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1. INTRODUCTION

Kidney disease is a significant public health challenge to 
society today. Early diagnosis and awareness significantly 
reduce mortality. Disorders that interfere with the kidneys’ 
typical function are referred to as kidney diseases [1]. Kidney 
disease classification requires dividing kidney images or 
patient data into multiple illness sorts, including chronic 
kidney disease (CKD) stages, polycystic kidney disease, 

nephrolithiasis, and renal tumors. A kidney stone is a solid 
formation that can result in damage to the kidneys, intense 
pain, and reduced quality of  life due to urinary system 
blockages [2].

Numerous imaging techniques are employed in medical 
diagnosis, including sonography, computed tomography 
(CT), magnetic resonance imaging (MRI), and X-rays; 
however, these methods are not without issues, as they can 
be time-consuming, subjective, and susceptible to human 
error. The increase in incidence, coupled with technological 
advancements, imposes a substantial financial strain on 
healthcare facilities for managing kidney stone disease 
(KSD), with an estimated global expenditure of  USD 
5.3 billion in 2014, rendering it the second most expensive 
condition [3].
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The literature on modern-day machine learning techniques 
in healthcare progressively focuses on their use in renal 
disease, particularly in the study of  renal pathologies, which 
are common and affect a significant percentage of  the 
population, leading to various complications, such as death 
in some instances [4]. Deep learning (DL)-based image 
segmentation is now firmly recognized as an effective method 
in the field of  image segmentation. It has been widely used 
to delineate homologous areas as primary and fundamental 
elements of  the diagnostic and therapeutic process [5].

The automated detection of  renal abnormalities represents 
a critical objective in clinical practice, with medical imaging 
modalities including ultrasound (US), MRI, and CT 
serving as primary diagnostic tools [6]. The integration 
of  whole slide images from histological samples in digital 
pathology algorithms for computer-aided assessment has 
gained significant momentum in recent years [7]. Beyond 
detection, CT imaging enables precise determination of  
stone dimensions and anatomical positioning, thereby 
facilitating comprehensive risk assessment for spontaneous 
stone passage and informing decisions regarding surgical 
intervention [8]. Images CT consistently provide the most 
accurate diagnosis. Conventionally, US has lower sensitivity 
and specificity than CT [9]. The difficulties of  interpreting 
the challenges of  complex image data in medical images 
can be addressed by applying ML and DL concepts [10]. 
Clinicians can therefore use DL approaches to automatically 
diagnose renal disorders. However, improving performance 
in the identification and challenge of  renal disease remains 
difficult [11], [12].

An important element of  artificial intelligence (AI) 
techniques is the training of  appropriate images available 
to the public. Researchers can now use various datasets, 
including CT, US, and MRI. However, each dataset differs 
from the others in terms of  quantity, illumination variation, 
dimensions, and image quality, which may require fine-tuning. 
That is why authors Kaur and Singh believe that image 
fusion plays a significant role in different computer vision 
applications. However, designing an efficient image fusion 
technique is still a challenging task [13]. The objective of  
the research is to augment diagnostic precision, alleviate the 
strain for radiologists, and boost the early identification of  
renal disorders using automated image segmentation. The 
following are major contributions mentioned:
1.	 Novel Hybrid Architecture Development U-Net with 

ResNet50 and U-Net with VGG19
2.	 Comprehensive Multi-Scenario Evaluation Framework
3.	 Clinical Dataset Creation and Expert Annotation

4.	 Outstanding Performance Achievement
5.	 Clinical Translation and Practical Implementation.

Although developments, including Transformer-based 
designs like Swin-Transformers, have produced cutting-edge 
outcomes in medical picture segmentation, their clinical 
utility is limited by substantial computing demands and the 
necessity for exceptionally large annotated datasets. These 
restrictions make it hard to use them in everyday clinical 
practice, especially in hospital settings where resources are 
limited. Hybrid U-Net models, on the other hand, are a 
better choice because they keep the original U-Net decoder’s 
speed and reliability while adding powerful encoders such as 
ResNet50 and VGG19 to make feature extraction better. This 
hybrid design immediately solves the gap between accuracy 
and efficiency, giving models that are not only competitive 
with more sophisticated approaches but also practicable for 
real-world clinical integration.

The remainder of  this paper is organized as follows: Section 
2 presents a comprehensive review of  related work in kidney 
pathology segmentation and DL applications in medical 
imaging. Section 3 details the methodology, including 
research design, data collection, preprocessing procedures, 
proposed hybrid U-Net architectures, model training 
protocols, and evaluation metrics. Section 4 presents the 
experimental results and provides an in-depth discussion of  
the performance evaluation across three distinct scenarios, 
comparing U-Net+ResNet50 and U-Net+VGG19 models 
under various configurations. Finally, Section 5 concludes the 
study with key findings, contributions, and future research 
directions for advancing automated kidney disease diagnosis 
through DL techniques.

2. RELATED WORK

The authors, Huang et al., created a computer-aided diagnostic 
system for Kidney Ureter Bladder (KUB) imaging to help 
physicians correctly diagnose urinary tract stones [14]. 
Whereas Yildirim et al., proposed an automatic detection 
system for kidney stones (stone or no stone) that uses 
coronary imaging CT, using DL techniques [15]. Moreover, 
Fitri et al., using a convolutional neural network (CNN), have 
created an autonomous method for classifying urinary stones 
into the three categories based on micro-CT images [16]. 
Furthermore, Zhao et al., introduced a multi-scale supervised 
3D U-Net (MSS U-Net) for the segmentation of  kidneys and 
renal tumors from CT scans [17].
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However, researchers Alqahtani et al., say sigmoid functions 
enhance prediction accuracy for binary outcomes. Finally, 
they apply classification using the proposed modified 
Extreme Gradient Boosting (XGBoost) for kidney stone 
prediction. The loss functions are modified to enhance the 
model’s learning effectiveness and classification accuracy. 
Evaluate the proposed approach through internal comparison 
with the decision tree (DT) and Naive Bayes (NB) [18].

and Yang et al., performed a retrospective analysis of  the 
medical records of  358 patients who received shock wave 
lithotripsy for urinary stones (kidney and upper urinary tract 
stones), which includes patient demographic characteristics 
and urinary stone characteristics as depicted by non-contrast 
CT images. They used an 80% training set and a 20% test 
set to predict success, primarily using decision tree-based 
ML methods, including Random Forest (RF), XGBoost, and 
Light Gradient Boosting Method (LightGBM) [19].

