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1. INTRODUCTION

Understanding the geotechnical properties of  soil is a vital 
aspect of  designing, constructing, and maintaining civil 
engineering structures, especially earth dams [1]. A  solid 
soil foundation is critical when selecting a site for a dam, as 

it ensures stability and helps prevent erosion and potential 
failures [2].

Key parameters like shear strength (SS), which include 
cohesion and the angle of  internal friction, play a significant 
role in various engineering projects. These parameters are 
especially important for determining the bearing capacity of  
foundations and assessing soil settlement [3], [4]. However, 
measuring these properties through traditional laboratory 
testing can be both time-consuming and costly, creating a need 
for more efficient assessment methods. This challenge has led 
engineers to explore predictive models that use regression 
techniques to estimate soil properties more easily [5].
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In recent years, many geotechnical engineers have encountered 
difficulties when utilizing the actual soil available on-
site. Often, this soil does not meet the necessary criteria 
for effective geotechnical design, leading to additional 
complications [6], [7]. Understanding and accurately 
predicting SS parameters through regression analysis 
empowers engineers to enhance safety and make informed 
decisions about the materials surrounding a dam [8].

By employing regression analysis, engineers can estimate 
important soil properties using data that is often easier to 
obtain than traditional laboratory tests. This not only saves 
time and money but also leads to more reliable and cost-
effective designs [9]. Furthermore, regression techniques 
allow engineers to prioritize which tests to conduct, aiding 
in early fault detection and timely problem-solving. This 
ability to focus on critical tests becomes even more valuable 
when resources are limited, ensuring that major issues can 
be addressed promptly and efficiently [10].

Utilizing advanced predictive techniques like regression 
analysis to understand soil properties is crucial for optimizing 
engineering practices [11]. By enhancing the safety and 
sustainability of  structures like earth dams, these innovations 
play an essential role in addressing the challenges faced in 
today’s geotechnical engineering landscape [12]. With this 
knowledge and approach, engineers can better navigate the 
complexities of  soil behavior, ultimately contributing to the 
success of  their projects [13].

Previous studies have explored the application of  regression 
analysis for predicting various soil properties. Sharma and 
Singh (2017) investigated regression-based models for 
predicting the unconfined compressive strength (UCS) of  
artificially structured soils, noting the limitations of  traditional 
UCS determination methods [6]. They highlighted the time-
consuming and costly nature of  traditional UCS tests and 
proposed empirical equations using simple and multiple 
linear regression techniques. Mohammadi et al. (2020) used 
multivariate regression and artificial neural networks to predict 
SS parameters (C and φ), highlighting the impracticality of  
conducting numerous triaxial shear tests for large projects [14]. 
Hamaamin et al. explored indirect methods to estimate the soil 
compression index (Cc) using 177 undisturbed samples from 
cohesive soil in Sulaymaniyah Governorate, Iraq, employing 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and 
regression techniques. The ANFIS model outperformed the 
regression approach, achieving an R2 of  0.66 compared to 
0.48, highlighting the effectiveness of  machine learning for 
cost-effective Cc estimation [1].

A study by Nawaz et al. presented new machine learning 
models for estimating cohesion (c) and friction angle (φ) 
soil parameters using gene expression programming which 
is an evolutionary algorithm that combines the principles 
of  genetic algorithms and genetic programming to create 
programs or mathematical expressions that solve specific 
problems. The models leveraged readily available soil 
attributes such as sand content, depth, specific gravity, liquid 
limit, plastic limit, and fine content, yielding a c-predictive 
model with an R2 of  0.984 and RMSE of  1.13, and a 
φ-predictive model with R2 of  0.927 and RMSE of  1.123. The 
proposed models showed significant accuracy improvements 
over existing models, offering a practical solution for efficient 
and sustainable geo-structural design [15].

The article by Khan and Wang focuses on enhancing slope 
stability through the development of  correlations between 
the factor of  safety (FS) and soil properties such as cohesion, 
friction, and unit weight. The authors find that using nailing 
techniques significantly improves FS, with values rising from 
unsafe (e.g., 1.091) to safe levels (e.g., 1.545) compared to 
stepped and natural slopes. Their comprehensive analysis, 
using various soil types, demonstrates that both nailing and 
stepping can effectively increase SS, making this research 
applicable for future slope stabilization projects [16].

