ORIGINAL RESEARCH ARTICLE

Hybrid U-Net Architectures with ResNet50 and
VGG19 for Accurate CT-Based Kidney Disease 8¢

and Stone Segmentation

A,

F - dasl
UNIVERSITY OF HUMAN DEVELOPMENT

Dishad Abdalrahman Mahmood, Muhammad Amin Muhammadali

Department of Computer Science, Faculty of Science, Soran University, Kurdistan Region, Iraq

ABSTRACT

Kidney illness is a major worldwide health issue requiring prompt and precise diagnosis for optimal management. This
paper presents a comprehensive evaluation of hybrid deep learning (DL) architectures that integrate U-Net with ResNet50
and VGG19 for the automatic segmentation of kidney stones and renal disorders from computed tomography (CT)
images. We assembled a dataset of 118 individuals from a private hospital, comprising 13,035 kidney-specific CT scans,
while also using the publicly accessible Kaggle Kidney Stone Segmentation Dataset. Three experimental situations were
established: (1) Concurrent segmentation of kidney disease and stones, (2) segmentation of kidney stones alone, and
(3) segmentation of kidney disease exclusively. The hybrid U-Net + ResNet50 model attained superior performance in
stone-only segmentation, with an F1-score of 0.8653, an loU of 0.7626, and an accuracy of 0.9998 at a resolution
of 256 x 256. The U-Net+VGG19 model exhibited strong performance in all situations, attaining an F1-score and DC
of 0.8663 for stone segmentation. Both models demonstrated exceptional generalization ability when evaluated on
external datasets. The findings indicate that hybrid architectures markedly improve segmentation accuracy compared
to conventional methods, providing dependable automated tools for clinical kidney pathology evaluation while ensuring

computational efficiency with average processing durations below 0.05 s per scan.

Index Terms: Kidney stone, Renal disorders, DL, U-Net, VGG19, ResNet50.

1. INTRODUCTION

Kidney disease is a significant public health challenge to
society today. Early diagnosis and awareness significantly
reduce mortality. Disorders that interfere with the kidneys’
typical function are referred to as kidney diseases [1]. Kidney
disease classification requires dividing kidney images or
patient data into multiple illness sorts, including chronic
kidney disease (CKD) stages, polycystic kidney disease,
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nephrolithiasis, and renal tumors. A kidney stone is a solid
formation that can result in damage to the kidneys, intense
pain, and reduced quality of life due to urinary system
blockages [2].

Numerous imaging techniques are employed in medical
diagnosis, including sonography, computed tomography
(CT), magnetic resonance imaging (MRI), and X-rays;
however, these methods are not without issues, as they can
be time-consuming, subjective, and susceptible to human
error. The increase in incidence, coupled with technological
advancements, imposes a substantial financial strain on
healthcare facilities for managing kidney stone disease
(KSD), with an estimated global expenditure of USD
5.3 billion in 2014, rendering it the second most expensive
condition [3].
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The literature on modern-day machine learning techniques
in healthcare progressively focuses on their use in renal
disease, particularly in the study of renal pathologies, which
are common and affect a significant percentage of the
population, leading to various complications, such as death
in some instances [4]. Deep learning (DL)-based image
segmentation is now firmly recognized as an effective method
in the field of image segmentation. It has been widely used
to delineate homologous areas as primary and fundamental
elements of the diagnostic and therapeutic process [5].

The automated detection of renal abnormalities represents
a critical objective in clinical practice, with medical imaging
modalities including ultrasound (US), MRI, and CT
serving as primary diagnostic tools [6]. The integration
of whole slide images from histological samples in digital
pathology algorithms for computer-aided assessment has
gained significant momentum in recent years |7]. Beyond
detection, CT imaging enables precise determination of
stone dimensions and anatomical positioning, thereby
facilitating comprehensive risk assessment for spontaneous
stone passage and informing decisions regarding surgical
intervention [8]. Images CT consistently provide the most
accurate diagnosis. Conventionally, US has lower sensitivity
and specificity than CT [9]. The difficulties of interpreting
the challenges of complex image data in medical images
can be addressed by applying ML and DL concepts [10].
Clinicians can therefore use DL approaches to automatically
diagnose renal disorders. However, improving performance
in the identification and challenge of renal disease remains
difficult [11], [12].

An important element of artificial intelligence (Al)
techniques is the training of appropriate images available
to the public. Researchers can now use various datasets,
including CT, US, and MRI. However, each dataset differs
from the others in terms of quantity, illumination variation,
dimensions, and image quality, which may require fine-tuning,
That is why authors Kaur and Singh believe that image
fusion plays a significant role in different computer vision
applications. However, designing an efficient image fusion
technique is still a challenging task [13]. The objective of
the research is to augment diagnostic precision, alleviate the
strain for radiologists, and boost the eatly identification of
renal disorders using automated image segmentation. The
following are major contributions mentioned:

1. Novel Hybrid Architecture Development U-Net with

ResNet50 and U-Net with VGG19

2. Comprehensive Multi-Scenario Evaluation Framework
3. Clinical Dataset Creation and Expert Annotation
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4. Outstanding Performance Achievement
5. Clinical Translation and Practical Implementation.

Although developments, including Transformer-based
designs like Swin-Transformers, have produced cutting-edge
outcomes in medical picture segmentation, their clinical
utility is limited by substantial computing demands and the
necessity for exceptionally large annotated datasets. These
restrictions make it hard to use them in everyday clinical
practice, especially in hospital settings where resources are
limited. Hybrid U-Net models, on the other hand, are a
better choice because they keep the original U-Net decoder’s
speed and reliability while adding powerful encoders such as
ResNet50 and VGG19 to make feature extraction better. This
hybrid design immediately solves the gap between accuracy
and efficiency, giving models that are not only competitive
with more sophisticated approaches but also practicable for
real-world clinical integration.

The remainder of this paper is organized as follows: Section
2 presents a comprehensive review of related work in kidney
pathology segmentation and DL applications in medical
imaging. Section 3 details the methodology, including
research design, data collection, preprocessing procedures,
proposed hybrid U-Net architectures, model training
protocols, and evaluation metrics. Section 4 presents the
experimental results and provides an in-depth discussion of
the performance evaluation across three distinct scenarios,
comparing U-Net+ResNet50 and U-Net+VGG19 models
under various configurations. Finally, Section 5 concludes the
study with key findings, contributions, and future research
directions for advancing automated kidney disease diagnosis
through DL techniques.

