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1. INTRODUCTION

Epilepsy represents one of  the most prevalent neurological 
disorders worldwide, affecting approximately 51.7 million 

people globally as of  2021, with an age-standardized 
prevalence of  658/100,000 population [1]. Every year, 
the World Health Organization reports five million new 
cases [2]. The disorder disproportionately affects low- and 
middle-income nations, where over 80% of  epileptics live and 
where treatment disparities may span 75% or more [3]. This 
great worldwide load emphasizes the urgent requirement for 
accurate, quick, and easily available diagnostic instruments. 
Epilepsy may arise from an anomaly in cerebral wiring, an 
imbalance of  neurotransmitters, or a combination of  these 
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elements [4]. Neurons often create electrical signals that 
influence other neurons, glands, and muscles, resulting in 
human thoughts, emotions, and behaviors. Epilepsy is hard 
to diagnose since it has many different aspects. Epilepsy can 
happen when the wiring in the brai n is not right, when there 
are too many or too few neurotransmitters, or when these 
things happen together [4]. Neurons usually provide electrical 
signals that affect other neurons, glands, and muscles. This 
is how thoughts, feelings, and actions happen in people. 
Seizures can happen when these electrical patterns get messed 
up. They can cause strange feelings, emotions, behaviors, 
convulsions, muscle spasms, and loss of  consciousness 
[5]. The problem is finding these unusual patterns in the 
complicated landscape of  regular brain activity. The recent 
article published by Chen et al. in 2023 indicated that epilepsy 
is not only related to the seizure disorder but also results 
in unusual feelings, emotions, and behaviors, as well as 
convulsions, muscular spasms, and loss of  consciousness 
that require management strategies [5].

The suggested cascaded histogram of  oriented gradients-gray 
level co-occurrence matrix (HOG-GLCM) method solves 
these problems using the strengths of  two well-known feature 
extraction methods that work well together. HOG is great 
at picking up gradient and edge information that shows the 
structural patterns of  seizure activity. GLCM, on the other 
hand, is good at analyzing textural patterns and spatial 
correlations within electroencephalogram (EEG) signals 
in a more complex way. By combining these methods, we 
develop a feature extraction framework that is specifically 
designed to tell the difference between normal and epileptic 
EEG signals. This has a number of  advantages over single-
feature methods. The proposed cascaded approach has 
a number of  benefits, including (1) better discriminative 
power by extracting both structural and textural features 
from EEG signals; (2) better performance across a range 
of  signal conditions thanks to the multi-scale representation 
created by combining gradient-based and texture-based 
features; (3) better classification accuracy that is much better 
than using individual feature extraction methods; and (4) the 
ability to be scaled up for use in real-time clinical settings. 
However, there are some things to think about with this 
approach: (1) More complicated to compute than single-
feature methods, so they need to be optimized for real-time 
use; (2) depend on high-quality EEG signal preprocessing 
to make sure feature extraction works; (3) need to carefully 
tune hyperparameter to get the best performance across 
different patient groups; and (4)  need to be thoroughly 
validated across multiple datasets to show that they can be 
used in other situations.

2. RELATED WORK

In this section of  our article, we will provide a comprehensive 
review of  articles that are similar to the topic of  our study. 
Several signal processing and feature extraction methods have 
been investigated for automatic epilepsy detection, such as 
time-domain, which was suggested by Fasil and Rajesh in 
2019 [6], and also Chakrabarti et al. in 2012 used temporal 
properties of  EEG to distinguish between normal and seizure 
cases [7]. Recently, researchers have used new techniques and 
methods to automatically detect the early stages of  EEG. The 
study done by Shoeb in 2009 used machine learning based 
on support vector machine (SVM) to classify patient-specific 
data through the analysis of  scalp EEG, which acquired 96% 
accuracy [8]. In 2020, Usman et al. used main component 
analysis for seizure prediction using the wavelet transform. 
Abnormal brain activity is seen to start before to a seizure, 
referred to as the predictable state. Twenty-three participants 
evaluated the models, resulting in a sensitivity of  93.1% for 
84 seizures [9]. Investigated by Anuragi and Sisodia in 2020 
are empirical wavelet transform-based automated alcoholism 
detection utilizing EEG signal characteristics. They presented 
an (EWT)-based automatic classification model for alcohol 
detection. With LS-SVM, they obtained 98% average accuracy 
and 98% area under the curve (AUC) value. Their research 
neglected important details on processing efficiency and 
real-time feasibility [10].