These studies demonstrate the potential of  regression 
analysis as a valuable tool in geotechnical engineering. The 
use of  support variables in regression, as explored by Erbilen, 
can further enhance the accuracy of  predictions, particularly 
when dealing with missing data [17].

1.1. Study Area
The study area encompasses fourteen small dams located 
within the Sulaymaniyah Governorate as shown in 
(Fig.  1). Name of  the small dams and their locations in 
Sulaymaniyah Governorate are shown in (Table  1). Soil 
samples were collected from the dam bodies of  these 
structures to conduct geotechnical investigations. The study 
was conducted within two key districts of  Sulaymaniyah 
Governorate in the Kurdistan Region of  Iraq – Chamchamal 
and Qaradagh – which together form the primary focus 
of  this research. These two districts were selected due to 
their high concentration of  unofficial small dams, making 
them particularly relevant for assessing sustainability and 
geotechnical stability. In total, fourteen small dams were 
analyzed, all of  which are located within the boundaries of  
Chamchamal and Qaradagh. This region is predominantly 
characterized by homogeneous soil formations, mainly 
consisting of  low-plasticity clayey and silty soils, with limited 
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variations in stratigraphy across dam sites [18]. One of  the 
critical reasons for choosing these specific dams is that most 
of  them were constructed without standard engineering 
practices, particularly lacking structural elements such as 
cores, toe drains, or protective filters. Instead, the dam 
bodies were built uniformly from locally available soils, often 
compacted without rigorous quality control. This uniformity 
in construction, along with similar soil conditions, provides 
a consistent basis for comparative analysis. However, it also 
presents significant engineering concerns, especially regarding 

seepage control and slope stability. By narrowing the focus to 
this clearly defined geographic area and a relatively consistent 
set of  soil conditions. These tests aim to assess the stability 
and safety of  the dams, ensuring their structural integrity and 
reliability for ongoing use and future planning.

The objective of  the article is to develop regression equations 
for predicting critical soil parameters, specifically cohesion and 
the angle of  internal friction, using obtainable soil properties 
from small dam bodies in Sulaymaniyah Governorate, Iraq, 

Fig. 1. Study area map and small dams location.
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thereby providing a cost-effective alternative to traditional 
laboratory testing in geotechnical engineering.

2. METHODOLOGY

The methodology describes a systematic approach to soil 
sampling, laboratory testing, and statistical analysis using 
Minitab software to develop predictive models for critical 
geotechnical properties, specifically cohesion and the angle of  
internal friction, in small dam bodies located in Sulaymaniyah 
Governorate.

2.1. Soil Sampling
The best method for sampling soil in a dam body for testing 
analysis is the use of  a systematic grid sampling approach. 
This involves dividing the dam area into a grid and collecting 
samples from designated points to ensure representative 
coverage of  the site [19]. The soil sample for each small dam 
was collected at a depth of  0.5 m below the ground surface. 
This depth was chosen because it typically represents the 
active zone of  the dam’s embankment, where variations in 
moisture content, compaction, and stress conditions are 
most influential on the overall performance and stability 
of  the structure [20]. Using an auger or tube sampler 
allows for the removal of  undisturbed soil samples, which 
is crucial for accurate laboratory testing and analysis [21]. 
According to (ASTM D75), 14 soil samples were collected 
from small dam bodies to make soil properties tests in the 
laboratory [22], [23].

2.2. Laboratory Testing
The samples were subjected to a series of  laboratory tests 
to determine their key geotechnical properties as illustrated 
in (Table  2). Water content was determined according to 

ASTM D2216 [17]. Particle size distribution was determined 
using sieve analysis (ASTM D6913) [17]. Atterberg limits, 
including liquid limit and plastic limit, were determined 
following ASTM D4318 [24]. The SS parameters, cohesion 
(c) and angle of  internal friction (Ø), were measured using 
the direct shear test, as per ASTM D3080 [1].

2.3. Data Analysis
The data obtained from the laboratory tests were analyzed 
using Minitab software. Regression analysis was performed 
to develop predictive models for soil properties. Specifically, 
the analysis focused on the relationship between several 
independent variables to predict the angle of  internal friction 
(φ) and cohesion (C).

