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1. INTRODUCTION

Distributed denial of  service (DDoS) attacks have evolved 
into a critical threat to the stability and security of  modern 
network infrastructures [1], [2]. These attacks aim to render 
services unavailable to legitimate users by overwhelming 

network resources with malicious traffic. The impact 
of  DDoS attacks extends beyond service disruption, 
causing significant financial losses, reputational damage, 
and disruptions across various sectors, including finance, 
healthcare, and cloud computing. Consequently, network 
administrators face increasing challenges in mitigating the 
sophistication and multi-layered nature of  these attacks. 
Software Defined Networking (SDN) has revolutionized 
network management by decoupling the control plane from 
the data plane, enabling centralized control, programmability, 
and dynamic resource allocation [3], [4]. This architectural 
shift offers significant benefits, such as enhanced scalability, 
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adaptability, and operational efficiency, making SDN 
well-suited for complex network environments such as 
data centers and enterprise systems [3], [4]. However, the 
inherent centralization of  SDN introduces critical security 
vulnerabilities. Specifically, the SDN controller acts as a 
single point of  failure, the network’s central control point. 
DDoS attacks targeting the controller can easily exhaust its 
resources, leading to network-wide outages. Fig. 1 illustrates 
the DoS attack on various planes of  a SDN network. This 
vulnerability underscores the urgent need for effective DDoS 
attack detection and mitigation mechanisms within SDN 
environments [5], [6].

Traditional security controls, such as firewalls, signature-based 
intrusion detection systems, and rate-limiting techniques, 
often demonstrate limited effectiveness against contemporary 
DDoS attacks. These methods frequently fail to detect attacks 
that exploit protocol vulnerabilities or mimic legitimate 
traffic patterns. Furthermore, reactive security measures 
are typically implemented after significant damage has 
already occurred. In high-availability environments, where 
minimal downtime is crucial, such reactive approaches are 
inadequate [7], [8].

ML has emerged as a transformative approach to DDoS 
attack detection and prediction. Unlike traditional security 
solutions, ML algorithms analyze extensive network traffic 
data to identify patterns and anomalies that indicate 
malicious activity, including 0-day exploits and adaptive attack 

strategies [9]. Advanced techniques, such as deep learning and 
ensemble models, can detect subtle deviations from normal 
network behavior by analyzing complex features such as 
packet inter-arrival times and flow duration [10]. Furthermore, 
the predictive capabilities of  ML enable proactive mitigation, 
allowing network administrators to neutralize threats before 
they escalate into full-scale attacks [6], [11].

Integrating ML-based detection mechanisms within SDN 
environments facilitates dynamic network responses to 
evolving attack patterns [12]. The centralized control of  SDN 
allows ML models to provide real-time insights, enabling 
automated decisions that enhance network resilience and 
security [13], [14].

This study aims to address the aforementioned challenges by 
proposing a robust framework for DDoS attack detection 
and prediction specifically designed for SDN environments. 
The study’s objectives are threefold:
1.	 Creation of  a Comprehensive Statistical Dataset: To 

develop and publicly share a realistic dataset comprising 
both normal and attack traffic patterns relevant to SDN 
environments, thereby facilitating further research in this 
area.

2.	 Evaluation of  ML Models: To implement and evaluate 
advanced ML techniques, including deep learning 
architectures and ensemble methods, to assess their 
effectiveness in real-time DDoS attack detection and 
prediction

Fig. 1. Illustration of a denial of service attack targeting components of the Software Defined Networking architecture, 
including the centralized controller and data plane.
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3.	 Comparative Analysis of  Performance: To analyze the 
performance of  selected ML models using key metrics 
such as accuracy, precision, computational efficiency, and 
scalability.

The main contributions of  this study are:
•	 Realistic Dataset Creation: A publicly available dataset 

specifically designed for SDN environments, addressing 
the existing gap in realistic and diverse traffic patterns.

•	 Insights into ML Techniques: A comprehensive analysis 
of  advanced ML methods, providing actionable insights 
into their respective strengths and weaknesses for DDoS 
attack detection.

•	 Enhanced Defense Framework: A practical, scalable, and 
adaptive solution for real-time DDoS attack mitigation, 
enhancing the resilience and reliability of  SDN networks.