Ayman et al. (2023) conducted the identification of  epileptic 
seizures by means of  physical epileptic activity analysis 
instead of  feature engineering; therefore, they classified 
epilepsy. K-Nearest Neighbors (KNN), (NB), (LR), (SGDC), 
(GB), decision tree (DT), and three deep learning models: 
Extreme learning machine (ELM), Long (LSTM), and (ANN) 
were seven separate machine learning techniques used for the 
binary categorizations of  epileptic activity. With an accuracy 
of  100% and a 0.99 AUC, their proposed deep learning 
model, ELM, obtained the best results [11].

Farooq et al. (2023) conducted a review on the detection 
of  epileptic seizures using machine learning, addressing 
its taxonomy, opportunities, and challenges. This research 
focused on identifying the most prevalent feature extraction 
techniques and classifiers used for the precise categorization 
of  normal and epileptic seizures [12]. In 2023, Chandel et al. 
investigated the classification of  epileptic EEG signals with a 
machine learning-based model. The differentiation between 
normal EEG and epileptic EEG has been conducted using 
three classification models: (RF), (DT), and (ET). Their 
conclusion indicates that the final classifier exhibits the 
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highest performance, with an accuracy of  99.63 for the 
suggested approach [13].

In 2025, Atlam et al. introduced a new way to improve the 
detection of  epileptic seizures using SMOTE to balance the 
data and a combination of  techniques called PCA and DWT 
to select important features. The suggested method seeks to 
make seizure detection systems more accurate and dependable 
by fixing data imbalance and pulling out important features 
from EEG signals. Performance improvements were seen, 
with the SVM classifier achieving an accuracy of  97.30% [14].

Object identification, particularly for human recognition in 
images, is achieved through the use of  HOG. It employs the 
“HOG descriptor,” a feature extraction method designed 
for human identification in an image [15]. Co-occurrence 
oriented gradient (CoHOG) histograms are a gradient-
based technique used in many fields. The CoHOG method 
provides a consistent characterization of  both statistical and 
differential properties of  a texture [16].

Zhou et al. (2020) employed the HOG approach for feature 
extraction from raw Bayer pattern images [17]. Sarowar 
et al. (2019) utilized the (HOG) approach to extract features 
from images [18]. Bakheet and Al-Hamadi (2021) employed 
HOG features in conjunction with the SVM classifier to 
detect blinks and categorize power system equipment based 
on auditory data [19]. GLCM, introduced by Haralick et al. 
(1973), provides a statistical method for examining texture by 
analyzing spatial relationships between pixels [20]. GLCM has 
been widely applied in medical image analysis, offering valuable 
textural information that complements structural features. 
The integration of  HOG and GLCM approaches has shown 
promise in various domains, as demonstrated by Kataoka et al. 
(2015) with their CoHOG [16]. This technique, as Thontadari 
and Prabhakar (2016) note, offers a consistent characterization 
of  both statistical and differential attributes of  texture [21].

The present study addresses these challenges by introducing 
a novel cascaded approach that combines HOG and GLCM 
techniques for EEG signal classification. This approach 
leverages the complementary strengths of  both methods: 
HOG’s ability to capture gradient and edge information 
and GLCM’s capacity to analyze textural patterns and 
spatial relationships. By cascading these techniques, a 
feature extraction framework is specifically optimized for 
differentiating between normal and epileptic EEG signals.

Our research makes several significant contributions to the 
field:

•	 A novel cascaded HOG-GLCM feature extraction 
methodology has been introduced, which effectively 
captures both structural and textural characteristics of  
EEG signals, enhancing classification accuracy.

•	 Converting the EEG data from single dimension (signal 
data) to two dimensions (image data) which paved the 
road to use the techniques used in feature extraction of  
digital images in capturing the features of  the EEG signal

•	 The establishment of  a comprehensive dataset of  epilepsy 
signal images, called the Erbil Epilepsy Dataset, includes 
EEG recordings sourced from governmental hospitals in 
Erbil, Kurdistan, thus fulfilling the demand for diverse 
and representative datasets in epilepsy research.

•	 To maximize classification performance, rigorous 
hyperparameter optimization (HPO) with Bayesian 
approaches was employed to fine-tune numerous 
classifiers.

The remainder of  this paper is organized as follows: Section 
3 details our methodology, including dataset collection, 
preprocessing, the proposed cascaded HOG-GLCM feature 
extraction approach, classification techniques, our experimental 
results, and comparative analysis. Section 4 discusses the 
implications of  our findings, Section 5 computational 
complexity and real-time consideration, Section 6 limitations 
and constraints, and Section 7 concludes with a summary of  
contributions and directions for future research.