Minitab is a powerful statistical software widely used for 
data analysis, including regression analysis, which is essential 
for understanding relationships between variables. Minitab 
employs methods like linear regression, which uses the least 
squares estimation technique to minimize the sum of  the 
squares of  the residuals (the differences between observed 
and predicted values) [25].

To perform regression analysis in Minitab, the data of  soil 
parameters inputted, after selecting the regression option, and 
specifying the dependent variable (the one can be predicted) 
and independent variables (the predictors). Minitab then 
calculates coefficients, R-squared values, and P-values to 
assess the model’s fit and significance. This process helps in 
identifying relationships and predicting missing data points 
effectively [26].

In Minitab, calculating a “Y line” generally refers to plotting 
a regression line or a fitted line in the context of  statistical 
analysis, particularly in linear regression. The Y line (or fitted 
line) represents the predicted values of  the response variable 
(Y) based on the predictor variable (s) (X) in a regression 
model. Ideally, the points should cluster around this line [27]. 
In a scatterplot, if  the reference line is a diagonal line of  best 
fit, it indicates that as the actual values increase, the predicted 
values also increase proportionately, demonstrating a good 

TABLE 2: Conducted soil test details
No. Soil parameters Standards
1 W.C % ASTM D2216
2 Dry density g/cm3 ASTM D2937
3 Liquid limit % ASTM D4318
4 Plastic limit % ASTM D4318
5 Cohesion (C) ASTM D3080
6 Angle of internal friction Ø ASTM D3080
7 Fines (Silt+Clay) % ASTM D6913

TABLE 1: Detailed information on the selected 
small dams
No. Name of small dams locations Longitude Latitude
1 Chollmak small dam Chamchamal 35.53036 45.02549
2 Lakawa small dam Chamchamal 35.57366 44.93386
3 Tazhga Small dam Chamchamal 35.58107 44.98198
4 Zhalla small dam Chamchamal 35.45302 45.10837
5 Goran small dam Chamchamal 35.367244 44.855536
6 Alimansur small dam Chamchamal 35.220325 44.784693
7 Qallachugha small dam Chamchamal 35.5089 44.90872
8 Kuradawe small dam Chamchamal 35.44752 44.97087
9 Kunakotr small dam Chamchamal 35.4318 44.94447
10 Kallan small dam Chamchamal 35.25878 45.12106
11 Hamza small dam Chamchamal 35.57986 44.78268
12 Qaraman small dam Qaradagh 35.38724 45.40487
13 Tavan small dam Qaradagh 35.30972 45.37548
14 Chami Dewana small dam Qaradagh 35.2887 45.38428
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fit of  the model [28]. Deviations from this line suggest 
areas where the model might not be accurately predicting 
outcomes [29].

2.4. Assessment Metric
Table 3 is a completed version of  the assessment metrics 
table based on the content of  the article and includes an 
illustration of  the terms used in the analysis.

3. RESULTS AND DISCUSSION

The regression analysis provides valuable insights into 
predicting critical soil properties essential for the structural 
integrity of  small dam bodies [36]. By understanding how 
various soil parameters interact, engineers can make informed 

decisions that enhance the safety and effectiveness of  
engineering designs [37].

The regression analysis demonstrated that there is a 
relationship between dry density and the other measured 
soil properties. The resulting regression equation provides a 
basis for understanding how these variables interact. All data 
collected from the 14 soil samples, obtained through both 
laboratory and field tests, are presented in Table 4. These data 
reveal a considerable range in the values of  key soil parameters, 
reflecting the inherent variability in the geotechnical 
characteristics of  materials sourced from different dam 
bodies. Notably, the cohesion and angle of  internal friction 
vary significantly among the samples, indicating differences in 
the strength and stability of  the soils across the studied sites.