2. RELATED WORK

The authors, Huang e al., created a computer-aided diagnostic
system for Kidney Ureter Bladder (KUB) imaging to help
physicians correctly diagnose urinary tract stones [14].
Whereas Yildirim e7 al., proposed an automatic detection
system for kidney stones (stone or no stone) that uses
coronary imaging CT, using DL techniques [15]. Moreover,
Fitri et al., using a convolutional neural network (CNN), have
created an autonomous method for classifying urinary stones
into the three categories based on micro-CT images [16].
Furthermore, Zhao ¢t al., introduced a multi-scale supervised
3D U-Net (MSS U-Net) for the segmentation of kidneys and
renal tumors from CT scans [17].
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However, researchers Alqahtani e/ 4/, say sigmoid functions
enhance prediction accuracy for binary outcomes. Finally,
they apply classification using the proposed modified
Extreme Gradient Boosting (XGBoost) for kidney stone
prediction. The loss functions are modified to enhance the
model’s learning effectiveness and classification accuracy.
Evaluate the proposed approach through internal comparison
with the decision tree (DT) and Naive Bayes (NB) [18].

and Yang e/ al., performed a retrospective analysis of the
medical records of 358 patients who received shock wave
lithotripsy for urinary stones (kidney and upper urinary tract
stones), which includes patient demographic characteristics
and urinary stone characteristics as depicted by non-contrast
CT images. They used an 80% training set and a 20% test
set to predict success, primarily using decision tree-based
ML methods, including Random Forest (RF), XGBoost, and
Light Gradient Boosting Method (LightGBM) [19].

However, Daniel ¢/ a/. used computer learning, specifically
2D CNN, to accurately separate left and right kidneys from
T2-weighted (MRI) data. The data set consisted of 30 HC
volunteers and 30 CKD patients. The model was trained on
50 manually outlined HC and CKD kidney sections. The
model was further evaluated using 50 test data sets, consisting
of data from 5 healthy controls and 5 patients with CKD,
each scanned 5 times in a session to facilitate comparison
between the microscopic CNN and manual segmentation
of the kidney [20].

Ma et al. enrolled 468 patients with kidney, bladder, and
urinary stones at multiple sites at Peking Union Medical
College Hospital. Urine metabolite profiling was used to
discover markers for KSD using ML techniques. The total
number of patients with renal stones was 148 (34.02%),
bladder stones 34 (7.82%), and multisite stones 163 (34.83%).
According to their analysis, the RF algorithm had the best
prediction accuracy, with area under the curve (AUC)
values for kidney stones of 0.809, urethral stones of 0.99,
and multisite stones of 0.775 [21]. Aksakallt e/ a/, assessed
multiple ML techniques, including DT, RE, support vector
classifier, multilayer perceptron, K-nearest neighbors, NB
(Bernoulli NB), and deep neural network utilizing CNN.
The collection comprises 221 kidney X-ray images acquired
from the Department of Urology at Atatlirk University.
The trials indicate that the DT yields the most favorable
classification results. This method achieves the greatest
F1 score, with a success rate of 85.3%, utilizing the S+U
sampling technique [22].
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Researchers, Fitri ef al., have devised an automated technique
to categorize urinary stones into three categories utilizing
micro-CT images through CNN. A total of 2,430 images
were obtained from 7 vitro micro-CT scans of urinary stones
in various patients. The validation accuracy of the devised
method utilizing a CNN with optimized hyperparameters
was 0.9852. The trained CNN algorithm attained a test
accuracy of 0.9959 [16]. Furthermore, Parakh e a/. used
unenhanced CT scans of the abdomen and pelvis in 535
adults with suspected KSD. CNN’s cascading model has a
high accuracy AUC of 0.954 in detecting urinaty tract stones
on unenhanced CT scans [12].

Nonetheless, Elton ¢f a/. utilized a dataset of 91 CT
colonography (CTC) images, including manually annotated
kidney stones, alongside 89 CTC scans devoid of kidney
stones. 50% of the data were allocated for training, while
the remaining 50% was designated for testing. As an external
validation set, 6185 patients’ CTC scans from a separate
institution were employed. A three-dimensional U-Net
model was employed for kidney segmentation. A 13-layer
CNN classifier was used to differentiate kidney stones from
false-positive regions. The system attained an area under the
receiver operating characteristic curve of 0.95 on an external
validation set, with an AUC of 0.95, sensitivity of 0.88, and
specificity of 0.91 at the Youden index [23].

Furthermore, Blau ¢ a/., present a fully automated
approach for renal cyst diagnosis, underpinned by a strong
segmentation of the kidneys executed by a fully CNN. The
evaluation of performance was conducted on 52 randomly
selected abdominal CT scans from a genuine radiological
process, which included more than 70 cysts annotated by a
proficient radiologist. The program identified 59 out of 70
cysts (true-positive rate = 84.3%) while generating an average
of 1.6 false positives per case [24].

Nonetheless, the authors Xiong ez a/. posited that
ultrasonography is extensively utilized in the diagnosis of
kidney tumors due to its widespread acceptance, affordability,
and absence of radiation exposure. Consequently, they
introduced a novel technique for segmenting renal tumors
in US images utilizing the adaptive subregional diffusion
level set model (ASSLSM). In comparison to conventional
US segmentation techniques, ASLSM demonstrates superior
accuracy in renal tumor segmentation. The test yielded a
Hausdorff distance (HD) of (8.75 + 4.21) mm, a mean
absolute distance of (3.26 £ 1.69) mm, and a dice index
(Dice) of 0.93 £ 0.03 [25].
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To create their study sample, Gaikar ¢7 a/., examined the
Pathology and Image Archiving and Communication System
(PACS) database. Produced a set of MP-MRI scan data for
individuals with kidney masses. TTW-NG image 3D volumes
for 108 patients and T2W, TIW-IP, TTW-OP, TIW-PRE, and
T1W-CM image 3D volumes for 50 patients made up the
dataset. They also created a method based on TL to enhance
kidney segmentation on the dataset. Two stages were taken to
apply the created kidney segmentation algorithm to various
mp-MRI data. Using a DL-based attention U-Net model,
the kidney segmentation was first identified on TIW-NG
images. In the subsequent phase, the pretrained TIW-NG
kidney segmentation model was fine-tuned to distinguish
kidneys in T2W, T1W-IP, TIW-OP, TIW-PRE, and T1W-
CM MRI sequences. Increased average DSC T1W-IP from
83.64% to 85.42%, TIW-OP from 79.35% to 83.66%,
T1W-PRE from 82.05% to 85.94%, T1W-CM from 85.65%
to 87.64%, and T2W climbed from 87.19% to 89.90% as
a result of the TL technique [26]. Table 1 summarizes the
findings of published investigations. CT-based models, such
as RDA-UNET, exhibit enhanced performance, whereas
DeepLab, ResNet50, and Swin Transformer thrive across
many modalities and tasks.