However, Daniel et al. used computer learning, specifically 
2D CNN, to accurately separate left and right kidneys from 
T2-weighted (MRI) data. The data set consisted of  30 HC 
volunteers and 30 CKD patients. The model was trained on 
50 manually outlined HC and CKD kidney sections. The 
model was further evaluated using 50 test data sets, consisting 
of  data from 5 healthy controls and 5 patients with CKD, 
each scanned 5 times in a session to facilitate comparison 
between the microscopic CNN and manual segmentation 
of  the kidney [20].

Ma et al. enrolled 468  patients with kidney, bladder, and 
urinary stones at multiple sites at Peking Union Medical 
College Hospital. Urine metabolite profiling was used to 
discover markers for KSD using ML techniques. The total 
number of  patients with renal stones was 148  (34.02%), 
bladder stones 34 (7.82%), and multisite stones 163 (34.83%). 
According to their analysis, the RF algorithm had the best 
prediction accuracy, with area under the curve (AUC) 
values for kidney stones of  0.809, urethral stones of  0.99, 
and multisite stones of  0.775 [21]. Aksakallı et al., assessed 
multiple ML techniques, including DT, RF, support vector 
classifier, multilayer perceptron, K-nearest neighbors, NB 
(Bernoulli NB), and deep neural network utilizing CNN. 
The collection comprises 221 kidney X-ray images acquired 
from the Department of  Urology at Atatürk University. 
The trials indicate that the DT yields the most favorable 
classification results. This method achieves the greatest 
F1 score, with a success rate of  85.3%, utilizing the S+U 
sampling technique [22].

Researchers, Fitri et al., have devised an automated technique 
to categorize urinary stones into three categories utilizing 
micro-CT images through CNN. A  total of  2,430 images 
were obtained from in vitro micro-CT scans of  urinary stones 
in various patients. The validation accuracy of  the devised 
method utilizing a CNN with optimized hyperparameters 
was 0.9852. The trained CNN algorithm attained a test 
accuracy of  0.9959 [16]. Furthermore, Parakh et al. used 
unenhanced CT scans of  the abdomen and pelvis in 535 
adults with suspected KSD. CNN’s cascading model has a 
high accuracy AUC of  0.954 in detecting urinary tract stones 
on unenhanced CT scans [12].

Nonetheless, Elton et al. utilized a dataset of  91 CT 
colonography (CTC) images, including manually annotated 
kidney stones, alongside 89 CTC scans devoid of  kidney 
stones. 50% of  the data were allocated for training, while 
the remaining 50% was designated for testing. As an external 
validation set, 6185  patients’ CTC scans from a separate 
institution were employed. A  three-dimensional U-Net 
model was employed for kidney segmentation. A 13-layer 
CNN classifier was used to differentiate kidney stones from 
false-positive regions. The system attained an area under the 
receiver operating characteristic curve of  0.95 on an external 
validation set, with an AUC of  0.95, sensitivity of  0.88, and 
specificity of  0.91 at the Youden index [23].

Furthermore, Blau et al., present a fully automated 
approach for renal cyst diagnosis, underpinned by a strong 
segmentation of  the kidneys executed by a fully CNN. The 
evaluation of  performance was conducted on 52 randomly 
selected abdominal CT scans from a genuine radiological 
process, which included more than 70 cysts annotated by a 
proficient radiologist. The program identified 59 out of  70 
cysts (true-positive rate = 84.3%) while generating an average 
of  1.6 false positives per case [24].

Nonetheless, the authors Xiong et al. posited that 
ultrasonography is extensively utilized in the diagnosis of  
kidney tumors due to its widespread acceptance, affordability, 
and absence of  radiation exposure. Consequently, they 
introduced a novel technique for segmenting renal tumors 
in US images utilizing the adaptive subregional diffusion 
level set model (ASSLSM). In comparison to conventional 
US segmentation techniques, ASLSM demonstrates superior 
accuracy in renal tumor segmentation. The test yielded a 
Hausdorff  distance (HD) of  (8.75 ± 4.21) mm, a mean 
absolute distance of  (3.26 ± 1.69) mm, and a dice index 
(Dice) of  0.93 ± 0.03 [25].



Mahmood and Muhammadali: Hybrid U-Net Architectures for Kidney Disease and Stone Segmentation

234	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

To create their study sample, Gaikar et al., examined the 
Pathology and Image Archiving and Communication System 
(PACS) database. Produced a set of  MP-MRI scan data for 
individuals with kidney masses. T1W-NG image 3D volumes 
for 108 patients and T2W, T1W-IP, T1W-OP, T1W-PRE, and 
T1W-CM image 3D volumes for 50 patients made up the 
dataset. They also created a method based on TL to enhance 
kidney segmentation on the dataset. Two stages were taken to 
apply the created kidney segmentation algorithm to various 
mp-MRI data. Using a DL-based attention U-Net model, 
the kidney segmentation was first identified on T1W-NG 
images. In the subsequent phase, the pretrained T1W-NG 
kidney segmentation model was fine-tuned to distinguish 
kidneys in T2W, T1W-IP, T1W-OP, T1W-PRE, and T1W-
CM MRI sequences. Increased average DSC T1W-IP from 
83.64% to 85.42%, T1W-OP from 79.35% to 83.66%, 
T1W-PRE from 82.05% to 85.94%, T1W-CM from 85.65% 
to 87.64%, and T2W climbed from 87.19% to 89.90% as 
a result of  the TL technique [26]. Table 1 summarizes the 
findings of  published investigations. CT-based models, such 
as RDA-UNET, exhibit enhanced performance, whereas 
DeepLab, ResNet50, and Swin Transformer thrive across 
many modalities and tasks.

3. METHODOLOGY

The standard imaging modalities for assessing nephrolithiasis 
and renal pathology include US [32], CT [33], MRI [34], 
and KUB X-ray imaging [35]. This study used medical CT 
scan data to segment kidney stones and kidney disease after 
sequencing and image preparation procedures. Furthermore, 
the DL models used for training and testing are discussed.

3.1. Research Design
In the first step, a dataset of  the kidney 3D images is collected. 
After collecting the data, the DL models are used to detect 
the kidney images. The results of  the segmentation of  kidney 
stones and kidney disease of  the models are compared with 
several other methods based on the standard performance 
criteria. Thereafter, the optimal model is trained and evaluated 
using a publicly accessible dataset from Kaggle, which is 
explained diagrammatically in Fig. 1.