3. METHODOLOGY

The study focused on exploring four different methods 
for classifying EEG abnormalities. For each method, the 
system followed the essential steps of  machine learning: 
Pre-processing the EEG signals collected, extracting relevant 
features, and performing classification. This approach 
allowed us to systematically analyze and categorize the EEG 
signals for accurate detection of  seizure and non-seizure 
cases. The study focused on four different methods for 
classifying EEG abnormalities, following machine learning 
protocols for each method. This allowed for systematic 
analysis and categorization of  EEG signals to accurately 
distinguish between seizure and non-seizure events. Fig. 1 
below presents an example of  two EEG image samples from 
the Erbil EEG Epilepsy Dataset, according to the categories 
under examination.

3.1. EEG Dataset Collection
Over 3 months from September to November 2024, the study 
collected 234 EEG cases from Erbil Teaching Hospital in 
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the Kurdistan Region of  Iraq. The dataset consisted of  117 
normal (non-seizure) and 117 abnormal (seizure) recordings, 
collected from male and female patients across diverse age 
groups. Seizure cases were confirmed by skilled neurologists, 
while normal cases were validated by the absence of  seizure 
activity EEG data were gathered using NIHON KOHDEN-
brand software Neuroworkbench version  05–01 with 32 
electrodes arranged based on the “10–20 system” for 
placing the electrodes and gain sensitivity of  100 µV (50 Hz) 
ranging from a high frequency of  30Hz to a low frequency 
of  0.03 Hz, but only 18 active electrodes were used. Fig. 2 
depicts the EEG machine used in this study. Part of  the 
collected images, namely 50 normal and 50 abnormal, have 
been uploaded to GitHub with URL https://github.com/
DrRaghad-75/ErbilEEG_dataset-/tree/main, aiming to 
add complete documentation and images in the near future.

3.2. Proposed Model
Fig. 3 below demonstrates the flow chart for the proposed 
system model. In this model, each EEG recording a patient 
has undergone (seizure and non-seizure) categories to help 
identify their seizure state. The entire process can be broken 
down into five key components: EEG Dataset Collection, 
pre-processing, feature extraction, classification, and, 
eventually, performance evaluation metrics calculation.

3.3. Preprocessing
The preprocessing phase of  EEG signals encompasses 
numerous critical procedures for efficient feature extraction 
for analysis. Initially, signal-to-image conversion is employed 
to convert 1D EEG signals into 2D RGB and then into 
single-band (grayscale) images. The single-band image is 
cropped to eliminate the borders, focusing just on the regions 
of  interest. The resultant images are subsequently scaled to a 
uniform resolution of  256 by 256 pixels, assuring consistency 

for subsequent analysis and modeling. In the denoising 
stage, histogram equalization followed by Median filter has 
been used to improve image quality and diminish noise. 
Ultimately, image binarization has been utilized to transform 
the processed photographs into a binary format, thereby 
streamlining the data and highlighting essential structures. 
This readies the dataset for dependable feature extraction 
and classification activities. Combining these four steps into 
a single conceptual equation is as shown below:

I_enhanced(x,y) = Rgb2gray(imbinarize(imresize(imcrop(m
edfilt2(histeq(I_old(x,y)), [M N])), [256 256])));

3.4. Feature Extraction Methodology
Imagine trying to identify patterns in brain waves that could 
signal an epileptic episode. The proposed new approach 
intends to do just that by merging two potent technologies 
in a particular manner. The proposed cascaded approach 

Fig. 2. Electroencephalogram signal recording done by the 
corresponding author utilizing Nihon Kohden-brand machine.

Fig. 1. Two samples of seizure and non-seizure electroencephalogram (EEG) brain signal images from Erbil EEG epilepsy dataset (a) seizure EEG 
brain signal image (b) non-seizure EEG brain signal image.

ba
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first captures the structural “shape” of  brain signals using 
(HOG) then examines how these patterns spatially connect 
using (GLCM), and finally extracts relevant statistical 
features to facilitate the classifier’s job to differentiate 
between normal brain activity from seizures. Recent work 
by Krishnan et al. (2024) showed that when time-based EEG 
signals are transformed into image-like representations, 
powerful computer vision techniques can be applied, which 
dramatically improve the ability to detect epilepsy [22]. This 
insight perfectly aligns with the proposed cascaded approach. 
Thus, the cascaded approach offers several key advantages 
that make it particularly well-suited for EEG signal 
classification: In the first place, it captures complementary 
information, think of  HOG as an expert at identifying shapes 
and edges, while GLCM specializes in analyzing textures. By 
combining them, the best of  both worlds can be captured - in 
another place provides multi-scale representation, hence, the 
proposed approach analyzes brain signals at different levels 
of  detail - from local gradient patterns (HOG) to their spatial 

relationships (GLCM). This multi-layered view provides 
more comprehensive understanding of  what’s happening 
in the brain. In the third place, it handles signal variations 
robustly  -  Brain signals naturally vary in amplitude and 
frequency, making them challenging to analyze. Fortunately, 
HOG does not get thrown off  by local changes in signal 
strength (similar to how it handles lighting changes in images), 
while GLCM captures consistent textural patterns regardless 
of  absolute signal values. This robustness is particularly 
valuable when analyzing EEG data from different patients 
or recording sessions. Eventually, it enhances discriminative 
power  -  The statistical features have been derived from 
HOG-GLCM matrices provide highly distinctive attributes 
that effectively differentiate between normal and epileptic 
EEG patterns.