3. METHODOLOGY

The standard imaging modalities for assessing nephrolithiasis
and renal pathology include US [32], CT [33], MRI [34],
and KUB X-ray imaging [35]. This study used medical CT
scan data to segment kidney stones and kidney disease after
sequencing and image preparation procedures. Furthermore,
the DL models used for training and testing are discussed.

3.1. Research Design

In the first step, a dataset of the kidney 3D images is collected.
After collecting the data, the DL models are used to detect
the kidney images. The results of the segmentation of kidney
stones and kidney disease of the models are compared with
several other methods based on the standard performance
criteria. Thereafter, the optimal model is trained and evaluated
using a publicly accessible dataset from Kaggle, which is
explained diagrammatically in Fig, 1.

3.2. Data Collection and Preprocessing

The first objective was to obtain realistic data on kidney
disease. It was achieved to collect CT scan data. CT scans
were obtained from 118 patients at a private hospital in
Ranya, consisting of subjects: 34 normal healthy, 29 with
kidney stones only, 23 with kidney disease, and 32 with
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kidney stones and kidney disease, as shown in Table 2. Also,
utilizing the publicly available Kidney Stone Segmentation
Dataset from Kaggle.

The DICOMDIR of the 118 patients was then converted into
images, using software (diVision Lite) to Joint Photographic
Group (JPG), which contained 49,463 images. We isolated
only 13,035 images dedicated to kidneys under the supervision
of a nephrologist and urologist. Of these, there are 1131 CT
scans of kidney stones and 1584 CT scans of kidney disease.
Its data sets are shown in Table 3.

A preprocessing strategy was devised to prepare the dataset
for efficient model training, encompassing numerous essential
phases. Initially, all images were scaled to a standardized
resolution of 512 X 512 pixels to maintain uniformity
throughout the collection. All images were subsequently
converted from 8-bit to 24-bit format to preserve greater
color and detail information. Noise was mitigated by
Gaussian filtering, which smooths images by averaging pixel
values within the near vicinity. Furthermore, brightness was
augmented to improve the visibility of essential features with
linear brightness adjustment. The processed images were
sorted into a separate folder for improved accessibility and
efficient use in later modeling steps.

A specialized open-source Python application was utilized
for annotating medical CT scans. The labeling process
was executed through labellmg.py, a commonly employed
annotation tool incorporated within the Anaconda
environment. CT scans illustrating nephropathy (Fig. 2)
and kidney stones (Fig. 3) were meticulously examined and
documented under the direct supervision of a qualified
nephrologist to guarantee clinical precision. Every image
was carefully annotated, and the labels were stored in
three distinct formats: JavaScript Object Notation (JSON),
TXT, and Extensible Markup Language (XML). For the
purpose of creating precise segmentation masks unique
to each annotated image, the chosen formats were meant
to improve compatibility with later processes. In medical
image analysis, the manual way ensured better annotations,
which are necessary for supervised learning models to
work.

The JSON file serves as the primary reference for producing
the appropriate segmentation mask. Automation of this
procedure was achieved with Python scripts, which guarantee
uniform and accurate extraction of mask regions. Fig. 4
shows an example of this procedure.
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TABLE 1: Summary of published investigation findings comparing model performance across different

approaches
Study Method Objective challenge limitations Result
Fu et al. [27] RDA-UNET model Automatic Selecting the best model for renal Left kidney DSC=96.25
segmentation of cyst segmentation in medical image Precision=96.34
renal cysts CT Recall=96.88
Right kidney = DSC=94.22
Precision=95.34
Recall=94.61
Goyal et al. [28] R-CNN Automatic The automatic segmentation of the Dice=0.890
segmentation of the kidneys in MRI loU=0.816
kidneys
Sharma et al. [29]  InceptionV3 To analyze images For optimal performance in Accuracy=97.76
of renal pathologies, diagnosing kidney disorders, Recall 0f=98.28
including stones, including cysts, tumors, and stones,  F1 score=0.95
tumors, and cysts. by CT imaging.
Goker [30] ResNet101 Classifying kidney Compare transfer learning models Overall accuracy=0.981
stone ilinesses from CT images Recall=0.991
Specificity=0.974
Precision=0.966
F1-measure=0.978
Kappa statistic=0.962
Islam et al. [31] Swin VGG16 Renal cyst, tumor, To achieve the best model in the Swin Accuracy=99.30%
ResNet50 and stone detection. diagnosis of renal diseases, such VGG16 Accuracy=98.20%
Inceptionv3 as cysts and tumors, using CT ResNet50 Accuracy=61.60%

imaging.

Inceptionv3 Accuracy=73.80%

MRI: Magnetic resonance imaging, CT: Computed tomography

TABLE 2: Comprehensive distribution of patients
by renal health status

TABLE 3: The distribution of CT scans by kidney
condition

Patients Healthy Only has Only has Kidney stones
total kidney kidney and kidney

stones disease disease
118 34 29 23 32

From the collected dataset, three distinct datasets wete
ultimately constructed, each consisting of CT scans and their
corresponding segmentation masks. The first dataset included
images and masks for both kidney disease and kidney stones.
The second dataset focused exclusively on kidney stone cases,
while the third contained only instances related to renal illness.
All datasets were randomly split into three subsets: 70% for
training, 20% for validation, and 10% for testing. The entire
process of dataset construction and splitting was automated
using Python to ensure consistency and efficiency. The
datasets are available at this link in Kaggle: https://kaggle.com/
datasets/b65b0abc924a62291£894ac91839¢c6cb52894b40
92767770c5dd34e7eb09d210

Furthermore, the study utilized the publicly accessible
Kidney Stone Segmentation Dataset from Kaggle (https://
www.kaggle.com/datasets/bemorekgg/kidney-stone-
segmentation-dataset) to train and assess the efficacy of the

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

Total CT CTscans CT scans CT scans
CT scans of kidney of kidney contain kidney
scans of the stones disease stones and
kidneys kidney disease
49463 13035 1131 1584 308

CT: Computed tomography

suggested segmentation algorithm. This dataset includes CT
scans of kidney stones together with related segmentation
masks developed by the Segment Anything Model (SAM)
utilizing YOLO bounding box annotations. The CT images
are supplied in Joint Photographic Experts Group (JPEG)
format, while the segmentation masks are presented as binary
Portable Network Graphics (PNG) images. The dataset
consists of 923 image-mask pairings, randomly assigned to
training (70%, 646 images + 218 rotated images), validation
(20%, 184 images), and testing (10%, 93 images). Using the
same model and evaluation subsets, Fig. 5 shows examples
of Cagle images and masks.