3.2. Data Collection and Preprocessing
The first objective was to obtain realistic data on kidney 
disease. It was achieved to collect CT scan data. CT scans 
were obtained from 118  patients at a private hospital in 
Ranya, consisting of  subjects: 34 normal healthy, 29 with 
kidney stones only, 23 with kidney disease, and 32 with 

kidney stones and kidney disease, as shown in Table 2. Also, 
utilizing the publicly available Kidney Stone Segmentation 
Dataset from Kaggle.

The DICOMDIR of  the 118 patients was then converted into 
images, using software (diVision Lite) to Joint Photographic 
Group (JPG), which contained 49,463 images. We isolated 
only 13,035 images dedicated to kidneys under the supervision 
of  a nephrologist and urologist. Of  these, there are 1131 CT 
scans of  kidney stones and 1584 CT scans of  kidney disease. 
Its data sets are shown in Table 3.

A preprocessing strategy was devised to prepare the dataset 
for efficient model training, encompassing numerous essential 
phases. Initially, all images were scaled to a standardized 
resolution of  512 × 512 pixels to maintain uniformity 
throughout the collection. All images were subsequently 
converted from 8-bit to 24-bit format to preserve greater 
color and detail information. Noise was mitigated by 
Gaussian filtering, which smooths images by averaging pixel 
values within the near vicinity. Furthermore, brightness was 
augmented to improve the visibility of  essential features with 
linear brightness adjustment. The processed images were 
sorted into a separate folder for improved accessibility and 
efficient use in later modeling steps.

A specialized open-source Python application was utilized 
for annotating medical CT scans. The labeling process 
was executed through labelImg.py, a commonly employed 
annotation tool incorporated within the Anaconda 
environment. CT scans illustrating nephropathy (Fig.  2) 
and kidney stones (Fig. 3) were meticulously examined and 
documented under the direct supervision of  a qualified 
nephrologist to guarantee clinical precision. Every image 
was carefully annotated, and the labels were stored in 
three distinct formats: JavaScript Object Notation (JSON), 
TXT, and Extensible Markup Language (XML). For the 
purpose of  creating precise segmentation masks unique 
to each annotated image, the chosen formats were meant 
to improve compatibility with later processes. In medical 
image analysis, the manual way ensured better annotations, 
which are necessary for supervised learning models to 
work.

The JSON file serves as the primary reference for producing 
the appropriate segmentation mask. Automation of  this 
procedure was achieved with Python scripts, which guarantee 
uniform and accurate extraction of  mask regions. Fig.  4 
shows an example of  this procedure.
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From the collected dataset, three distinct datasets were 
ultimately constructed, each consisting of  CT scans and their 
corresponding segmentation masks. The first dataset included 
images and masks for both kidney disease and kidney stones. 
The second dataset focused exclusively on kidney stone cases, 
while the third contained only instances related to renal illness. 
All datasets were randomly split into three subsets: 70% for 
training, 20% for validation, and 10% for testing. The entire 
process of  dataset construction and splitting was automated 
using Python to ensure consistency and efficiency. The 
datasets are available at this link in Kaggle: https://kaggle.com/
datasets/b65b0abc924a6aa91f894ac91839c6cb52894b40 
92767770c5dd34e7eb09d210

Furthermore, the study utilized the publicly accessible 
Kidney Stone Segmentation Dataset from Kaggle (https://
www.kaggle.com/datasets/bemorekgg/kidney-stone-
segmentation-dataset) to train and assess the efficacy of  the 

suggested segmentation algorithm. This dataset includes CT 
scans of  kidney stones together with related segmentation 
masks developed by the Segment Anything Model (SAM) 
utilizing YOLO bounding box annotations. The CT images 
are supplied in Joint Photographic Experts Group (JPEG) 
format, while the segmentation masks are presented as binary 
Portable Network Graphics (PNG) images. The dataset 
consists of  923 image-mask pairings, randomly assigned to 
training (70%, 646 images + 218 rotated images), validation 
(20%, 184 images), and testing (10%, 93 images). Using the 
same model and evaluation subsets, Fig. 5 shows examples 
of  Cagle images and masks.

3.3. Proposed Methods
DL is achieving success and garnering interest across various 
disciplines, including computer vision, speech recognition, 

TABLE 1: Summary of published investigation findings comparing model performance across different 
approaches
Study Method Objective challenge limitations Result
Fu et al. [27] RDA‑UNET model Automatic 

segmentation of 
renal cysts

Selecting the best model for renal 
cyst segmentation in medical image 
CT

Left kidney DSC=96.25
Precision=96.34
Recall=96.88

Right kidney DSC=94.22
Precision=95.34
Recall=94.61

Goyal et al. [28] R‑CNN Automatic 
segmentation of the 
kidneys

The automatic segmentation of the 
kidneys in MRI

Dice=0.890
IoU=0.816

Sharma et al. [29] InceptionV3 To analyze images 
of renal pathologies, 
including stones, 
tumors, and cysts.

For optimal performance in 
diagnosing kidney disorders, 
including cysts, tumors, and stones, 
by CT imaging.

Accuracy=97.76
Recall of=98.28
F1 score=0.95

Göker [30] ResNet101 Classifying kidney 
stone illnesses

Compare transfer learning models 
from CT images

Overall accuracy=0.981
Recall=0.991
Specificity=0.974
Precision=0.966
F1‑measure=0.978
Kappa statistic=0.962

Islam et al. [31] Swin VGG16 
ResNet50 
Inceptionv3

Renal cyst, tumor, 
and stone detection.

To achieve the best model in the 
diagnosis of renal diseases, such 
as cysts and tumors, using CT 
imaging.

Swin Accuracy=99.30%
VGG16 Accuracy=98.20%
ResNet50 Accuracy=61.60%
Inceptionv3 Accuracy=73.80%

MRI: Magnetic resonance imaging, CT: Computed tomography

TABLE 2: Comprehensive distribution of patients 
by renal health status
Patients 
total

Healthy Only has 
kidney 
stones

Only has 
kidney 
disease

Kidney stones 
and kidney 

disease
118 34 29 23 32

TABLE 3: The distribution of CT scans by kidney 
condition
Total 
CT 
scans

CT 
scans 
of the 

kidneys

CT scans 
of kidney 

stones

CT scans 
of kidney 
disease

CT scans 
contain kidney 

stones and 
kidney disease

49463 13035 1131 1584 308
CT: Computed tomography
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natural language processing, and gaming. DL techniques 
generate a correspondence between raw inputs and target 
outputs (e.g., image classifications) [36]. The use of  DL-
based medical image analysis in computer-aided detection 
(CAD) offers decision support to clinicians, enhancing the 
accuracy and efficiency of  diagnostic and treatment processes 
while stimulating new research and development initiatives 
in CAD [37].

