binary file. Table 1 summarizes the comparative results.
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A P-value of  “0.01” is considered the minimum acceptable 
threshold to pass the NIST test, with stronger random properties 
when it is close to 1 (Fig. 2). We note that both generators passed 
all statistical tests successfully, demonstrating their suitability for 
cryptographic applications. In the Runs test, while CTR_DRBG 
has a higher P-value, SecureRandom passes with all 10 sequences 
(10/10), whereas CTR_DRBG failed in one with 9/10. Based 
on these results, we chose SecureRandom for implementation.

7.2. Performance Comparison
We tested the original n-Primes Homomorphic Encryption 
Algorithm for encryption and decryption times, ciphertext 

size, and the expansion ratio (Table 2). We use the following 
parameters: L = 11579208923731619542[truncated] (256 bits), 
n (product of  primes) = 26959942480324040277[truncated] 
(224 bits), random number bit length = 128 bits. Hence, the 
combined security level is ~608 bits.

Then we tested the Enhanced Scheme using the following 
parameters (Table 3): L = 11579208923731619542[truncated] 
(256 bits), available primes pool = 32 primes (each ~75 bits), 
window parameters k_min = 2, k_max = 4 (uses 2-4 primes 
per encryption), security level of  n = 151-301 bits (depending 
on window size), and random number bit length = 128 bits 

Fig. 1. Counter-deterministic random bit generator (CTR-DRBG) architecture.
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for each r1 and r2. Hence, the effective combined security 
level is ~535-685 bits and ~610 on average.

For larger files such as the tested file (10 MB), the improved 
system requires more time in encryption, representing 
a performance cost 2.89  times higher than the original 
system (Fig. 3). This additional processing time is due to the 
computational complexity of  the enhanced scheme, which 
focuses on improving security. Two random values were used, 
in addition to a windowing approach, which means that the 
increased security impacted performance.

The decryption time is similar between the two schemes, 
but the enhanced scheme shows a slightly better advantage 
for the largest scanned file size. Consequently, decryption 
times remain comparable between the two schemes (Fig. 4). 
It should be noted that the calculated time is only for the 
decryption process using mod; the time required to retrieve 
the encrypted data from storage is not included.

As for ciphertext size, both systems achieved an expansion 
size of  around 183× for all file sizes, indicating that the added 
security measures do not significantly impact this factor. 
The y-axis range is intentionally narrowed to (182–185) to 
highlight the slight differences (Fig. 5).

7.3. Windowing Technique Role
To test the effectiveness of  this technique for security, we 
chose to test the generated keys using the NIST test suite. 

For the first original n Prime technique, we generated keys 
of  a 1,000,000-bit sequence binary file using the r × L × n 

Fig. 2. National Institute of Standards and Technology statistical 
test P-values for CTR_DRBG and SecureRandom generators 

across selected tests (minimum threshold P ≥ 0.01 for passing). 
CTR_DRBG: Counter_Deterministic random bit generator.

TABLE 1: Comparison of NIST test results for 
RNGs
Statistical 
tests

CTR_DRBG SecureRandom
P‑value Proportion P‑value Proportion

Frequency 
(monobit)

0.122325 10/10 0.534146 10/10

Block 
frequency

0.739918 10/10 0.350485 10/10

Cumulative 
sums 
(forward)

0.017912 10/10 0.213309 10/10

Cumulative 
sums 
(reverse)

0.350485 9/10 0.739918 10/10

Runs 0.911413 9/10 0.739918 10/10
Longest run 
of ones

0.739918 10/10 0.739918 10/10

Rank 0.213309 10/10 0.350485 10/10
Fast Fourier 
transform

0.350485 10/10 0.534146 10/10

Overlapping 
template

0.534146 10/10 0.122325 10/10

Universal 
statistical

0.911413 10/10 0.739918 10/10

Approximate 
entropy

0.122325 10/10 0.213309 10/10

Serial (1) 0.739918 10/10 0.911413 10/10
Serial (2) 0.008879 10/10 0.534146 9/10
Linear 
complexity

0.350485 10/10 0.534146 10/10

NIST: National Institute of Standards and Technology, RNGs: Random number 
generators, CTR_DRBG: Counter_Deterministic random bit generator

TABLE 2: N‑prime scheme performance test
File size Encryption 

(ms)
Decryption 

(ms)
Cipher 

size
Expansion

100.00 
Bytes

44 0 17.87 KB 183.01×

500.00 
Bytes

69 2 89.35 KB 182.99×

1.00 KB 8 39 182.97 KB 182.97×
2.00 KB 24 5 365.90 KB 182.95×
5.00 KB 56 8 914.78 KB 182.96×
10.00 KB 39 7 1.79 MB 182.96 ×
20.00 KB 54 25 3.57 MB 182.95×
50.00 KB 106 31 8.93 MB 182.95×
100.00 
KB