3.3. Proposed Methods
DL is achieving success and garnering interest across various
disciplines, including computer vision, speech recognition,
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Fig. 2. Labelling kidney disease.

natural language processing, and gaming. DL techniques
generate a correspondence between raw inputs and target
outputs (e.g., image classifications) [36]. The use of DL-
based medical image analysis in computer-aided detection
(CAD) offers decision support to clinicians, enhancing the
accuracy and efficiency of diagnostic and treatment processes
while stimulating new research and development initiatives
in CAD [37].

3.3.1. U-Net model

U-Net, as shown in Fig. 6, is a CNN architecture designed for
image segmentation tasks, introduced by Olaf Ronneberger,
Philipp Fischer, and Thomas Brox in 2015. The network
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Fig. 3. Labelling a kidney stone.

derives its name from its U-shaped architecture, comprising
a contracting path (encoder) and an expanded path
(decoder) [38].

The U-Net is a CNN designed for biological image
segmentation. The architecture, featuring an encoder—
decoder framework, exhibits remarkable stability and can
achieve accurate segmentation with a reduced number
of training images. The network consists of three 3 X 3
convolutional layers, with a maximum of two 2 X 2 layers
following each pooling layer, utilizing the ReL.U activation
function. A 1 X 1 convolutional layer is appended at
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Original image Labeled image Masked image

a C

Fig. 4. (a) Some original images; (b) labels the images; (c) creates masks from the JSON file; the red color represents
kidney disease, and the blue color represents kidney stones.

Original image =~ Masked image Original image Masked image

Fig. 5. A sample dataset on kidney stones and masks is available on Kaggle.
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Fig. 6. U-Net design (example for 32 x 32 pixels at the lowest resolution) [39].

the conclusion. The U-Net comprises a contracting path and
a symmetric expanding path, which are utilized for accurate
localization and feature extraction. The U-Net design relies
significantly on data augmentation methods. The network is
capable of segmentinga 512 X 512 image on a contemporary
GPU in under one second. The U-Net has been effectively
utilized for medical image segmentation; nevertheless, 3D
convolution is recommended to fully leverage the spatial
information in 3D images, including CT and MRI scans [39].

In the domain of binary classification, the binary cross-
entropy loss function is one of the most widely used metrics
to evaluate the performance of a model. It measures the
dissimilarity between the predicted probabilities and the
actual binary labels (0 or 1), penalizing incorrect predictions
more heavily as they diverge from the ground truth.
Mathematically, the binary cross-entropy loss is defined as:

LOSS:%Z[% log(j/j)+(l—],-)log(1—j/i)] )

where y. represents the actual label and Ji signifies the
expected probability for the 7 7/ sample. This function
guarantees that the loss converges to zero with accurate
forecasts and escalates markedly with inaccuracies. Moreover,
itis essential in gradient-based optimization by offering explicit
and comprehensible feedback throughout model training,
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3.3.2. Comparison of hybrid U-Net methods

Hybrid U-Net methodologies augment the conventional
U-Net design by substituting the encoder with superior DL
models, such as ResNet50 and VGG19. These adjustments
aim to enhance feature extraction and increase the model’s
accuracy, especially in intricate tasks such as medical image
segmentation. By retaining the original U-Net decoder, these
hybrid models sustain spatial detail reconstruction while
leveraging enhanced feature representations. Comparative
assessments generally quantify performance through metrics
such as segmentation pixel-wise accuracy, precision, recall,
Dice coefficient (DC), and Intersection over Union (IoU),
with findings frequently indicating that hybrid models surpass
the original U-Net in both precision and generalization. In
this study, advanced segmentation frameworks were used by
combining VGG19 and ResNet50 with U-Net to accurately
segment kidney stones and related kidney diseases from
medical images. This approach enhances the automated
analysis of kidney conditions, supporting more effective
diagnosis and treatment planning,

3.4. Model Training and Evaluation

To thoroughly assess the efficacy of the hybrid models
utilized on the three specified scenarios, an extensive array of
performance metrics was applied, including accuracy, precision,
recall, F1-score, DC, IoU, specificity, Cohen’s kappa (CK), and
average test time (ATT). The selection of these measures was
guided by their ability to evaluate several dimensions of model

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2
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performance, particularly in medical image segmentation.
Accuracy provides a broad assessment of overall correctness
by juxtaposing the total number of accurate predictions
against all predictions produced; precision denotes the ratio of
accurately predicted positives to the total predicted positives,
hence regulating the false-positive rate, whereas recall measures
the ratio of correctly detected actual positives, emphasizing
the model’s sensitivity. Their harmonic mean, the Fl-score,
offers a balanced metric, especially advantageous in cases
of uneven class distribution. The DC and IoU function as
metrics for spatial ovetlap between predicted and ground truth
segmentation masks, essential for assessing model performance
at the pixel level. Specificity enhances recall by evaluating the
model’s capacity to accurately detect negative instances, hence
minimizing false positives. CK provides a chance-corrected
metric for assessing agreement between forecasts and actual
outcomes, particulatly significant in multi-class tasks. The ATT
serves as a pragmatic metric for the model’s computational
efficiency, underscoring its viability for real-world applications
where processing speed is critical. These measures collectively
establish a comprehensive framework for evaluating the
segmentation accuracy, reliability, and efficiency of hybrid
models in complicated, clinically relevant datasets.