3.3.1. U-Net model
U-Net, as shown in Fig. 6, is a CNN architecture designed for 
image segmentation tasks, introduced by Olaf  Ronneberger, 
Philipp Fischer, and Thomas Brox in 2015. The network 

derives its name from its U-shaped architecture, comprising 
a contracting path (encoder) and an expanded path 
(decoder) [38].

The U-Net is a CNN designed for biological image 
segmentation. The architecture, featuring an encoder–
decoder framework, exhibits remarkable stability and can 
achieve accurate segmentation with a reduced number 
of  training images. The network consists of  three 3 × 3 
convolutional layers, with a maximum of  two 2 × 2 layers 
following each pooling layer, utilizing the ReLU activation 
function. A  1 × 1 convolutional layer is appended at 

Fig. 1. The proposed structure.

Fig. 2. Labelling kidney disease.
Fig. 3. Labelling a kidney stone.
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Fig. 5. A sample dataset on kidney stones and masks is available on Kaggle.

Fig. 4. (a) Some original images; (b) labels the images; (c) creates masks from the JSON file; the red color represents 
kidney disease, and the blue color represents kidney stones.

cba
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the conclusion. The U-Net comprises a contracting path and 
a symmetric expanding path, which are utilized for accurate 
localization and feature extraction. The U-Net design relies 
significantly on data augmentation methods. The network is 
capable of  segmenting a 512 × 512 image on a contemporary 
GPU in under one second. The U-Net has been effectively 
utilized for medical image segmentation; nevertheless, 3D 
convolution is recommended to fully leverage the spatial 
information in 3D images, including CT and MRI scans [39].

In the domain of  binary classification, the binary cross-
entropy loss function is one of  the most widely used metrics 
to evaluate the performance of  a model. It measures the 
dissimilarity between the predicted probabilities and the 
actual binary labels (0 or 1), penalizing incorrect predictions 
more heavily as they diverge from the ground truth. 
Mathematically, the binary cross-entropy loss is defined as:

( ) ( ) ( )
=

= + − −  ∑
1

1 ˆ ˆLoss log 1 log 1
N

i ii i
i

y y y y
N

� (1)

where yi represents the actual label and ˆ iy  signifies the 
expected probability for the i_th sample. This function 
guarantees that the loss converges to zero with accurate 
forecasts and escalates markedly with inaccuracies. Moreover, 
it is essential in gradient-based optimization by offering explicit 
and comprehensible feedback throughout model training.

3.3.2. Comparison of hybrid U-Net methods
Hybrid U-Net methodologies augment the conventional 
U-Net design by substituting the encoder with superior DL 
models, such as ResNet50 and VGG19. These adjustments 
aim to enhance feature extraction and increase the model’s 
accuracy, especially in intricate tasks such as medical image 
segmentation. By retaining the original U-Net decoder, these 
hybrid models sustain spatial detail reconstruction while 
leveraging enhanced feature representations. Comparative 
assessments generally quantify performance through metrics 
such as segmentation pixel-wise accuracy, precision, recall, 
Dice coefficient (DC), and Intersection over Union (IoU), 
with findings frequently indicating that hybrid models surpass 
the original U-Net in both precision and generalization. In 
this study, advanced segmentation frameworks were used by 
combining VGG19 and ResNet50 with U-Net to accurately 
segment kidney stones and related kidney diseases from 
medical images. This approach enhances the automated 
analysis of  kidney conditions, supporting more effective 
diagnosis and treatment planning.

3.4. Model Training and Evaluation
To thoroughly assess the efficacy of  the hybrid models 
utilized on the three specified scenarios, an extensive array of  
performance metrics was applied, including accuracy, precision, 
recall, F1-score, DC, IoU, specificity, Cohen’s kappa (CK), and 
average test time (ATT). The selection of  these measures was 
guided by their ability to evaluate several dimensions of  model 

Fig. 6. U-Net design (example for 32 × 32 pixels at the lowest resolution) [39].



Mahmood and Muhammadali: Hybrid U-Net Architectures for Kidney Disease and Stone Segmentation

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 239

performance, particularly in medical image segmentation. 
Accuracy provides a broad assessment of  overall correctness 
by juxtaposing the total number of  accurate predictions 
against all predictions produced; precision denotes the ratio of  
accurately predicted positives to the total predicted positives, 
hence regulating the false-positive rate, whereas recall measures 
the ratio of  correctly detected actual positives, emphasizing 
the model’s sensitivity. Their harmonic mean, the F1-score, 
offers a balanced metric, especially advantageous in cases 
of  uneven class distribution. The DC and IoU function as 
metrics for spatial overlap between predicted and ground truth 
segmentation masks, essential for assessing model performance 
at the pixel level. Specificity enhances recall by evaluating the 
model’s capacity to accurately detect negative instances, hence 
minimizing false positives. CK provides a chance-corrected 
metric for assessing agreement between forecasts and actual 
outcomes, particularly significant in multi-class tasks. The ATT 
serves as a pragmatic metric for the model’s computational 
efficiency, underscoring its viability for real-world applications 
where processing speed is critical. These measures collectively 
establish a comprehensive framework for evaluating the 
segmentation accuracy, reliability, and efficiency of  hybrid 
models in complicated, clinically relevant datasets.

3.5. Ethical Considerations
This research followed ethical guidelines to make sure that 
data and technology were used in a responsible way. To protect 
patient privacy, all CT scan data were made anonymous. To 
avoid bias and overfitting, a diverse dataset was employed. 
The AI models were created just for research and are not 
meant to be used in clinical settings without more testing. 
The whole process was guided by ethical principles to make 
sure that it was fair, safe, and respectful of  human dignity.

4. RESULTS AND DISCUSSION

This section delineates the experimental setup, preprocessing 
section, training procedure, and assessment of  the suggested 
DL models. The emphasis is on evaluating several hybrid 
U-Net topologies to determine the most efficient model for 
the particular segmentation problem. Various models, U-Net 
with ResNet50 and VGG19, were trained and evaluated 
utilizing the prepared datasets. According to the evaluation 
standards described in Section 3.4, the models were assessed 
using various performance metrics.