3.4.1. Cascaded HOG-GLCM approach
The HOG feature extraction process follows these systematic 
steps:

Fig. 3. The pattern of the model used to classify normal and epileptic seizures.



  Mohammed et al.: Intelligent system for screening EEG datasets in Erbil 

120	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

1.	 Gradient computation: For each pixel in the EEG image, 
the horizontal gradient and vertical gradient have been 
calculated as indicated below [19]:

Gx (x, y) = f(x + 1, y) – f(x – 1, y) Gy (x, y) = f(x, 
y + 1) – f(x, y)� (1)

Where f(x, y) represents the pixel intensity at position (x, y).

2.	 Gradient magnitude and orientation: From these 
gradients, were computed using [19]

Gradient magnitude: ∇ ( ) = +f x y G x y G x yx y, ( , ) ( , )2 2 	

� (2)

Gradient orientation: θ ( , )
( , )
( , )

x y
G x y
G x y
y

x
=







arctan

3.	 Cell histograms: Each EEG signal’s image is divided into 
small spatial regions called “cells” (typically 8 × 8 pixels). 
For each cell, the histogram of  gradient orientations is 
computed by: Quantizing the orientation angles into 
bins (typically 9 bins covering 0°–180° for unsigned 
gradients), then weighting each pixel’s contribution by its 
gradient magnitude, and eventually accumulating these 
weighted votes into the orientation bins.

4.	 Block normalization: To account for variations in 
illumination and contrast, cells are grouped into larger 
spatial regions called “blocks” (typically 2 × 2  cells). 
The histograms within each block are concatenated 
and normalized using L2-norm depicted by equation 
3 below [13]:

v v

v
normalized =

+ 2
2 

� (3)

Where v is the unnormalized feature vector containing all 
histograms in a block, and ϵ is a small constant (typically 
1e−5) to prevent division by zero.

5.	 Matrix creation: For a given HOG feature map with N 
normalized gray levels, N × N matrix is created where 
each element (i, j) represents the frequency of  occurrence 
of  pixel pairs with values i and j separated by a specific 
displacement vector (dx, dy).

6.	 Multiple direction analysis: To capture textural patterns 
in all directions, we compute GLCMs for four principal 
directions: 0° (horizontal), 45° (diagonal), 90° (vertical), 
and 135° (anti-diagonal), using displacement vectors 

(d, 0), (d, d), (0, d), and (–d, d) respectively, where d is the 
distance parameter (typically d = 1).

7.	 Normalization: Each GLCM is normalized by dividing 
each element by the total number of  pixel pairs, 
converting the frequency counts to probability values:

P i j
C i j

C i j
i

N

j

N,
,

,
( ) = ( )

( )
=

−

=

−∑ ∑0
1

0

1 � (4)

Where C(i, j) is the count in the original GLCM, and P(i, j) 
is the normalized probability.

Poza et al. (2020) have validated the effectiveness of  this 
multi-directional GLCM approach for analyzing complex 
patterns in biomedical signals [23].

8.	 Feature vector construction: The final HOG 
descriptor is formed by concatenating the normalized 
block histograms from all blocks in the detection 
window, creating a comprehensive feature vector that 
captures gradient information across the entire EEG 
image.

3.4.2. Statistical features extraction
This study has selected the following features. Contrast 
refers to the local variables or physical attributes quantified 
in the GLCM. Thus, variations or intensity differences are 
quantified in the GLCM [24].

Contrast i j P i j
i

M

j

N

= −∑∑( ) ( , )2 � (5)

As previously mentioned,  P ( i ,  j )  represents the 
normalized probability of  every pair at an angle of  0°. 
Homogeneity quantifies the proximity of  the element 
distribution in the GLCM to its diagonal. It measures 
how close the element distribution in the GLCM is to 
its diagonal [24]:

Homogeneity
P i j
i ji

M

j

N

=
( )

+ −∑∑ ,
1

� (6)

Correlation denotes the linear dependence of  gray level 
values inside the co-occurrence matrix.