214 92 17.87 MB 182.95×

200.00 
KB

635 119 35.73 MB 182.95 ×

500.00 
KB

770 300 89.33 MB 182.95×

1.00 MB 1364 608 182.95 MB 182.95×
2.00 MB 3583 1356 365.91 MB 182.95×
5.00 MB 8358 3238 914.77 MB 182.95×
10.00 MB 14668 8578 1.79 GB 182.95×
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term, where n is pre-computed by multiplying three 76-bit 
primes. Then, we generated another similar file using the 
r1 × L + r2 × L × W(n) term of  the enhanced technique, 
but without windowing; n is fixed, pre-computed, and 
equal to the one used first. Finally, we generated the third 
bin file based on the enhanced technique with windowing 
(window size = 3 primes) applied over n from a set that 
contains 32 different 76-bit length primes. We tested all files 
with 10 separate bitstreams, each containing 100,000 bits 
(Table 4).

The enhanced windowing technique shows the best 
randomness properties of  keys. It won the most tests (Fig. 6), 
has the highest average P-value (Fig.  7), shows the most 
consistent randomness across different tests (Fig. 8), and has 
the largest area on the polar graph (Fig. 9).

TABLE 3: Enhanced scheme performance test
File size Encryption 

(ms)
Decryption 

(ms)
Cipher 

size
Expansion

100.00 
Bytes

71 0 17.98 KB 184.13×

500.00 
Bytes

37 1 89.57 KB 183.44×

1.00 KB 22 2 183.76 KB 183.76×
2.00 KB 21 4 365.23 KB 182.61×
5.00 KB 48 6 919.09 KB 183.82×
10.00 KB 66 7 1.79 MB 183.66×
20.00 KB 108 14 3.58 MB 183.34×
50.00 KB 205 36 8.96 MB 183.52×
100.00 KB 447 65 17.90 MB 183.34×
200.00 KB 829 126 35.83 MB 183.43×
500.00 KB 2013 312 89.56 MB 183.43×
1.00 MB 4060 617 183.42 MB 183.42×
2.00 MB 7994 1260 366.86 MB 183.43 ×
5.00 MB 21024 3222 917.15 MB 183.43×
10.00 MB 42416 6793 1.79 GB 183.41×

TABLE 4: Comparison of NIST test results 
regarding key generation
NIST test Fixed n 

prime
Enhanced 
with W (n)

Enhanced 
without W (n)

Frequency 0.002043 
(9/10)

0.350485 
(10/10)

0.122325 
(10/10)

Block frequency 0.017912 
(9/10)

0.017912 
(10/10)

0.350485 
(10/10)

CUMULATIVE sums 
(1)

0.008879 
(9/10)

0.213309 
(10/10)

0.739918 
(10/10)

Cumulative sums (2) 0.002043 
(10/10)

0.534146 
(10/10)

0.122325 
(10/10)

Runs 0.534146 
(10/10)

0.739918 
(10/10)

0.739918 
(10/10)

Longest run 0.350485 
(10/10)

0.350485 
(10/10)

0.066882 
(10/10)

Rank 0.534146 
(10/10)

0.911413 
(10/10)

0.534146 
(10/10)

FFT 0.350485 
(10/10)

0.534146 
(10/10)

0.911413 
(10/10)

Overlapping 
template

0.739918 
(10/10)

0.911413 
(10/10)

0.739918 
(10/10)

Approximate entropy 0.213309 
(10/10)

0.350485 
(10/10)

0.066882 
(10/10)

Serial (1) 0.739918 
(10/10)

0.213309 
(10/10)

0.035174 
(10/10)

Serial (2) 0.534146 
(10/10)

0.213309 
(10/10)

0.213309 
(10/10)

Linear complexity 0.017912 
(10/10)

0.739918 
(10/10)

0.035174 
(10/10)

NIST: National Institute of Standards and Technology, FFT: Fast Fourier Transform

Fig. 3. Encryption time comparison between original and enhanced 
n-Primes homomorphic encryption schemes across different file sizes.