4.1. Experimental Setup Recap
This study evaluated the performance of  DL models for 
kidney CT scan segmentation using U-Net + ResNet50 and 

U-Net + VGG19 architectures. Experiments were conducted 
in a consistent environment with an NVIDIA GTX 1080 Ti 
GPU, an Intel Core i7 CPU, and 16 GB RAM, using Python 
3, TensorFlow 2.x, Keras, and OpenCV on Windows 10 
through Anaconda and Jupyter Notebook.

4.2. Model Performance Evaluation
The models were assessed utilizing various performance 
indicators. All models were trained and validated under 
uniform experimental settings to guarantee an equitable 
comparison. The experiments were conducted using different 
image resolutions (128 × 128 and 256 × 256), batch sizes 
(8 and 24), and epoch settings (100, 150, and 200) with a 
learning rate of  0.0001 and the Adam optimizer, and a 5-fold 
cross-validation (CV) strategy.

This section presents a quantitative assessment of  each DL 
model employed for segmenting CT scans associated with 
kidney stones and renal illnesses. The models were assessed 
and trained over three distinct scenarios within the dataset 
to gauge their segmentation efficacy. The scenarios were as 
follows: In the first scenario, the data set consisted of  CT 
scans with their respective segment masks for kidney disease 
with kidney stones. The dataset was split into 70% for training 
(1675 scans), 20% for validation (479 scans), and 10% for 
testing (240 scans). In the second scenario, the dataset 
consisted exclusively of  renal stone-related CT scans and 
masks. We used data augmentation to enhance the training 
set. The training set consisted of  1582 CT scans (70%), the 
validation set included 226 scans (20%), and the test set 
included 114 scans (10%). The third scenario focused the 
dataset exclusively on CT scans and masks associated with 
renal disease. The data set consisted of  1108 scans from the 
training set (70%), 317 from the validation set (20%), and 159 
from the test set (10%). Table 4 provides a summary of  all 
three scenarios along with their corresponding distributions. 
Samples were randomly assigned to each category to 
guarantee unbiased assessment.

The study thoroughly assessed two hybrid models, U-Net 
+ ResNet50 and U-Net + VGG19, for the multiclass 
segmentation of  renal disease and kidney stones, utilizing CT 
scans. To ensure equitable comparisons and minimize residual 
learning effects, each model was trained from inception using 
varying image resolutions (256 × 256 and 128 × 128), batch 
sizes (8 and 24), and training epochs (100, 150, and 200), as 
shown in Table 5. The U-Net + ResNet50 used deep feature 
extraction to make boundaries more accurate, whereas the 
U-Net + VGG19 used its deep hierarchical structure to 
keep spatial features. There were three tests for each model: 
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the first scenario was segmentation of  kidney disease and 
kidney stones, the second scenario was only kidney stone 
segmentation, and the third scenario was only kidney disease 
segmentation. Figs. 7 and 8 show the input images, ground 
truth masks, and anticipated outputs for all configurations. 
This methodical approach yielded significant insights into 
the advantages and drawbacks of  each hybrid architecture 
across various training scenarios.

Figs. 7 and 8 display segmentation outcomes produced by 
two models: U-Net combined with ResNet50 and U-Net 
combined with VGG19. Each image comprises the actual 
CT scans, ground truth masks, and anticipated segmentation 
masks. Subfigures (a-c) present findings for a picture 
dimension of  256 × 256 with a batch size of  8 at 100, 
150, and 200 epochs, respectively. Subfigures (d-f) present 
findings for an image dimension of  128 × 128 with a batch 
size of  8, whereas subfigures (g-i) depict outcomes for the 
identical image dimension with a batch size of  24. These 
visualizations illustrate the models’ efficacy across various 
training configurations and segmentation contexts.

4.3. Discussion
The evaluation criteria were used across two different U-Net-
based models, hybrid models comprising U-Net with each 
model, ResNet50 and VGG19, for three separate scenarios. 
This multi-scenario methodology provides a detailed 
examination of  how model performance fluctuates based 
on task complexity and data characteristics.

4.3.1. Hybrid U-Net + ResNet50
The U-Net+ResNet50 model was evaluated across multiple 
configurations of  batch size, image dimensions, and training 

epochs. Initial testing with 256 × 256 images and batch size 
8 showed optimal performance at 150 epochs (accuracy: 
0.9992, precision: 0.8514, recall: 0.786, F1-score: 0.8174), 
with performance declining at 200 epochs due to overfitting. 
Reducing image size to 128 × 128 maintained robust 
segmentation performance while significantly decreasing 
inference time from 0.0275s to 0.0149s. The best overall 
results were achieved using 128 × 128 images, a batch size 
of  24, and 200 epochs, yielding an F1-score of  0.8238 and 
an IoU of  0.7000 with an inference time of  0.0157s. This 
setup achieved an optimal balance between segmentation 
accuracy and computational efficiency, demonstrating that the 
model works well with less computing power by optimizing 
parameters in Scenario 1.

In the second scenario, the hybrid U-Net + ResNet50 model 
was evaluated exclusively on CT kidney stone images with 
consistent accuracy (0.9998) and specificity (0.9999) across all 
configurations. The model was tested across three parameter 
combinations: 256 × 256 image resolution with a batch size 
of  8, 128 × 128 resolution with a batch size of  8, and 128 × 
128 resolution with a batch size of  24, each trained for 100, 
150, and 200 epochs. Optimal performance was achieved 
using 256 × 256 images, a batch size of  8, and 200 epochs, 
yielding a precision of  0.879, a recall of  0.8521, an F1-
score/DC of  0.8653, an IoU of  0.7626, CK of  0.8652, and an 
average training time of  0.0259 s. Reducing image dimensions 
to 128 × 128 generally decreased performance metrics, while 
increasing batch size from 8 to 24 showed mixed results with 
slightly improved precision but reduced recall.