3.5. Ethical Considerations

This research followed ethical guidelines to make sure that
data and technology were used in a responsible way. To protect
patient privacy, all CT scan data were made anonymous. To
avoid bias and overfitting, a diverse dataset was employed.
The Al models were created just for research and are not
meant to be used in clinical settings without more testing;
The whole process was guided by ethical principles to make
sure that it was fair, safe, and respectful of human dignity.

4. RESULTS AND DISCUSSION

This section delineates the experimental setup, preprocessing
section, training procedure, and assessment of the suggested
DL models. The emphasis is on evaluating several hybrid
U-Net topologies to determine the most efficient model for
the particular segmentation problem. Various models, U-Net
with ResNet50 and VGG19, were trained and evaluated
utilizing the prepared datasets. According to the evaluation
standards described in Section 3.4, the models were assessed
using various performance metrics.

4.1. Experimental Setup Recap
This study evaluated the performance of DL models for
kidney CT scan segmentation using U-Net + ResNet50 and
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U-Net + VGG19 architectures. Experiments were conducted
in a consistent environment with an NVIDIA GTX 1080 Ti
GPU, an Intel Core i7 CPU, and 16 GB RAM, using Python
3, TensorFlow 2.x, Keras, and OpenCV on Windows 10
through Anaconda and Jupyter Notebook.

4.2. Model Performance Evaluation

The models were assessed utilizing various performance
indicators. All models were trained and validated under
uniform experimental settings to guarantee an equitable
comparison. The experiments were conducted using different
image resolutions (128 X 128 and 256 X 250), batch sizes
(8 and 24), and epoch settings (100, 150, and 200) with a
learning rate of 0.0001 and the Adam optimizer, and a 5-fold
cross-validation (CV) strategy.

This section presents a quantitative assessment of each DL
model employed for segmenting CT scans associated with
kidney stones and renal illnesses. The models were assessed
and trained over three distinct scenarios within the dataset
to gauge their segmentation efficacy. The scenarios were as
follows: In the first scenario, the data set consisted of CT
scans with their respective segment masks for kidney disease
with kidney stones. The dataset was split into 70% for training
(1675 scans), 20% for validation (479 scans), and 10% for
testing (240 scans). In the second scenario, the dataset
consisted exclusively of renal stone-related CT scans and
masks. We used data augmentation to enhance the training
set. The training set consisted of 1582 CT scans (70%), the
validation set included 226 scans (20%), and the test set
included 114 scans (10%). The third scenario focused the
dataset exclusively on CT scans and masks associated with
renal disease. The data set consisted of 1108 scans from the
training set (70%), 317 from the validation set (20%), and 159
from the test set (10%). Table 4 provides a summary of all
three scenarios along with their corresponding distributions.
Samples were randomly assigned to each category to
guarantee unbiased assessment.

The study thoroughly assessed two hybrid models, U-Net
+ ResNet50 and U-Net + VGG19, for the multiclass
segmentation of renal disease and kidney stones, utilizing CT
scans. To ensure equitable comparisons and minimize residual
learning effects, each model was trained from inception using
varying image resolutions (256 X 256 and 128 X 128), batch
sizes (8 and 24), and training epochs (100, 150, and 200), as
shown in Table 5. The U-Net + ResNet50 used deep feature
extraction to make boundaries more accurate, whereas the
U-Net + VGG19 used its deep hierarchical structure to
keep spatial features. There were three tests for each model:
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TABLE 4: Splitting of the training, validation, and testing in three diagnostic scenarios

n Data sets Train (70%) Validation (20%) Test (10%) Total of images
1  CT scans and masks related to kidney disease and kidney stones. 1675 479 240 2394

2  Only CT scans and kidney stone-related masks. 791x%2 rotation 226 114 1922

3 Only CT scans and masks for kidney disease. 1108 317 159 1584

ATk

CT: Computed tomography

TABLE 5: Experimental configuration parameters
for U-Net-based model architectures

Models Image size Batch size Epochs
U-Net+ResNet50 » 256x256 -8 + 100
* 128x128 * 24 * 150
+ 200
U-Net+VGG19 * 256x256 +8 + 100
* 128x128 *24 + 150
* 200

the first scenario was segmentation of kidney disease and
kidney stones, the second scenario was only kidney stone
segmentation, and the third scenario was only kidney disease
segmentation. Figs. 7 and 8 show the input images, ground
truth masks, and anticipated outputs for all configurations.
This methodical approach yielded significant insights into
the advantages and drawbacks of each hybrid architecture
across various training scenarios.

Figs. 7 and 8 display segmentation outcomes produced by
two models: U-Net combined with ResNet50 and U-Net
combined with VGG19. Each image comprises the actual
CT scans, ground truth masks, and anticipated segmentation
masks. Subfigures (a-c) present findings for a picture
dimension of 256 X 256 with a batch size of 8 at 100,
150, and 200 epochs, respectively. Subfigures (d-f) present
findings for an image dimension of 128 X 128 with a batch
size of 8, whereas subfigures (g-i) depict outcomes for the
identical image dimension with a batch size of 24. These
visualizations illustrate the models’ efficacy across various
training configurations and segmentation contexts.

4.3. Discussion

The evaluation criteria were used across two different U-Net-
based models, hybrid models comprising U-Net with each
model, ResNet50 and VGG19, for three separate scenarios.
This multi-scenario methodology provides a detailed
examination of how model performance fluctuates based
on task complexity and data characteristics.

4.3.1. Hybrid U-Net + ResNet50
The U-Net+ResNet50 model was evaluated across multiple
configurations of batch size, image dimensions, and training
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epochs. Initial testing with 256 X 256 images and batch size
8 showed optimal performance at 150 epochs (accuracy:
0.9992, precision: 0.8514, recall: 0.786, F1-score: 0.8174),
with performance declining at 200 epochs due to overfitting,
Reducing image size to 128 X 128 maintained robust
segmentation performance while significantly decreasing
inference time from 0.0275s to 0.0149s. The best overall
results were achieved using 128 X 128 images, a batch size
of 24, and 200 epochs, yielding an F1-score of 0.8238 and
an IoU of 0.7000 with an inference time of 0.0157s. This
setup achieved an optimal balance between segmentation
accuracy and computational efficiency, demonstrating that the
model works well with less computing power by optimizing
parameters in Scenario 1.