Fig. 4. Decryption time comparison between original and enhanced 
n-Primes homomorphic encryption schemes across different file sizes.
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Logically, using dynamic subsets adds variability, not just 
mathematical robustness. This technique adds a layer of  
randomness because each encryption operation uses a 
different value of  n, making it more difficult to detect 
patterns in ciphertexts. We also chose to have a set of  primes 
and then extract subsets from it instead of  trying to generate 
the primes on the fly when needed, which is computationally 
expensive.

7.4. Security versus Performance Tradeoff
There is a clear trade-off  between security and performance 
in the enhanced encryption scheme, as computational 
overhead is added to address vulnerability in decryption 
attacks using factors instead of  a dedicated key. Further 
computational overhead is added when using windowing 

Fig. 5. Ciphertext expansion ratio comparison between original and 
enhanced n-Primes schemes across different file sizes.

Fig. 7. Average National Institute of Standards and Technology 
P-values for original, enhanced without windowing, and enhanced 

with windowing techniques.

Fig. 6. Number of National Institute of Standards and Technology tests 
won by original, enhanced without windowing, and enhanced with 

windowing techniques.

Fig. 9. Security level of the generated keys based on National Institute 
of Standards and Technology statistical tests.

Fig. 8. Number of National Institute of Standards and Technology 
tests achieving solid randomness (P > 0.1) for each key 

generation technique.



Jalal and Mohammed: Enhanced HE with Windowing for EHR Security

88	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

techniques to make the ciphertexts’ own random properties 
resistant to pattern detection attacks (Fig. 10). Our improved 
scheme offers greater security benefits and may be preferred 
in applications where confidentiality is the priority and 
performance is secondary. The windowing approach also 
provides a limited solution by reducing the ciphertext size to 
a minimum acceptable level or increasing it to a certain level 
by modifying the window size parameters. This allows for a 
tailored balance between security and performance, but its 
impact remains limited.

8. USE CASES

8.1. Medication Cost Analysis
Patient records contain numerical data, such as body mass 
index, blood pressure, glucose levels, medication doses, 
treatment rates, and healthcare expenditures, that a third 
party may need to perform operations on. Synthea™ 
provides a dataset in CSV and JSON files containing patient 
demographics, clinical notes, medications, encounters, and 
regulatory data [31].

Analyzing medication costs typically requires access to 
sensitive financial data. Research needs (such as access 
to spending patterns, cost variations, and improvement 
opportunities) conflict with privacy requirements. We 
implemented our integer-based homomorphic encryption 
to enable statistical analysis of  costs, such as measuring total 
spending and average costs for each type of  medication, 
without revealing individual patient data.

The analysis was performed on a dataset of  42989 medication 
records, with 131 unique medication descriptions. Cost values 
were represented in decimals with up to two decimal places, 
ranging from $0.99 to $7015.8 per medication. Since our 
homomorphic encryption scheme operates on integers, we 
had to scale the data as a preprocessing step by converting 
the decimal cost values to integers by multiplying them by 100 
(e.g., $10.25 ← 1025 cents). Then, after applying encryption 
to these integers and performing homomorphic operations 
over them, we scale back the results by dividing them by 
100 (Fig. 11).

We computed the total spending cost grouping per description 
by applying homomorphic addition to the encrypted values. 
Then, we computed the average by plaintext division post-
decryption. We compared the results of  the homomorphic 
operations with calculations on plain text data to verify 
accuracy. As shown in Table 5, our implementation achieved 
perfect accuracy. As for operational efficiency, performance 
metrics were recorded with an encryption time of  657 ms for 
42,989 records and a decryption time of  7 ms for statistical 
results.

8.2. CHADS2 Score Calculation
The CHADS2 score is used as a validated tool for predicting 
stroke risk in patients with Atrial Fibrillation (AF). Five 
risk factors are assessed with a score ranging from 0 to 6: 
Congestive heart failure (1 point), hypertension (1 point), 
age ≥75  years (1 point), diabetes (1 point), and prior 
stroke/transient ischemic attack (2 points) [32]. Scores of  
≥ 3 indicate an increased risk of  stroke, which may require 
anticoagulation [33].

CHADS2Score = C+H+A+D+(S×2)� (26)

Patients with AF were identified in the conditions dataset 
by searching case descriptions (34 out of  1,171 patients). 
Risk factors (CHADS2 components) were then extracted 
for each AF patient. We encoded each risk factor as 1 if  
present and 0 if  absent, then homomorphically encrypted 
the values. Finally, we calculated the score using E(C), E(H), 
E(A), E(D), and E(S).

The results of  calculating encrypted CHADS2 scores showed 
100% accuracy compared to plaintext calculations for 34 AF 
patients identified. 85.3% of  these patients were classified 
as high risk. The total processing time was 309 ms, with 
98.4% spent on encryption, 1.3% on decryption, and <1% 
on calculation.