TABLE 4: Soil parameter results for 14 small dam bodies
No. W.C % Dry density 

g/cm3
Liquid 
limit %

Plastic 
limit %

Plasticity 
index

Cohesion 
C (KPa)

Angle of internal 
friction Ø in degrees

Sand 
%

fines 
(Silt+clay) %

1 8.02 1.70 26.87 17.70 9.17 40.33 22.95 42.78 43.27
2 8.05 1.74 24.30 16.58 7.72 23.85 33.88 36.43 48.15
3 11.04 1.56 29.10 18.24 10.86 14.33 25.03 25.91 64.60
4 9.54 1.58 27.54 17.83 9.71 24.99 26.57 43.78 46.13
5 16.83 1.42 31.37 23.78 7.59 34.03 12.88 31.74 51.01
6 9.54 1.51 28.66 20.27 8.39 7.67 24.19 30.36 50.17
7 14.43 1.53 31.06 19.97 11.09 9.89 24.29 24.51 63.16
8 7.02 1.72 25.24 17.43 7.81 31.96 30.38 33.51 48.11
9 5.23 1.83 24.40 16.76 7.64 38.80 21.35 29.71 46.11
10 15.40 1.34 33.96 21.81 12.15 9.25 18.56 31.89 52.98
11 10.00 1.54 32.97 21.23 11.74 46.43 29.98 29.85 57.60
12 15.40 1.54 31.61 22.44 9.17 39.96 13.35 30.39 64.39
13 10.63 1.56 30.86 20.87 9.99 10.66 18.83 34.08 52.50
14 11.10 1.84 33.49 19.88 13.61 17.76 29.18 31.73 55.65

TABLE 3: Metrics used in the analysis
No. Term Meaning and how it was used in the article
1 F‑value A statistical test value used to assess the overall significance of the regression model [30]. Found in Minitab in 

the ANOVA or regression output under “F‑Value”. Example: “F‑Value” in ANOVA table (e.g., 90.99).
2 P‑value Probability that the observed relationship occurred by chance [31]. Used to evaluate the significance of 

predictors, listed next to each F‑value or t‑value in the output; if P<0.05, the effect is typically considered 
significant.

3 R‑squared (R2) Indicates the proportion of variance in the dependent variable explained by the model [32]. Shown in the Model 
Summary: “R‑sq” (e.g., 0.86).

4 Adjusted R‑squared Corrected R‑squared that accounts for the number of predictors [33]. Provided alongside R‑squared in model 
summary (e.g., 85.02%).

5 Standardized effects 
(Pareto chart)

Visualizes the significance of each predictor variable [34]. Displayed as a Pareto chart in Minitab, ranked by 
magnitude. Terms crossing the significance line are considered influential.

6 Regression coefficient Numerical value indicating the effect size of each predictor [35]. Listed in regression output (e.g., Coef for “Dry 
Density”=44.4). t‑value and P value assess significance.

7 α The significance level (α) represents the probability of rejecting the null hypothesis when it is actually true – 
that is, the risk of committing a Type I error. In this analysis, α was set at 0.05, meaning there is a 5% chance 
of concluding that significant differences exist among the group means when, in fact, no such differences are 
present.

ANOVA: Analysis of variance
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3.1. One-way Analysis of Variance (ANOVA) Analysis
The one-way ANOVA was conducted to evaluate whether 
there were significant differences in the means of  the soil 
properties under investigation, including cohesion (C), angle 
of  internal friction (Ø), dry density, liquid limit, plasticity 
index, fines %, W.C%, and plastic limit. The null hypothesis 
assumed that all means were equal, while the alternative 
hypothesis posited that not all means were equal, with a 
significance level set at α = 0.05.

The results of  the ANOVA analysis revealed a highly 
significant difference among the factors, as evidenced by 
the F-value of  90.99 and a P = 0.000. This indicates that 
the null hypothesis can be rejected, and it can be concluded 
that not all means are equal. The model summary further 
corroborated the strength of  the analysis, with an R-squared 
value of  0.86, an adjusted R-squared value of  0.85, and a 
predictive R-squared value of  0.84. These metrics suggest 
that the model explains a large proportion of  the variability 
in the data, indicating a strong overall fit.

The interval plot for cohesion (C) provided additional insights 
into the distribution of  the data. The plot revealed that the 
mean cohesion value was 24.99 Ib/m2, with a standard 
deviation of  13.55 Ib/m2. The 95% confidence interval for 
the mean ranged from 21.73 Ib/m2 to 28.26 Ib/m2, indicating 
a moderate level of  variability in the cohesion values across 
the soil samples.

3.2. Regression Analysis for Cohesion (C)
The regression analysis for cohesion (C) was conducted 
to identify the relationships between cohesion and several 
predictor variables, including dry density, liquid limit, plastic 
limit, W.C%, and fines %. The derived regression equation 
was:

Cohesion = −91 + 44.4 dry density − 2.47 liquid limit − 
1.46W.C + 6.60 plastic limit + 0.071% fines.