The rest of  the paper is organized as follows: Section 
2 reviews the related work with respect to the current 
techniques of  DDoS detection and mitigation concerning 
the SDN environments and the respective limitations of  
those techniques. Section 3 describes in detail the proposed 
framework that also covers the creation of  a dataset, 
ML methodologies, and how these techniques will be 
integrated into the SDN architecture. Section 5 discusses the 
experimental results, including the performance evaluation 
of  different models and their comparison. Moreover, the 
discussion of  the results, implications, and limitations is 
also discussed in this section. Finally, Section 6 concludes 
the paper.

2. RELATED WORKS

Numerous studies have explored the detection and mitigation 
of  DDoS attacks in SDN environments using ML, deep 
learning, or hybrid techniques [15]–[18]. Although these 
methods demonstrate potential, they still exhibit certain 
limitations that necessitate further investigation.

Garba et al. [13] developed a framework that integrated ML-
based detection into signature-based intrusion detection 
systems, achieving 99% classification accuracy with Decision 
Tree algorithms. However, their approach heavily relies on 
predefined attack signatures and supervised learning models, 
which significantly limits its adaptability to novel attack 
patterns not present in the training data.

Anley et al. [2] proposed an adaptive transfer learning-based 
CNN approach that improved detection accuracy across 

datasets. Nevertheless, this method incurs high computational 
overhead and requires extensive hyperparameter optimization, 
rendering it less suitable for real-time applications, particularly 
in resource-constrained environments.

Swami et al. [14] introduced an interquartile range threshold-
based statistical approach for detecting spoofed flooding 
DDoS attacks. Although this method demonstrated 
reduced detection times, it struggles to accurately identify 
sophisticated attacks that closely resemble legitimate traffic 
patterns in dynamic scenarios, leading to a higher rate of  false 
positives (FP). The reliance on static thresholds also limits the 
method’s adaptability across diverse network environments. 
Al-Fayoumi and Abu Al-Haija [1] presented a lightweight 
detection model for MQTT-based low-rate DDoS attacks, 
achieving high accuracy. However, this model’s narrow focus 
on specific attack types restricts its scalability and applicability 
to other DDoS categories.

Deep learning-based techniques are increasingly being 
utilized for DDoS detection in SDN environments. Clinton 
et al. [10] transformed network traffic into image data and 
achieved over 99% classification accuracy using image 
classification methods. However, this approach introduces 
significant computational complexity. The conversion of  
raw traffic to image formats increases processing time and is 
resource-intensive, making it unsuitable for high-throughput 
networks.

Songa and Karri [19] proposed a unified SDN framework 
employing feature elimination, clustering, and timeseries 
analysis, achieving 99.92% detection accuracy. Nevertheless, 
their work heavily relies on the CICDDoS2019 dataset, 
raising concerns about its generalization capability for 
practical implementation in diverse traffic scenarios.

Hybrid models that integrate multiple ML/DL techniques 
show considerable promise. For example, Mhamdi 
and Isa [6] explored a hybrid approach using a Deep 
Autoencoder in conjunction with a Random Forest 
classifier, achieving an anomaly detection rate exceeding 
98%. However, the reliance on a centralized detection 
mechanism renders the system susceptible to controller-
specific DDoS attacks, highlighting a critical vulnerability in 
SDN environments where the controller is a primary target. 
Furthermore, the substantial computational demands of  
hybrid approaches raise concerns about their scalability 
and feasibility for implementation in large, resource-
constrained networks.
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While ML-based approaches offer significant promise for 
DDoS attack detection, several challenges hinder their 
effective implementation within SDN environments. These 
challenges include high FP rates in anomaly detection, 
limited scalability of  centralized detection, susceptibility of  
the SDN controller to targeted floods, and the inability of  
static models to adapt to evolving attack patterns in real-
time. A key limitation is the scarcity of  comprehensive and 
up-to-date datasets that accurately represent the unique 
characteristics of  SDN traffic and modern DDoS attack 
strategies [10], [13]. Existing datasets often lack completeness 
or fail to encompass the wide range of  attack scenarios, 
which limits the generalization capability of  ML models. 
Furthermore, many studies do not evaluate advanced ML 
techniques in real time, dynamic SDN environments, resulting 
in substantial gaps in practical applicability [7], [20].

To address these limitations, our research focuses on the 
real-time deployment of  trained ML models within an 
SDN architecture. In contrast to previous work, this study 
emphasizes scalable and adaptive detection mechanisms that 
operate efficiently in dynamic and heterogeneous network 
environments. The contributions presented in the following 
sections aim to mitigate the limitations of  dataset dependency, 
centralized detection, and resource-intensive approaches 
without compromising detection accuracy and efficiency.