Correlation P i j
i j

i j

x y

x y
= ( )

−( ) −( )∑∑ ,
� �

� �
� (7)
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Where μx, μy, and σx, σy, the means and standard deviations 
are specified [10]:

µ µx
i j

y
i j

iP i j jP i j= =∑∑ ∑∑( , ), ( , )

� � � �x
i j

x y
i j

yi P i j j P i j= − = −∑∑ ∑∑( ) ( , ), ( ) ( , )2 2

Entropy represents the unpredictability or level of  disorder 
within an image generated by the GLCM pairs.

Entropy P i j P i j
i j

= − ( ) ( )∑∑ , ln , 	 (8)

The energy measures how consistent the texture is, thus 
higher energy levels mean that the textures are more uniform 
and have fewer gray level transitions. Lower energy levels 
mean that the textures are more complex [24].

Energy P i j
i

M

j

N

= ∑∑ ( , )2 � (9)

The five statistical features give a full picture of  the textural 
aspects that come from the GLCM investigation. Each feature 
captures a separate aspect of  the spatial relationships in the 
processed EEG images, making it a strong set of  features 
for telling the difference between normal and epileptic 
patterns. The proposed system framework is presented by 
the algorithm below Algorithm 1:

3.5. Experimental Settings and Implementation Details
The experimental conditions were carefully chosen to 
ensure fair comparisons between different feature extraction 
methods and classification algorithms. The study used a 
high-performance system with an Intel Core i7 processor, 
8GB of  RAM, and an NVIDIA GeForce RTX 3080 GPU 
for calculations. The dataset was divided into 70% for 
training and 30% for testing, ensuring fair representation 
of  classes. A 10-fold stratified cross-validation was used for 
cross-validation to ensure accuracy and minimize random 
changes in data partitioning. Factors for feature extraction 
were improved through extensive testing. The cell size 
for HOG extraction was set to 8 × 8, the block size to 
2 × 2, and the orientation bins to 9. The GLCM analysis 
set the displacement distance at 1 pixel and performed 
four directional analyses to gather information on texture. 
Bayesian optimization methods in MATLAB’s Optimization 

Toolbox were used to optimize hyperparameters, with 
the negative cross-validation accuracy set as the objective 
function. The optimization process was allowed to run for 
100 iterations to find the best or nearly best solutions.

3.6. Classifications and Performance Evaluation Metrics
Classification is a machine learning methodology wherein 
training data are utilized to construct models, which are 
subsequently employed to predict new data. The constructed 
model is assessed using testing data to determine algorithm 
performance. Pixel-based image classification systems 
examine the numerical characteristics of  designated image 
feature vectors and categorize data accordingly. This work 
employs four distinct classification techniques: (DT), (SVM), 
(KNN), and discriminator (DR) to categorize epilepsy 
from image datasets. It is worth to mention that the created 
data set features vector has been dismasted with a ratio of  
70% for training and 30% for testing with 10 k-folds. The 
performance of  the proposed classification technique for 
elliptical seizure detection is evaluated using confusion matrix 
metrics, including true positives (TP), false positives (FP), 

ALGORITHM 1: Epileptic seizure classification 
using HOG‑GLCM cascaded features
1: for all Pi∈D train = {Pi|i = 1, ., I train} do
2: �Convert 1D EEG signal of patient Pi to 2D grayscale image I(i) 

by scanning each patient EEG signals in to single binary medical 
image

3: Preprocess I(i) by cropping, resizing, denoising, and binarizing
4: End for
5: For all I(i) ∈ {I(1),.., I (itrain)} do
6: Compute gradients Gx(i), Gy(i) for each pixel in I(i)
7: Calculate gradient magnitude |∇f|(i) and orientation θ(i)
8: Divide I(i) into cells of size 8×8 pixels
9: Compute histogram Hc(i) of gradient orientations for each cell c
10: Group cells into blocks of size 2×2 cells with 50% overlap
11: �Normalize histograms within each block to form HOG feature 

map M(i)
12: end for
13: for all M(i) ∈ { M(1), ., M(itrain) } do
14: Compute GLCM matrices Cθ(i) at angles θ ∈ {0°, 45°, 90°, 135°}
15: Extract statistical features:
Fθ(i) = [Contrast, Homogeneity, Energy, Correlation, Entropy]
from each Cθ(i)
16: Average features across all angles: F(i) = (1/4) ∑θ Fθ(i)
17: End for
18: Merge feature vectors F(1),.., F(itrain) into one matrix F
19: �Train classifiers (SVM, KNN, DT, Discriminator) with F and 

labels L
20: For all Pj∈Dtest = {Pj|j = 1,.., jtest} do
21: Extract HOG‑GLCM features F(j) using steps 2–16
22: Classify Pj using trained models and F(j)
23: �Evaluate performance metrics (accuracy, precision, recall, 