The model summary for the cohesion regression indicated 
an R-squared value of  0.38, with an adjusted R-squared value 
of  0.20. These results suggest that the regression model 
has limited explanatory power, meaning that the predictors 
included in the model do not fully account for the observed 
variability in cohesion. This low R-squared value highlights 
the complexity of  the relationships between cohesion and 
the predictor variables, which may not be fully captured by 
a linear regression model. Fig. 2 illustrates the scatter plot 
of  soil cohesion (C) versus the predictor variable, along 
with the fitted regression line, demonstrating the correlation 

between the two and supporting the reliability of  the derived 
regression model.

An examination of  the coefficients revealed that dry 
density had the most significant positive effect on 
cohesion, as shown in (Fig. 3), with a coefficient of  44.4. 
This suggests that an increase in dry density leads to an 
increase in cohesion. Conversely, liquid limit and W.C% 
had negative coefficients (−2.47 and −1.46, respectively), 
indicating that increases in these variables are associated 
with decreases in cohesion. The plastic limit had a positive 
coefficient (6.60), suggesting that higher plastic limit 
values are associated with higher cohesion values. The % 
fines had a negligible positive effect on cohesion, with a 
coefficient of  0.071.

The ANOVA for the cohesion regression model revealed that 
the regression was not significant, with an F-value of  0.68 and 
a P = 0.649. This further supports the conclusion that the 
model has limited predictive power. The lack of  significance 
in the regression model suggests that other factors such 
as permeability, compressibility, and specific gravity not 

Fig. 3. Pareto chart of standardized effects for cohesion.

Fig. 2. Scatter plot of cohesion (C) versus predictor variable with 
regression line.
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included in the analysis may play a more substantial role in 
determining cohesion.

3.3. Regression Analysis for Angle of Internal Friction (Ø)
The regression analysis for angle of  internal friction (Ø) 
was conducted to explore the relationships between Ø and 
several predictor variables, including dry density, liquid limit, 
plastic limit, W.C%, and % fines. The derived regression 
equation was:

Angle of  internal friction = 48.5–3.1 dry density + 1.216 
liquid limit − 0.783 W.C − 2.58 plastic limit + 0.069% fines.

The model summary for the angle of  internal friction 
regression indicated an R-squared value of  60.88%, with 
an adjusted R-squared value of  36.43% and a predictive 
R-squared value of  0.00%. While the R-squared value is 
higher than that of  the cohesion regression, it still indicates 
that a significant portion of  the variability in angle of  internal 
friction is not explained by the predictors included in the 
model. Fig. 4 shows the scatter plot of  the angle of  internal 
friction (φ) against the predictor variable, including the 
regression line, which reflects the strength of  the correlation 
and the suitability of  the regression model for interpreting 
the data.

The coefficients for the predictors revealed that dry density 
had a negative effect on angle of  internal friction, as shown 
in (Fig. 5), with a coefficient of  −3.1, while liquid limit had 
a positive effect, with a coefficient of  1.216. W.C% and 
plastic limit had negative coefficients (−0.783 and −2.58, 
respectively), indicating that increases in these variables are 
associated with decreases in angle of  internal friction. The % 
fines had a negligible positive effect on the angle of  internal 
friction, with a coefficient of  0.069.

The ANOVA for the angle of  internal friction regression 
model revealed that the regression was not significant, with 
an F-value of  2.49 and a P = 0.12. This suggests that the 
model has limited predictive power and that other factors not 
included in the analysis may influence the angle of  internal 
friction (Table  5) and presents the complete regression 
analysis results for both cohesion (C) and the angle of  
internal friction (φ).

Regression models were used to estimate cohesion and the 
internal friction angle from simple soil properties – moisture, 
density, and plasticity. The results showed R2 values around 
0.38 for cohesion and about 0.61 for the friction angle. The 
predicted cohesion ranged from 10 to 20 kPa, and the internal 

friction angles fell between 26° and 38°. These numbers 
are similar to what others have found, though some earlier 
studies like Khan and Wang (2021) reported slightly higher 
correlations, probably because of  differences in the soils 
tested or data variability.