Fig. 10. Encryption and decryption time comparison between fixed 
primes (without windowing) and windowing approaches for the 10 MB 

file using the enhanced n Primes scheme.
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However, the current technique faces challenges as related 
math operations require dealing with categorical data. For 
instance, identifying a patient with AF requires decrypting 
this information during comparison and encoding, which 
compromises privacy. Similarly, identifying descriptive risk 
factors required matching for “hypertension,” “diabetes,” 
etc., which required displaying the data unencrypted.

Binary encoding can ensure complete privacy through 
additional specific structured storage (Fig. 12). One drawback of  
this method is its storage cost, as it requires as many columns as 
the expected number of  descriptions—about 131 in the current 
conditions’ dataset. For example, a patient with diabetes would 
have a value of  1, while the remaining 130 descriptions would 
have a value of  0. All these values would be homomorphically 
encrypted, which would greatly increase storage requirements.

9. LIMITATIONS

Integer-Only Operations: Converting floating-point values to 
integers requires a specific system-level scale value; otherwise, 

metadata for each numerical field must be retained for use 
in the scale-back process. Therefore, the results need careful 
conversion back to the original units after decryption.

Limited Operations: Supporting homomorphic addition 
and multiplication is insufficient for performing other 
statistical operations (e.g., division and ≥ in the applied use 
cases). Therefore, complex calculations (such as correlation, 
regression, variance, etc.) cannot be performed directly on 
the encrypted data.

Grouping Impact on Security: When operations are required 
on groups (e.g., aggregating and calculating the average for 
each medication), metadata such as descriptions should 
remain unencrypted. Alternatively, it should be encrypted 
with the same parameters and random numbers to obtain 
the same ciphertext for each description to enable grouping 
based on ciphertexts.

10. FUTURE WORK

After implementing the technique, we introduced floating-
point numbers to observe how it handles them. The 
encryption and decryption were successful, but the decimal 
parts remained visible in the ciphertext. For example, 2.24 
as plaintext becomes 860955343.24 ciphertext, with the 
fractional value “0.24” still intact. Therefore, it is important 
to investigate this issue further and to establish mathematical 
methods for securely encrypting the fractional parts in future 
work.

Fig. 12. Data structure required to apply homomorphic operations over binary encoded categorical data to ensure full privacy.

Fig. 11. Medication cost analysis workflow.

TABLE 5: Accuracy comparison for selected 
medications
Medication description Average 

after 
decryption

Plaintext 
average

Error %

Insulin Lispro 100 UNT/ML $1,410.89 $1,410.89 0.000000
Simvastatin 10 MG $5,891.26 $5,891.26 0.000000
Acetaminophen 325 MG $7.05 $7.05 0.000000
Hydrochlorothiazide 25 MG $2,448.78 $2,448.78 0.000000
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We also carried out an initial investigation into the 
homomorphic properties using floating-point numbers, 
finding that they work for addition but not for multiplication. 
Therefore, further mathematical analysis is necessary to 
determine if  the current encryption formula needs specific 
adjustments.

When decrypting 860955343.24, the expected value was 
2.24, but the actual result was 2.24000000954, with a slight 
difference in precision. However, identifying the cause of  
this discrepancy and assessing the potential for significant 
deviations are essential for defining acceptable error limits.

11. CONCLUSIONS

This study addressed a key vulnerability that allows using 
factors for unauthorized decryption instead of  the assigned 
secret key in integer-based homomorphic encryption 
schemes. Security analyses demonstrated that our improved 
encryption formula mitigates this vulnerability by ensuring 
that decryption relies solely on the assigned secret key 
while preserving additive and multiplicative homomorphic 
properties. NIST analyses also demonstrated that the 
random window technique strengthens the scheme against 
pattern detection attacks by introducing variability and 
random properties into the ciphertext generation process. 
Performance evaluations showed that the enhanced scheme 
maintains close decryption times and identical ciphertext 
expansion ratios to the original scheme, with slightly 
improved decryption performance for larger files despite the 
additional security measures. The medication cost analysis use 
case achieved optimal accuracy in homomorphic processes 
with reasonable performance metrics. Future research should 
focus on expanding the system to support more complex 
statistical operations directly on encrypted data, improving 
computational efficiency for real-time applications, and 
developing support for handling floating-point values. Despite 
these limitations, our research contributes significantly to 
creating more secure homomorphic cryptosystems for 
healthcare applications.
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