F1‑score)
24: End for

HOG‑GLCM: Histogram of oriented gradients‑gray level co‑occurrence matrix
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true negatives (TN), and false negatives (FN). These metrics 
enable the calculation of  critical performance indicators such 
as follows [25]:

1.	 Sensitivity (Recall): Measures the proportion of  correctly 
identified seizure events

Recall TP
TP FN

=
+

  � (10)

2.	 Precision: Indicates the reliability of  positive predictions

Precision TP
TP FP

=
+

� (11)

3.	 F1-Score: Balances precision and recall through the 
harmonic mean

F Score
Precision Recall
Precision Recall

1 2− =
( )

+( )*
* �

� (12)

4.	 Accuracy: Represents overall correct classifications

Accuracy TN TP
TN TP FP FN

= +
+ + +

  � (13)

These metrics are widely used in medical diagnostics, 
particularly for epileptic seizure detection, where distinguishing 
abnormal EEG signals from normal ones is critical.

4. RESULTS AND DISCUSSION

All experiments and calculations were conducted in 
MATLAB version  2023b. Fig.  4a-e demonstrates the box 
plots for the five key statistical features, namely entropy, 
contrast, energy, correlation, and homogeneity, derived from 
all 234 EEG images scanned from the Erbil EEG Epilepsy 
Dataset. This leads to generate a feature vector of  size 345 by 
5, equally divided between the seizure and seizure images. The 
features plot depicted the remarkable separation between the 
previously mentioned two groups of  classes (non-epileptic 
seizure and epileptic seizure). Consequently, Fig. 4a-e shows 
the box plots for the five most important statistical features 
that were taken from all 234 EEG images scanned from the 
Erbil EEG Epilepsy Dataset. These features are entropy, 
contrast, energy, correlation, and homogeneity. These box 
plots indicate important information about how well the 
derived features can mark the difference between normal and 
epileptic EEG patterns. Fig. 4’s analysis shows a number of  
important things about the retrieved features. The entropy 
characteristic (Fig.  4a) makes it easy to tell the difference 
between normal and epileptic instances. Epileptic signals have 
higher entropy values, which means that the textural patterns 

are more complicated and random. This conclusion fits with 
what doctors already know: Seizures cause neurons to fire in 
a more random way than regular brain activity. The contrast 
characteristic (Fig. 4b) shows big variations between the two 
classes, with epileptic signals having higher contrast values. 
This means that seizure activity makes that the converted 
EEG images show more pronounced changes in intensity, 
which is what happens when the raw signals fluctuate quickly 
in amplitude. Energy values (Fig. 4c) are lower for cases of  
epilepsy than for normal cases, which means that the textural 
patterns are less consistent during seizures. This finding backs 
up the idea that seizures change the typical patterns of  brain 
activity. Fig. 4d shows that there are various patterns between 
normal and epileptic cases. For example, epileptic signals have 
different spatial correlation features. This means that the spatial 
correlations that GLCM analysis finds are useful for telling 
things apart. Fig. 4e shows that the classes are clearly different 
from one other in terms of  homogeneity. Normal EEG signals 
have higher homogeneity values, which means that the patterns 
are more uniform than the patterns that happen during a 
seizure. This analysis makes a feature vector that is 234 by 5, 
with half  of  the images being non-seizure and the other half  
being seizure images. The characteristics analysis showed a clear 
difference between the two groups of  classes we talked about 
earlier (non-epileptic seizure and epileptic seizure).

Consequently, around 70 images are randomly selected, 
with 35 from each class – non-seizure and seizure. Various 
comparative scenarios for feature extraction are evaluated 
using different machine learning techniques, including HoG 
features alone, GLCM followed by statistical features alone, 
and eventually, the cascaded HOG-GLCM method followed 
by statistical features extraction. Table 1 presents a detailed 
assessment of  HPO for the four employed classifiers, which 
reveals that SVM outperforms other classifiers, achieving the 
lowest objective function value of  0.02439. KNN shows the 
highest potential for improvement, with projected values 
between 0.012195 and 0.0088702. The DT exhibits full 
stability in its hyperparameters, indicating a local optimum. 
SVM performs best with standardization applied, while KNN 
yields better results without it. The Box Constraint parameter 
for SVM reveals significant variation between observed and 
calculated values, suggesting room for optimization. Table 1 
also gives clear insight into the trade-off  between model 
complexity and performance, assisting in model selection 
and optimization for epileptic seizures. A  comprehensive 
evaluation of  epileptic seizure detection using different 
feature extraction methods and classification algorithms 
has been achieved in this article which reveals significant 
insights into the optimal approach for EEG signal analysis. 
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The confusion matrices and performance metrics clearly 
demonstrate the superiority of  the cascaded HOG-GLCM 
approach over either feature extraction method used 

independently. As depicted in Fig.  5, which displays the 
confusion matrices for different classifiers in the case of  
cascaded features, the SVM classifier achieved near-perfect 