What makes this work stand out is that the parameters 
were directly estimated in the analysis based only on easy-
to-measure soil properties, making it practical for quick 
assessments. While other studies show that these simple 
models can be very accurate (sometimes with R2 values as 
high as 0.88), the results confirm that even with a bit more 
variability, the approach remains valid and useful, especially 

TABLE 5: Metric results
No. Term For 

cohesion
For angle of 

internal friction
1 F‑value 0.68 2.49
2 P‑value 0.65 0.12
3 R‑squared (R2) 0.38 0.61
4 Adjusted R‑squared 0.20 0.36

Fig. 4. Relationship between angle of internal friction (φ) and 
regression equation fit.

Fig. 5. Pareto chart of standardized effects for angle of internal friction.
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in early planning or when quick decisions are needed.

Overall, these different studies all support the idea that basic 
soil properties are strongly related to SS parameters. The 
research adds a practical touch by providing simple equations 
that can be applied easily in the field or at early project stages, 
helping engineers and geotechnicians get reliable estimates 
without complex testing.

4. CONCLUSION

The analysis of  the 14 soil samples provides a comprehensive 
understanding of  the relationships between various soil 
properties, including cohesion (C), angle of  internal 
friction (Ø), dry density, liquid limit, plasticity index, % 
fines, W.C%, and plastic limit %. The one-way ANOVA 
revealed significant differences among these soil properties, 
with a highly significant P = 0.000, indicating that the null 
hypothesis of  equal means can be rejected. This highlights 
the inherent variability and complexity of  soil behavior, 
which is critical for geotechnical engineering applications. 
The model summary further supported the strength of  the 
analysis, with an R-squared value of  0.86, demonstrating a 
robust overall model fit.

The regression analysis for cohesion (C) and angle of  
internal friction (Ø) yielded mixed results. For cohesion, the 
regression equation identified several contributing factors, 
including dry density, liquid limit, W.C%, plastic limit %, and 
% fines. However, the low R-squared value of  0.38 and non-
significant P-value (0.65) suggest that the model has limited 
explanatory power and predictive capability. This implies 
that the relationships between cohesion and the predictor 
variables are likely non-linear or influenced by factors not 
included in the analysis. Similarly, the regression model for 
angle of  internal friction, with an R-squared value of  0.61, 
showed moderate explanatory power but also highlighted 
the complexity of  the relationships between the predictors 
and the response variable.

The low R-squared values for both regression models 
underscore the limitations of  linear regression in capturing 
the intricate interactions between soil properties. This 
raises important questions about the suitability of  linear 
regression for predicting missing data or modeling 
soil behavior in general. The lack of  significance in 
the regression models further emphasizes the need for 
alternative approaches, such as non-linear regression or 
machine learning techniques, to better account for the 
complexity of  soil properties.

From a practical standpoint, the findings of  this study have 
important implications for geotechnical engineering and 
soil management. Understanding the relationships between 
soil properties is essential for designing stable structures, 
predicting soil behavior under different conditions, and 
ensuring the safety and longevity of  engineering projects. 
However, the limitations of  the regression models highlight 
the need for caution when relying solely on statistical 
predictions for critical engineering decisions. Looking ahead, 
several steps can be taken to improve the accuracy and 
reliability of  future analyses.
a.	 Expanding the dataset to include more soil samples 

would provide a more robust foundation for regression 
analysis

b.	 Exploring non-linear regression techniques or machine 
learning algorithms could better capture the complex 
relationships between soil properties

c.	 Incorporating additional variables, such as soil 
mineralogy, organic matter content, or environmental 
conditions, could enhance the explanatory power of  the 
models.

d.	 Focusing on specific soil types or classifications could 
reduce variability and improve model fit

e.	 Validating statistical models with physical laboratory tests 
would provide a more comprehensive understanding of  
soil behavior and strengthen the practical applications 
of  the findings.

While this study provides valuable insights into the relationships 
between soil properties, the limitations of  the regression 
models highlight the need for a more nuanced approach to 
soil analysis. By addressing these limitations and refining future 
studies, researchers and engineers can develop more accurate 
and reliable models for predicting soil properties, ultimately 
leading to better-informed decisions in geotechnical engineering 
and soil management. This not only enhances the safety and 
efficiency of  engineering projects but also contributes to the 
sustainable use of  soil resources in various applications.
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