In the second scenario, the hybrid U-Net + ResNet50 model
was evaluated exclusively on CT kidney stone images with
consistent accuracy (0.9998) and specificity (0.9999) across all
configurations. The model was tested across three parameter
combinations: 256 X 256 image resolution with a batch size
of 8,128 X 128 resolution with a batch size of 8, and 128 X
128 resolution with a batch size of 24, each trained for 100,
150, and 200 epochs. Optimal performance was achieved
using 256 X 256 images, a batch size of 8, and 200 epochs,
yielding a precision of 0.879, a recall of 0.8521, an F1-
score/DC of 0.8653,an IoU of 0.7626, CK of 0.8652, and an
average training time of 0.0259 s. Reducing image dimensions
to 128 X 128 generally decreased performance metrics, while
increasing batch size from 8 to 24 showed mixed results with
slightly improved precision but reduced recall.

For the third scenario, focusing on renal disease segmentation
using the hybrid U-Net + ResNet50 model, experiments were
conducted with varying training epochs (100, 150, 200) and
image resolutions (256 X 256 and 128 X 128) at different
batch sizes. At 256 X 256 resolution with a batch size of
8, optimal performance was achieved after 100 epochs,
yielding an accuracy of 0.9987, a precision of 0.8142, a recall
of 0.7951, an Fl-score of 0.8046, and an IoU of 0.673.
Extended training to 150 and 200 epochs showed gradual
performance degradation across most metrics. When image
resolution was reduced to 128 X 128, similar patterns emerged
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Fig. 7. lllustrates segmentation results for three scenarios: (top) renal disease with a kidney stone, (middle) a kidney stone only, and (bottom)
renal disease only. Each set displays the CT test image, the ground truth mask, and the predicted masks ((a)—(i)) generated by the proposed
U-Net + ResNet50 model.
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with peak performance at 100 epochs, albeit overall metrics
were slightly lower. Increasing the batch size from 8 to 24
while maintaining a 128 X 128 resolution produced marginal
improvements but failed to surpass the original configuration.
The analysis demonstrated that optimal segmentation quality

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

was achieved using the hybrid model trained at 256 X 256
resolution for 100 epochs with a batch size of 8.

Fig. 9 presents the optimal performance of assessment
metrics attained by the hybrid U-Net+ResNet50 model for
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Fig. 8. lllustrates segmentation results for three scenarios: (Top) renal disease with a kidney stone, (middle) a kidney stone only, and
(bottom) renal disease only. Each set displays the CT test image, the ground truth mask, and the predicted masks (a-i) generated by the
proposed U-Net + VGG19 model.

segmenting renal disease and kidney stones across all three
experimental scenarios, depicted in chart form. This graphic
depiction highlights the model’s efficacy across several
parameters, including batch size, image size, and training
epochs.
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Fig. 10 illustrates the CM for the three U-Net + ResNet50
combinations across various circumstances. Scenario 2
(utilizing a 256 X 256 input size) exhibits the most equitable
performance, recording the fewest false positives (655)
and false negatives (826), underscoring its proficient
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Fig. 9. Presents the highest evaluation criteria for the hybrid U-Net+ResNet50 model in all three scenarios.
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Fig. 10. Depicts the confusion matrices for the three distinct U-Net+ResNet50 model configurations employed in each scenario.

differentiation between background and foreground
classes. Scenario 1 demonstrates robust segmentation
performance but exhibits a marginally elevated incidence
of misclassifications, suggesting potential enhancements in
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precision. Conversely, Scenario 3 shows the highest incidence
of false positives (6,230), suggesting a propensity for over-
segmentation, although it yields a substantial number of
real positives. These findings underscore the enhanced
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reliability of Scenario 2 in producing accurate and consistent
segmentation results.

4.3.2. Hybrid U-Net + VGG19

In Scenario 1, the hybrid U-Net+VGG19 architecture
was systematically evaluated by varying batch size, image
resolution, and training epochs to assess their impact on
kidney disease and kidney stone segmentation. The model
demonstrated robust performance across all configurations,
with optimal results achieved using 256 X 256 image
resolution, a batch size of 8, and 200 training epochs. Under
these conditions, the model achieved an accuracy of 0.9992,
an Fl-score of 0.8193, an IoU of 0.6939, and a CK of 0.8189,
while maintaining computational efficiency with an average
training time of 0.0310 seconds. Alternative configurations
with reduced image resolution (128 X 128) and increased
batch size (24) demonstrated comparable performance,
with F1-scores ranging from 0.8066 to 0.8189, indicating the
model’s stability across different parameter combinations.
These findings confirm the robustness and effectiveness
of the U-Net+VGG19 hybrid model for kidney pathology
segmentation.

In Scenario 2, the U-Net+VGG19 hybrid model was trained
from scratch on kidney stone CT scans using vatrious
configurations of image dimensions, batch sizes, and
training epochs to systematically evaluate the impact of each
parameter on model performance. The optimal configuration,
achieved with a 256 X 256 image size, batch size of 8, and 150
epochs, delivered the best balance of segmentation accuracy
(F1-score = 0.8663), robustness (CK = 0.8662), and spatial
overlap (IoU = 0.7641). While reducing image size to 128 X
128 improved processing time (~0.0123 s), it compromised
segmentation quality with lower Fl-scores peaking at 0.8439.
Increasing the batch size to 24 showed minimal performance
variations, and extending training beyond 150 epochs led to
overfitting, with decreased recall and Fl-scores, indicating
that the 150-epoch threshold represents the optimal training
duration for this model configuration.

In Scenario 3, the hybrid U-Net + VGG19 model was trained
exclusively on CT scans of diseased kidneys to evaluate
segmentation performance with reduced class diversity. The
model demonstrated sensitivity to hyperparameters, achieving
optimal results with a batch size of 8, image dimensions of
256 % 256, and 150 training epochs, yielding a consistent
accuracy of 0.9987, an Fl-score of 0.8032, and an IoU of
0.6712. Reducing the image size to 128 X 128 improved
computational efficiency (ATT ~0.0120 seconds), but slightly
compromised segmentation metrics. In contrast, increasing
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the batch size to 24 maintained accuracy but reduced the
F1-score. Training beyond 150 epochs showed diminishing
returns with potential overfitting, indicating that the optimal
configuration balances spatial accuracy, overlap consistency,
and computational cost. The results confirm the model’s
robust generalization capabilities in simplified classification
contexts.