For the third scenario, focusing on renal disease segmentation 
using the hybrid U-Net + ResNet50 model, experiments were 
conducted with varying training epochs (100, 150, 200) and 
image resolutions (256 × 256 and 128 × 128) at different 
batch sizes. At 256 × 256 resolution with a batch size of  
8, optimal performance was achieved after 100 epochs, 
yielding an accuracy of  0.9987, a precision of  0.8142, a recall 
of  0.7951, an F1-score of  0.8046, and an IoU of  0.673. 
Extended training to 150 and 200 epochs showed gradual 
performance degradation across most metrics. When image 
resolution was reduced to 128 × 128, similar patterns emerged 

TABLE 4: Splitting of the training, validation, and testing in three diagnostic scenarios
n Data sets Train (70%) Validation (20%) Test (10%) Total of images
1 CT scans and masks related to kidney disease and kidney stones. 1675 479 240 2394
2 Only CT scans and kidney stone‑related masks. 791×2 rotation 226 114 1922
3 Only CT scans and masks for kidney disease. 1108 317 159 1584

CT: Computed tomography

TABLE 5: Experimental configuration parameters 
for U‑Net‑based model architectures
Models Image size Batch size Epochs
U‑Net+ResNet50 • 256×256

• 128×128
• 8

• 24
• 100
• 150
• 200

U‑Net+VGG19 • 256×256
• 128×128

• 8
• 24

• 100
• 150
• 200
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with peak performance at 100 epochs, albeit overall metrics 
were slightly lower. Increasing the batch size from 8 to 24 
while maintaining a 128 × 128 resolution produced marginal 
improvements but failed to surpass the original configuration. 
The analysis demonstrated that optimal segmentation quality 

was achieved using the hybrid model trained at 256 × 256 
resolution for 100 epochs with a batch size of  8.

Fig.  9 presents the optimal performance of  assessment 
metrics attained by the hybrid U-Net+ResNet50 model for 

Fig. 7. Illustrates segmentation results for three scenarios: (top) renal disease with a kidney stone, (middle) a kidney stone only, and (bottom) 
renal disease only. Each set displays the CT test image, the ground truth mask, and the predicted masks ((a)–(i)) generated by the proposed 

U-Net + ResNet50 model.
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segmenting renal disease and kidney stones across all three 
experimental scenarios, depicted in chart form. This graphic 
depiction highlights the model’s efficacy across several 
parameters, including batch size, image size, and training 
epochs.

Fig. 10 illustrates the CM for the three U-Net + ResNet50 
combinations across various circumstances. Scenario 2 
(utilizing a 256 × 256 input size) exhibits the most equitable 
performance, recording the fewest false positives (655) 
and false negatives (826), underscoring its proficient 

Fig. 8. Illustrates segmentation results for three scenarios: (Top) renal disease with a kidney stone, (middle) a kidney stone only, and 
(bottom) renal disease only. Each set displays the CT test image, the ground truth mask, and the predicted masks (a-i) generated by the 

proposed U-Net + VGG19 model.
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differentiation between background and foreground 
classes. Scenario 1 demonstrates robust segmentation 
performance but exhibits a marginally elevated incidence 
of  misclassifications, suggesting potential enhancements in 

precision. Conversely, Scenario 3 shows the highest incidence 
of  false positives (6,230), suggesting a propensity for over-
segmentation, although it yields a substantial number of  
real positives. These findings underscore the enhanced 

Fig. 9. Presents the highest evaluation criteria for the hybrid U-Net+ResNet50 model in all three scenarios.

Fig. 10. Depicts the confusion matrices for the three distinct U-Net+ResNet50 model configurations employed in each scenario.
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reliability of  Scenario 2 in producing accurate and consistent 
segmentation results.

4.3.2. Hybrid U-Net + VGG19
In Scenario 1, the hybrid U-Net+VGG19 architecture 
was systematically evaluated by varying batch size, image 
resolution, and training epochs to assess their impact on 
kidney disease and kidney stone segmentation. The model 
demonstrated robust performance across all configurations, 
with optimal results achieved using 256 × 256 image 
resolution, a batch size of  8, and 200 training epochs. Under 
these conditions, the model achieved an accuracy of  0.9992, 
an F1-score of  0.8193, an IoU of  0.6939, and a CK of  0.8189, 
while maintaining computational efficiency with an average 
training time of  0.0310 seconds. Alternative configurations 
with reduced image resolution (128 × 128) and increased 
batch size (24) demonstrated comparable performance, 
with F1-scores ranging from 0.8066 to 0.8189, indicating the 
model’s stability across different parameter combinations. 
These findings confirm the robustness and effectiveness 
of  the U-Net+VGG19 hybrid model for kidney pathology 
segmentation.

In Scenario 2, the U-Net+VGG19 hybrid model was trained 
from scratch on kidney stone CT scans using various 
configurations of  image dimensions, batch sizes, and 
training epochs to systematically evaluate the impact of  each 
parameter on model performance. The optimal configuration, 
achieved with a 256 × 256 image size, batch size of  8, and 150 
epochs, delivered the best balance of  segmentation accuracy 
(F1-score = 0.8663), robustness (CK = 0.8662), and spatial 
overlap (IoU = 0.7641). While reducing image size to 128 × 
128 improved processing time (~0.0123 s), it compromised 
segmentation quality with lower F1-scores peaking at 0.8439. 
Increasing the batch size to 24 showed minimal performance 
variations, and extending training beyond 150 epochs led to 
overfitting, with decreased recall and F1-scores, indicating 
that the 150-epoch threshold represents the optimal training 
duration for this model configuration.

In Scenario 3, the hybrid U-Net + VGG19 model was trained 
exclusively on CT scans of  diseased kidneys to evaluate 
segmentation performance with reduced class diversity. The 
model demonstrated sensitivity to hyperparameters, achieving 
optimal results with a batch size of  8, image dimensions of  
256 × 256, and 150 training epochs, yielding a consistent 
accuracy of  0.9987, an F1-score of  0.8032, and an IoU of  
0.6712. Reducing the image size to 128 × 128 improved 
computational efficiency (ATT ~0.0120 seconds), but slightly 
compromised segmentation metrics. In contrast, increasing 

the batch size to 24 maintained accuracy but reduced the 
F1-score. Training beyond 150 epochs showed diminishing 
returns with potential overfitting, indicating that the optimal 
configuration balances spatial accuracy, overlap consistency, 
and computational cost. The results confirm the model’s 
robust generalization capabilities in simplified classification 
contexts.

Fig. 11 illustrates a comparative chart that emphasizes the 
superior performance of  the hybrid U-Net + VGG19 model 
in segmenting kidney stones and renal illnesses across the 
three experimental scenarios. This visual summary illustrates 
how critical parameters, such as batch size, image resolution, 
and training epochs, affect the model’s efficacy, providing a 
concise understanding of  its segmentation abilities across 
various configurations.