Fig. 4. (a-e) A box plot of the histogram of oriented gradients gray level co-occurrence matrix statistical features, the five features (Entropy, 
Contrast, Energy, Correlation, and Homogeneity) extracted from the Erbil electroencephalogram epilepsy dataset.
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ba
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TABLE 1: Unified hyperparameter optimization table for all classifiers
Classifier Hyperparameter Observed value Estimated value Observed objective Estimated objective
Discriminator Delta 1.0337e−06 5.9012e−06 0.085366 0.091406

Gamma 0.0013391 0.00015939
SVM Box constraint 60.163 548.88 0.02439 0.024324

Kernel scale 0.0010041 0.0010293
Standardize True true

Decision tree Min leaf size 24 24 0.041667 0.041328
KNN Num neighbors 5 5 0.012195 0.0088702

Distance Minkowski Minkowski
Standardize False False

SVM: Support vector machine, KNN: K‑Nearest Neighbors
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Fig. 5. Confusion matrices for different classifiers in the case of cascaded features (histogram of oriented gradients-gray level co-occurrence matrix).

performance with the recording an accuracy of  98.57%, 
precision of  97.22%, and most notably, a sensitivity of  100%. 
This perfect sensitivity indicates that the model successfully 
identified all epileptic cases without any false negatives – a 
critical factor in clinical applications where missing a seizure 
event could have serious consequences. The SVM’s F1-score 
of  98.59% further confirms the balanced performance 
between precision and recall. Similarly, the KNN classifier 
with HOG-GLCM features matched the SVM’s impressive 
performance, also achieving 98.57% accuracy and 100% 
sensitivity. The confusion matrix reveals that both SVM, 
KNN along with DR misclassified only a single case, resulting 
in a specificity of  97.14%, 97.22%, and 100%, respectively. 
This minimal error rate demonstrates the robustness of  the 
cascaded feature approach when paired with these classifiers.

The DT classifier, while slightly less accurate at 95.71%, still 
performed admirably; its confusion matrix shows one false 
negative and two false positives, resulting in a sensitivity of  
97.06% and specificity of  94.44%. The DR model achieved 
98.57% accuracy with perfect precision and specificity (both 
100%), misclassifying only one epileptic case as non-epileptic. 
This exceptionally high degree of  sensitivity is especially 
important in clinical settings because it shows that the model 
correctly identified all cases of  epilepsy without any false 
negatives. This is very important because missing a seizure could 
have serious consequences for patient safety and treatment plans.

As an alternative scenario for feature extraction to substantiate 
the superiority of  the proposed feature extraction technique. 
Fig. 6 depicts the confusion matrices for different classifiers 
when using GLCM features followed by statistical feature 
extraction, all classifiers showed a noticeable decrease 
in performance compared to the cascaded approach. 
The SVM classifier achieved the highest accuracy among 
GLCM-only models at 92.86%, with balanced precision 
and sensitivity (both 91.43%). The confusion matrix reveals 
three false negatives and two false positives, indicating 
increased difficulty in class separation using only texture-
based features. The KNN classifier with GLCM features 
performed slightly worse with 91.43% accuracy and identical 
precision, sensitivity, and F1-score values of  91.18%. The DT 
classifier struggled the most with GLCM features, achieving 
only 88.57% accuracy and 85.71% sensitivity, missing five 
epileptic cases. The DR model reached 90% accuracy with 
GLCM features, showing moderate performance with a 
sensitivity of  88.57%. These results suggest that while GLCM 
features extract significant textural information from EEG 
signal images, which are inadequate for effective seizure 
identification, especially when high sensitivity is essential.

Eventually, Fig. 7 demonstrated the confusion matrices for 
different classifiers when using HOG feature extraction, 
which performed better than GLCM features but still 
fell short of  the cascaded approach. The SVM classifier 
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Fig. 7. Confusion matrices for different classifiers when using the histogram of oriented gradients feature extraction.