Fig. 11 illustrates a comparative chart that emphasizes the
superior performance of the hybrid U-Net + VGG19 model
in segmenting kidney stones and renal illnesses across the
three experimental scenarios. This visual summary illustrates
how critical parameters, such as batch size, image resolution,
and training epochs, affect the model’s efficacy, providing a
concise understanding of its segmentation abilities across
various configurations.

Fig. 12 shows the confusion matrices for the U-Net+VGG19
model across the three scenarios, providing an extensive
overview of its segmentation efficacy in various medical
imaging contexts. In Scenario 2 (stone alone), the model
has good precision and recall, evidenced by the low counts
of false positives (691) and false negatives (789), indicating
a robust capacity to identify different stone features.
Scenario 1 (stone + disease) and Scenario 3 (disease only)
have consistently elevated accurate negative rates, indicating
dependable background classification. Both situations
indicate an increase in false negatives (6,674 and 6,643,
respectively), suggesting a minor reduction in sensitivity when
illness characteristics are evident, particularly in more intricate
or nuanced pathological areas. The model demonstrates
strong performance, highlighting the versatility and reliability
of the U-Net + VGG19 architecture in addressing various
image segmentation difficulties in the biomedical field.

Table 6 reveals distinct performance patterns across the
hybrid architectures and segmentation scenarios. Both
models achieve their highest Fl-scores (0.8653 and 0.8663)
in stone-only segmentation, indicating that isolated kidney
stone identification represents the least complex task among
the three scenarios. The U-Net+VGG19 model demonstrates
superior consistency, maintaining Fl-scores above 0.80 across
all scenarios, while U-Net+ResNet50 shows more variable
performance with a notable drop to 0.8046 in disease-only
segmentation. Configuration analysis reveals that optimal
performance typically requires higher resolution (256 X
256) images, contradicting the common assumption that
computational efficiency necessarily improves outcomes.
The processing time differences are substantial, with
U-Net+ResNet50 achieving nearly twice the speed in the
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Fig. 12. Depicts the confusion matrices for the three distinct U-Net + VGG19 model configurations employed in each scenario.

TABLE 6: Optimal performance summary by model and scenario

Model Scenario Batch size Image size Epochs Accuracy Precision Recall F1-score loU ATT (s)
U-Net+ResNet50 Disease+Stone 24 128%x128 200 0.9992 0.8301 0.8176  0.8238  0.7004 0.0157
U-Net+ResNet50 Stone Only 8 256%256 200 0.9998 0.879 0.8521 0.8653  0.7626  0.0259
U-Net+ResNet50 Disease Only 8 256%256 100 0.9987 0.8142 0.7951 0.8046 0.673  0.0302
U-Net+VGG19 Disease+Stone 8 256%256 200 0.9992 0.8291 0.8097  0.8193  0.6939  0.031

U-Net+VGG19 Stone Only 8 256%256 150 0.9998 0.874 0.8587  0.8663  0.7641 0.0343
U-Net+VGG19 Disease Only 8 256%256 150 0.9987 0.8 0.8065  0.8032 0.6712  0.0296
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disease+stone scenario (0.0157s vs. 0.0310s), suggesting
that ResNet50’s residual connections provide computational
advantages beyond accuracy improvements. The loU values
consistently lag behind F1-scores by approximately 0.10-0.15
points, indicating that while both models achieve good pixel-
wise classification, precise boundary delineation remains
challenging in kidney pathology segmentation.

Table 7 exposes the architectural trade-offs between
the two hybrid models and their clinical implications.
U-Net+VGG19 emerges as the superior choice for stone
segmentation, achieving the highest Fl-score and IoU
values, which translates to more accurate stone boundary
detection crucial for treatment planning and surgical
guidance. However, U-Net+ResNet50 demonstrates faster
processing across most scenarios, with its computational
efficiency being particularly pronounced in complex multi-
class segmentation tasks. The consistent performance mettic
reveals U-Net+VGG19’s architectural stability, maintaining
more uniform results across diverse pathological conditions,
while U-Net+ResNet50 shows task-specific optimization
that favors certain scenarios over others. From a clinical
deployment perspective, the processing time differences,
though measured in milliseconds, could compound
significantly in high-throughput environments where
thousands of scans require analysis daily. The performance
gap between stone and disease segmentation across both
models (F1-score difference of ~0.06) suggests that kidney
stone identification benefits from clearer radiological contrast
compared to the more subtle tissue changes associated
with kidney disease, highlighting the inherent complexity
differences in pathological feature recognition.

Fig. 13 presents a comprehensive comparison of F1-
score versus inference time, clearly demonstrating the
performance-efficiency trade-offs between models. The
chart reveals that U-Net+ResNet50 (blue) consistently
achieves faster inference times across all scenarios, while
U-Net+VGG19 (red) provides marginally higher F1-scores

TABLE 7: Comparative performance analysis

in certain configurations. Both models peak in Scenario 2
(kidney stones only), with minimal performance differences
but significant efficiency variations, enabling clinicians to
select the optimal model based on specific operational
requirements.

The performance disparities between U-Net+ResNet50 and
U-Net+VGG19 stem from their architectural attributes.
ResNet50%s residual connections enhance feature extraction
for high-contrast structures like kidney stones, whereas
VGG19’s hierarchical depth more effectively maintains fine
spatial details, resulting in marginally superior outcomes in
complex pathological segmentation. In practical applications,
U-Net+ResNet50 is advantageous for rapid and reliable stone
identification, while U-Net+VGG19 delivers more uniform
performance across various renal states, offering doctors
adaptability in model selection based on the diagnostic
context.

Table 8 provides a comparative examination of two hybrid
models, U-Net integrated with ResNet50 and U-Net
integrated with VGG19, across several scenarios. Scenatio
2 of both models, utilizing a batch size of 8, an image
dimension of 256 X 256, and a substantial epoch count,
attained the highest overall performance. Significantly, the
U-Net + VGG19 model in Scenario 2 marginally surpassed
its equivalent, attaining an F1-score of 0.8663 and an IoU of
0.7641. The results demonstrate that the U-Net combined
with VGG19 is a competitive alternative to ResNet50
regarding segmentation accuracy and efficiency.