Fig. 12 shows the confusion matrices for the U-Net+VGG19 
model across the three scenarios, providing an extensive 
overview of  its segmentation efficacy in various medical 
imaging contexts. In Scenario 2 (stone alone), the model 
has good precision and recall, evidenced by the low counts 
of  false positives (691) and false negatives (789), indicating 
a robust capacity to identify different stone features. 
Scenario 1 (stone + disease) and Scenario 3 (disease only) 
have consistently elevated accurate negative rates, indicating 
dependable background classification. Both situations 
indicate an increase in false negatives (6,674 and 6,643, 
respectively), suggesting a minor reduction in sensitivity when 
illness characteristics are evident, particularly in more intricate 
or nuanced pathological areas. The model demonstrates 
strong performance, highlighting the versatility and reliability 
of  the U-Net + VGG19 architecture in addressing various 
image segmentation difficulties in the biomedical field.

Table  6 reveals distinct performance patterns across the 
hybrid architectures and segmentation scenarios. Both 
models achieve their highest F1-scores (0.8653 and 0.8663) 
in stone-only segmentation, indicating that isolated kidney 
stone identification represents the least complex task among 
the three scenarios. The U-Net+VGG19 model demonstrates 
superior consistency, maintaining F1-scores above 0.80 across 
all scenarios, while U-Net+ResNet50 shows more variable 
performance with a notable drop to 0.8046 in disease-only 
segmentation. Configuration analysis reveals that optimal 
performance typically requires higher resolution (256 × 
256) images, contradicting the common assumption that 
computational efficiency necessarily improves outcomes. 
The processing time differences are substantial, with 
U-Net+ResNet50 achieving nearly twice the speed in the 
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Fig. 11. Presents the highest evaluation criteria for the hybrid U-Net + VGG19 model in all three scenarios.

Fig. 12. Depicts the confusion matrices for the three distinct U-Net + VGG19 model configurations employed in each scenario.

TABLE 6: Optimal performance summary by model and scenario
Model Scenario Batch size Image size Epochs Accuracy Precision Recall F1‑score IoU ATT (s)
U‑Net+ResNet50 Disease+Stone 24 128×128 200 0.9992 0.8301 0.8176 0.8238 0.7004 0.0157
U‑Net+ResNet50 Stone Only 8 256×256 200 0.9998 0.879 0.8521 0.8653 0.7626 0.0259
U‑Net+ResNet50 Disease Only 8 256×256 100 0.9987 0.8142 0.7951 0.8046 0.673 0.0302
U‑Net+VGG19 Disease+Stone 8 256×256 200 0.9992 0.8291 0.8097 0.8193 0.6939 0.031
U‑Net+VGG19 Stone Only 8 256×256 150 0.9998 0.874 0.8587 0.8663 0.7641 0.0343
U‑Net+VGG19 Disease Only 8 256×256 150 0.9987 0.8 0.8065 0.8032 0.6712 0.0296
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disease+stone scenario (0.0157s vs. 0.0310s), suggesting 
that ResNet50’s residual connections provide computational 
advantages beyond accuracy improvements. The IoU values 
consistently lag behind F1-scores by approximately 0.10-0.15 
points, indicating that while both models achieve good pixel-
wise classification, precise boundary delineation remains 
challenging in kidney pathology segmentation.

Table  7 exposes the architectural trade-offs between 
the two hybrid models and their clinical implications. 
U-Net+VGG19 emerges as the superior choice for stone 
segmentation, achieving the highest F1-score and IoU 
values, which translates to more accurate stone boundary 
detection crucial for treatment planning and surgical 
guidance. However, U-Net+ResNet50 demonstrates faster 
processing across most scenarios, with its computational 
efficiency being particularly pronounced in complex multi-
class segmentation tasks. The consistent performance metric 
reveals U-Net+VGG19’s architectural stability, maintaining 
more uniform results across diverse pathological conditions, 
while U-Net+ResNet50 shows task-specific optimization 
that favors certain scenarios over others. From a clinical 
deployment perspective, the processing time differences, 
though measured in milliseconds, could compound 
significantly in high-throughput environments where 
thousands of  scans require analysis daily. The performance 
gap between stone and disease segmentation across both 
models (F1-score difference of  ~0.06) suggests that kidney 
stone identification benefits from clearer radiological contrast 
compared to the more subtle tissue changes associated 
with kidney disease, highlighting the inherent complexity 
differences in pathological feature recognition.

Fig.  13 presents a comprehensive comparison of  F1-
score versus inference time, clearly demonstrating the 
performance-efficiency trade-offs between models. The 
chart reveals that U-Net+ResNet50 (blue) consistently 
achieves faster inference times across all scenarios, while 
U-Net+VGG19 (red) provides marginally higher F1-scores 

in certain configurations. Both models peak in Scenario 2 
(kidney stones only), with minimal performance differences 
but significant efficiency variations, enabling clinicians to 
select the optimal model based on specific operational 
requirements.

The performance disparities between U-Net+ResNet50 and 
U-Net+VGG19 stem from their architectural attributes. 
ResNet50’s residual connections enhance feature extraction 
for high-contrast structures like kidney stones, whereas 
VGG19’s hierarchical depth more effectively maintains fine 
spatial details, resulting in marginally superior outcomes in 
complex pathological segmentation. In practical applications, 
U-Net+ResNet50 is advantageous for rapid and reliable stone 
identification, while U-Net+VGG19 delivers more uniform 
performance across various renal states, offering doctors 
adaptability in model selection based on the diagnostic 
context.

Table 8 provides a comparative examination of  two hybrid 
models, U-Net integrated with ResNet50 and U-Net 
integrated with VGG19, across several scenarios. Scenario 
2 of  both models, utilizing a batch size of  8, an image 
dimension of  256 × 256, and a substantial epoch count, 
attained the highest overall performance. Significantly, the 
U-Net + VGG19 model in Scenario 2 marginally surpassed 
its equivalent, attaining an F1-score of  0.8663 and an IoU of  
0.7641. The results demonstrate that the U-Net combined 
with VGG19 is a competitive alternative to ResNet50 
regarding segmentation accuracy and efficiency.