Fig. 6. Confusion matrices for different classifiers when using gray-level co-occurrence matrix features, followed by statistical feature extraction.
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with HOG features achieved 94.29% accuracy with 
balanced metrics across precision, sensitivity, specificity, 
and F1-score (all 94.29%). The confusion matrix shows 
two false positives and two false negatives, indicating a 
symmetrical error distribution. The KNN classifier with 
HOG features reached 92.86% accuracy with slightly 
lower sensitivity (91.43%) than precision (94.12%). The 
DT classifier achieved 90% accuracy, while the DR model 
performed slightly better at 92.86% accuracy with HOG 
features. These results indicate that gradient-based HOG 
features capture more discriminative information than 
GLCM features alone but still lack the comprehensive 
representation provided by the cascaded approach. The 
superior performance of  the cascaded HOG-GLCM 
approach demonstrates a clear synergistic effect between 
gradient-based and texture-based features. This synergy 
can be attributed to the complementary nature of  the 
information captured by each method. Table  2 reports 
all performance measures for all scenarios of  feature 
extraction.

5. COMPUTATIONAL COMPLEXITY AND REAL-TIME 
CONSIDERATIONS

The HOG feature extraction part takes O(N × M × B) 
time to run, where N × M is the size of  the picture and 
B is the number of  orientation bins. This means that each 
of  the 256 × 256 pixel images with 9 orientation bins will 
need about 590,000 operations. The GLCM calculation is 
O(L2 × N × M), where L is the number of  gray levels. With 
256 gray levels, this takes about 16.7 million processes for 
each image. It takes an average of  0.15 s to extract features 
from one EEG image, but the time it takes to classify them 
varies by algorithm.

6. LIMITATIONS AND CONSTRAINTS

The proposed method for automatically detecting epilepsy 
has limitations due to the large dataset, difficulty in 
calculations, and the need for comparison and validation. 
The dataset consists of  234 EEG recordings from one 
institution, which may not fully represent real-world 
clinical populations. The cascaded HOG-GLCM method 
requires more processing power than simpler methods, 
making it less useful for real-time applications. The 
method also creates a high-dimensional feature space, 
making it difficult to use on limited resources or portable 
devices. Future research should focus on expanding 
datasets, validating across institutions, optimizing real-
time, combining deep learning methods, and conducting 
clinical validation.

7. CONCLUSION

This study introduces a novel cascaded HOG-GLCM 
feature extraction methodology for epileptic seizure 
detection from EEG signal images. The comprehensive 
evaluation using the Erbil EEG Epilepsy Dataset 
demonstrates that this innovative approach substantially 
outperforms single-feature extraction methods, with a 
significant 5–8% improvement in accuracy. The synergistic 
integration of  complementary feature extraction techniques 
– HOG capturing directional patterns characteristic of  
seizure activity and GLCM extracting spatial relationships 
– yields remarkable classification performance. SVM and 
KNN classifiers achieved 98.57% accuracy with perfect 
sensitivity (100%), ensuring no epileptic events went 
undetected. Most notably, the SVM classifier attained an 
exceptional F1-score of  98.59%, demonstrating balanced 

TABLE 2: The complete performance measures for all scenarios of feature extraction
Classifier Feature set Accuracy Precision Sensitivity Specificity F1‑score
SVM HOG‑GLCM 98.571 97.222 100 97.142 98.591
SVM GLCM 92.857 94.117 91.428 94.285 92.753
SVM HOG 94.285 94.285 94.285 94.285 94.285
KNN HOG‑GLCM 98.571 97.142 100 97.222 98.550
KNN GLCM 91.428 91.176 91.176 91.666 91.176
KNN HOG 92.857 94.117 91.428 94.285 92.753
Decision tree HOG‑GLCM 95.714 94.285 97.058 94.443 95.652
Decision tree GLCM 88.571 90.909 85.714 91.428 88.235
Decision tree HOG 90 91.176 88.571 91.478 89.855
Discriminator HOG‑GLCM 98.571 100 97.142 100 98.550
Discriminator GLCM 90 91.176 88.571 91.428 89.855
Discriminator HOG 92.8572 94.117 91.428 94.284 92.753

SVM: Support vector machine, KNN: K‑Nearest Neighbors,
HOG‑GLCM: Histogram of oriented gradients‑gray level co‑occurrence matrix
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precision (97.22%) and recall with minimal error rate. 
Our comparative analysis quantitatively validates the 
superiority of  the cascaded approach over GLCM-only 
(92.86% accuracy) and HOG-only (94.29% accuracy) 
methods. The rigorous Bayesian HPO further enhanced 
classification performance across all tested algorithms. The 
establishment of  the first comprehensive epilepsy dataset 
from Erbil, Kurdistan, comprising carefully collected and 
preprocessed EEG recordings, addresses the critical need 
for diverse and representative data resources in epilepsy 
research. Future work should focus on computational 
optimization for real-time applications and integration 
with deep learning techniques while maintaining the high 
accuracy and perfect sensitivity demonstrated in this study, 
ultimately contributing to improved epilepsy management 
and patient outcomes worldwide.
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