Furthermore, the comparative assessment of the proposed
hybrid designs reveals significant differences that elucidate
their relative performance in the experimental circumstances.
The U-Net+ResNet50 model attained optimal performance
in stone-only segmentation, attributable to the residual
connections that improve gradient propagation and facilitate
more efficient extraction of distinguishing characteristics
from high-contrast areas. Conversely, the U-Net+VGG19

Performance aspect Best Model F1-Score loU Processing Time (s) Interpretation

Overall Performance U-Net+VGG19 (Stone) 0.8663 0.7641 0.0343 Highest segmentation accuracy

Stone Segmentation U-Net+VGG19 0.8663 0.7641 0.0343 Superior stone boundary detection

Disease Segmentation U-Net+ResNet50 0.8046 0.673 0.0302 Better disease feature extraction

Computational Efficiency ~ U-Net+ResNet50 0.8238 0.7004 0.0157 Fastest processing time
(Disease+Stone)

Consistent Performance  U-Net+VGG19 0.8296*  0.7097* 0.0316* Most stable across scenarios

*Average across all three scenarios
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TABLE 8: A comparative analysis of the employed models across three scenarios, U-Net in conjunction

with ResNet-50 and VGG-19

M S B-S 1S Epo Acc Pre Rec F1-S DC loU Spe CK ATT

U-Net 1 24 128x128 200 0.9992 0.8301 0.8176  0.8238 0.8238 0.7004 0.9996 0.8234  0.0157 s
and 2 8 256%x256 200 0.9998 0.879  0.8521 0.8653 0.8653 0.7626 0.9999 0.8652  0.0259s
ResNet50 3 8 256x256 100 0.9987 0.8142 0.7951 0.8046 0.8046 0.673 0.9994 0.8039  0.0302s
U-Net 1 8 256x256 200 0.9992 0.8291 0.8097  0.8193 0.8193 0.6939 0.9996 0.8189 0.031s
and 2 8 256%x256 150 0.9998 0.874 0.8587  0.8663 0.8663 0.7641 0.9999 0.8662  0.0343 s
VGG19 3 8 256%x256 150  0.9987 0.8 0.8065  0.8032 0.8032 0.6712 0.9993 0.8026  0.0296 s

M: Model, S: Scenario, B-S: Batch-size, IS: Image Size, Epo: Epochs, Acc: Accuracy, Pre: Precision, Rec: Recall, F1-S: F1-Score, DC: Dice coefficient, Spe: Specificity, CK: Cohen'’s kappa,

ATT: Average time test

model demonstrated unwavering stability throughout all
three scenarios, a consequence presumably attributable
to its hierarchical feature representation, which maintains
intricate spatial information essential for precisely defining
complicated renal diseases. The architectural differences
explain the observed performance variances and have
practical consequences for clinical practice. Enhanced
segmentation of kidney stones and renal diseases might
augment diagnostic reliability, enable precise quantification
for treatment planning, and alleviate the manual workload
on radiologists, hence promoting expedited and consistent
clinical decision-making.

In addition, to evaluate the generalizability of the models
to novel data, we re-examined the models, which excelled
on the benchmark dataset, using the Kaggle dataset. The
results showed that both hybrid models exhibited excellent
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performance, demonstrating their robustness across various
datasets. The U-Net + VGG19 hybrid model, trained with
a batch size of 8, an image size of 256 X 2506, and for 150
epochs, attained an accuracy of 0.9997, a precision of
0.8495, a recall of 0.8502, an Fl-score and DC of 0.8498,
an IoU of 0.7389, a specificity of 0.9998, a CK of 0.8497,
and an ATT of 0.0443 s. In the same way, the U-Net +
ResNet50 hybrid model, employing the identical training
configuration, achieved an accuracy of 0.9996, precision of
0.8499, recall of 0.8067, Fl-score and DC of 0.8277, IoU
of 0.7061, specificity of 0.9998, CK of 0.8276, and ATT
of 0.0257 seconds. These results validate the efficacy and
robustness of both models across various datasets.

Currently, the suggested hybrid U-Net models can be included

in hospital (PACS) Picture Archiving and Communication
Systems to autonomously segment kidney stones and
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renal diseases from CT data. These outputs function as
decision-support instruments, assisting radiologists in
swiftly and reliably validating findings, while also supplying
urologists with quantitative data for treatment formulation.
Consequently, the models alleviate workload, enhance
diagnostic reliability, and facilitate coordinated decision-
making in authentic clinical workflows.

Several limitations should be acknowledged in this study.
The relatively small dataset of 118 patients from a single
institution, while supplemented with public data, may
limit the generalizability of our findings across diverse
populations, imaging protocols, and clinical settings.
The lack of multimodal validation using other imaging
modalities, such as MRI or US, restricts our ability to assess
model performance across different diagnostic approaches
commonly used in clinical practice. Furthermore, while
our models demonstrate computational efficiency with
processing times under 0.05 s per scan, the deployment
of these DL architectures may pose significant challenges
in resource-limited hospital environments where access
to high-performance GPUs and adequate computational
infrastructure is constrained. The memory requirements
and initial setup costs for implementing such systems could
create barriers for widespread clinical adoption, particularly
in developing countries or smaller healthcare facilities. In
addition, the requirement for specialized technical expertise
to maintain and troubleshoot these Al systems may further
limit their practical implementation in settings with limited
IT support resources.

5. CONCLUSION

This research advances the field of automated medical image
analysis by demonstrating that hybrid U-Net architectures can
bridge the critical gap between segmentation accuracy and
computational efficiency in kidney pathology detection. Our
primary contribution lies in establishing a practical framework
where established encoder architectures (ResNet50, VGG19)
can be strategically integrated with U-Net decoders to
achieve clinically viable performance without the prohibitive
computational demands of transformer-based approaches.
However, significant gaps remain in translating these
technical achievements to diverse clinical environments,
particularly regarding model robustness across different
imaging protocols, patient demographics, and healthcare
systems with varying computational resources. The
geographical and institutional limitations of our validation
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highlight the urgent need for federated learning approaches
that can leverage multi-institutional datasets while preserving
patient privacy. Future research should prioritize three critical
directions: developing domain adaptation techniques to
ensure model generalizability across different CT scanner
types and imaging protocols, integrating explainable
Al methodologies to build clinician trust and facilitate
clinical adoption, and establishing standardized evaluation
frameworks that can assess not only technical performance
but also clinical utility in real-wotld healthcare workflows. The
ultimate success of automated kidney pathology detection
will depend on creating systems that complement rather
than replace radiological expertise, requiring interdisciplinary
collaboration between computer scientists, radiologists, and
healthcare administrators to address both technical and
implementation challenges.
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