Furthermore, the comparative assessment of  the proposed 
hybrid designs reveals significant differences that elucidate 
their relative performance in the experimental circumstances. 
The U-Net+ResNet50 model attained optimal performance 
in stone-only segmentation, attributable to the residual 
connections that improve gradient propagation and facilitate 
more efficient extraction of  distinguishing characteristics 
from high-contrast areas. Conversely, the U-Net+VGG19 

TABLE 7: Comparative performance analysis
Performance aspect Best Model F1‑Score IoU Processing Time (s) Interpretation
Overall Performance U‑Net+VGG19 (Stone) 0.8663 0.7641 0.0343 Highest segmentation accuracy
Stone Segmentation U‑Net+VGG19 0.8663 0.7641 0.0343 Superior stone boundary detection
Disease Segmentation U‑Net+ResNet50 0.8046 0.673 0.0302 Better disease feature extraction
Computational Efficiency U‑Net+ResNet50 

(Disease+Stone)
0.8238 0.7004 0.0157 Fastest processing time

Consistent Performance U‑Net+VGG19 0.8296* 0.7097* 0.0316* Most stable across scenarios
*Average across all three scenarios



Mahmood and Muhammadali: Hybrid U-Net Architectures for Kidney Disease and Stone Segmentation

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 247

model demonstrated unwavering stability throughout all 
three scenarios, a consequence presumably attributable 
to its hierarchical feature representation, which maintains 
intricate spatial information essential for precisely defining 
complicated renal diseases. The architectural differences 
explain the observed performance variances and have 
practical consequences for clinical practice. Enhanced 
segmentation of  kidney stones and renal diseases might 
augment diagnostic reliability, enable precise quantification 
for treatment planning, and alleviate the manual workload 
on radiologists, hence promoting expedited and consistent 
clinical decision-making.

In addition, to evaluate the generalizability of  the models 
to novel data, we re-examined the models, which excelled 
on the benchmark dataset, using the Kaggle dataset. The 
results showed that both hybrid models exhibited excellent 

performance, demonstrating their robustness across various 
datasets. The U-Net + VGG19 hybrid model, trained with 
a batch size of  8, an image size of  256 × 256, and for 150 
epochs, attained an accuracy of  0.9997, a precision of  
0.8495, a recall of  0.8502, an F1-score and DC of  0.8498, 
an IoU of  0.7389, a specificity of  0.9998, a CK of  0.8497, 
and an ATT of  0.0443 s. In the same way, the U-Net + 
ResNet50 hybrid model, employing the identical training 
configuration, achieved an accuracy of  0.9996, precision of  
0.8499, recall of  0.8067, F1-score and DC of  0.8277, IoU 
of  0.7061, specificity of  0.9998, CK of  0.8276, and ATT 
of  0.0257 seconds. These results validate the efficacy and 
robustness of  both models across various datasets.

Currently, the suggested hybrid U-Net models can be included 
in hospital (PACS) Picture Archiving and Communication 
Systems to autonomously segment kidney stones and 

TABLE 8: A comparative analysis of the employed models across three scenarios, U‑Net in conjunction 
with ResNet‑50 and VGG‑19
M S B‑S IS Epo Acc Pre Rec F1‑S DC IoU Spe CK ATT
U‑Net 
and 
ResNet50

1 24 128×128 200 0.9992 0.8301 0.8176 0.8238 0.8238 0.7004 0.9996 0.8234 0.0157 s
2 8 256×256 200 0.9998 0.879 0.8521 0.8653 0.8653 0.7626 0.9999 0.8652 0.0259 s
3 8 256×256 100 0.9987 0.8142 0.7951 0.8046 0.8046 0.673 0.9994 0.8039 0.0302 s

U‑Net 
and 
VGG19

1 8 256×256 200 0.9992 0.8291 0.8097 0.8193 0.8193 0.6939 0.9996 0.8189 0.031 s
2 8 256×256 150 0.9998 0.874 0.8587 0.8663 0.8663 0.7641 0.9999 0.8662 0.0343 s
3 8 256×256 150 0.9987 0.8 0.8065 0.8032 0.8032 0.6712 0.9993 0.8026 0.0296 s

M: Model, S: Scenario, B‑S: Batch‑size, IS: Image Size, Epo: Epochs, Acc: Accuracy, Pre: Precision, Rec: Recall, F1‑S: F1‑Score, DC: Dice coefficient, Spe: Specificity, CK: Cohen’s kappa, 
ATT: Average time test

Fig. 13. Comparative chart of F1-score versus inference time for both models.
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renal diseases from CT data. These outputs function as 
decision-support instruments, assisting radiologists in 
swiftly and reliably validating findings, while also supplying 
urologists with quantitative data for treatment formulation. 
Consequently, the models alleviate workload, enhance 
diagnostic reliability, and facilitate coordinated decision-
making in authentic clinical workflows.

Several limitations should be acknowledged in this study. 
The relatively small dataset of  118 patients from a single 
institution, while supplemented with public data, may 
limit the generalizability of  our findings across diverse 
populations, imaging protocols, and clinical settings. 
The lack of  multimodal validation using other imaging 
modalities, such as MRI or US, restricts our ability to assess 
model performance across different diagnostic approaches 
commonly used in clinical practice. Furthermore, while 
our models demonstrate computational efficiency with 
processing times under 0.05 s per scan, the deployment 
of  these DL architectures may pose significant challenges 
in resource-limited hospital environments where access 
to high-performance GPUs and adequate computational 
infrastructure is constrained. The memory requirements 
and initial setup costs for implementing such systems could 
create barriers for widespread clinical adoption, particularly 
in developing countries or smaller healthcare facilities. In 
addition, the requirement for specialized technical expertise 
to maintain and troubleshoot these AI systems may further 
limit their practical implementation in settings with limited 
IT support resources.

5. CONCLUSION

This research advances the field of  automated medical image 
analysis by demonstrating that hybrid U-Net architectures can 
bridge the critical gap between segmentation accuracy and 
computational efficiency in kidney pathology detection. Our 
primary contribution lies in establishing a practical framework 
where established encoder architectures (ResNet50, VGG19) 
can be strategically integrated with U-Net decoders to 
achieve clinically viable performance without the prohibitive 
computational demands of  transformer-based approaches. 
However, significant gaps remain in translating these 
technical achievements to diverse clinical environments, 
particularly regarding model robustness across different 
imaging protocols, patient demographics, and healthcare 
systems with varying computational resources. The 
geographical and institutional limitations of  our validation 

highlight the urgent need for federated learning approaches 
that can leverage multi-institutional datasets while preserving 
patient privacy. Future research should prioritize three critical 
directions: developing domain adaptation techniques to 
ensure model generalizability across different CT scanner 
types and imaging protocols, integrating explainable 
AI methodologies to build clinician trust and facilitate 
clinical adoption, and establishing standardized evaluation 
frameworks that can assess not only technical performance 
but also clinical utility in real-world healthcare workflows. The 
ultimate success of  automated kidney pathology detection 
will depend on creating systems that complement rather 
than replace radiological expertise, requiring interdisciplinary 
collaboration between computer scientists, radiologists, and 
healthcare administrators to address both technical and 
implementation challenges.
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