3. METHODOLOGY

This section details the design and implementation of  our 
proposed framework for the detection of  DDoS attacks 
within an SDN environment. The framework comprises an 
SDN controller, a comprehensive dataset encompassing both 
normal and malicious network traffic, a carefully selected set 
of  statistical features to characterize traffic behavior, and 
various ensemble ML modules that utilize these features for 
real-time traffic classification. The subsequent subsections 
will explain the specifics of  the SDN environment setup, 
the two-stage dataset creation methodology, the feature 
extraction process, and the integration of  the ML-based 
classification engine with the SDN controller.

The key stages of  the methodology are visually represented in 
the diagram depicted in Fig. 2, which highlights the sequential 
flow from the SDN environment setup to the immediate 
network-wide blocking of  malicious traffic.
a.	 SDN setup: Depicts the “Ryu” controller, OpenFlow 

switch, and host configuration, including a dedicated 
web server.

b.	 Two-phase dataset creation: Demonstrates the sequential 
generation of  normal traffic and subsequent injection of  
malicious traffic, with packet captures labeled to create 
a comprehensive dataset.

c.	 Feature extraction and preprocessing: Details the 
computation of  sixteen key features, followed by data 
cleaning and scaling procedures.

d.	 Model selection and training: Describes hyperparameter 
tuning, cross-validation techniques, and the selection of  
the optimal ML model from multiple candidates.

e.	 Deployment in SDN: Explains the distributed 
deployment of  local ML classifiers on each server, 
the certificate authority (CA)-based encryption of  IP 
lists, and their transmission to the controller for rule 
enforcement.

f.	 Immediate blocking: Illustrates the controller’s rapid 
deployment of  drop rules to the OpenFlow switch to 
mitigate attacks network-wide.

3.1. The Proposed Framework
The proposed framework leverages the centralized control 
plane paradigm inherent in SDN. The “Ryu” controller 
is employed in this study because of  its Python-based 
modularity, adaptability for custom application development, 
and interoperability with various OpenFlow-enabled switches. 
The experimental network topology comprises multiple 
virtual hosts, a single OpenFlow-compliant switch, and the 
“Ryu” controller, which manages all flow rules. Specifically, 
one host functions as a web server hosting a basic HTTP 
application, while the remaining hosts generate both normal 

Fig. 2. Overview of the proposed methodology for distributed denial of 
service detection in Software Defined Networking, including dataset 

generation and model integration.
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and malicious traffic. OpenFlow facilitates communication 
between the switch and the hosts. The switch transmits flow-
level statistics to the “Ryu” controller, which, in turn, dictates 
forwarding policies, installs flow rules, and implements traffic 
shaping or blocking. This centralized control plane empowers 
network administrators to enforce granular security policies 
and perform real-time anomaly detection. Furthermore, the 
host with interface “h2-eth0” is designated as a monitoring 
point to observe traffic, analyze packets, and relay aggregated 
statistics to the classification module. This design aims to 
provide the “Ryu” controller with comprehensive network 
awareness, enabling it to apply immediate countermeasures 
upon detecting malicious traffic sources.

To accurately characterize the behavior of  both normal and 
attack traffic, the system extracts 15 statistical features from 
observed flows. Following each capture period, the packet 
capture script gathers and normalizes a range of  metrics 
for each active source IP (excluding the web server). These 
metrics are then transformed into a set of  features that serve 
as the basis for traffic classification. Each feature is designed 
to act as a potential indicator for distinguishing between 
normal and malicious DDoS traffic.

The 15 attributes constitute a comprehensive set of  measures 
intended to quantify both high-level and fine-grained 
characteristics of  network traffic. Specifically, rate-based 
attributes (e.g., Request Rate, Packet Arrival Rate) are used 
to identify volumetric traffic surges, while connection-
oriented metrics (e.g., TCP SYN Count, Failed Connection 
Attempts) are used to detect manipulations of  the TCP 
handshake process commonly exploited in DDoS attacks. 
Furthermore, distribution-based attributes (e.g., Unique IP 
Count, Port Usage Distribution) provide insights into the 
scope of  malicious host scanning activities. Each attribute’s 
mathematical derivation, practical significance, and specific 
utility in DDoS detection and mitigation are detailed in the 
subsequent subsections.

1.	 Request rate: The Request Rate measures the number 
of  application-level requests (e.g., HTTP, FTP, or other 
protocol-specific requests) made by a source IP per unit 
time. Formally,

  req
req

elapsed

N
R

T
= � (1)

Where Nreq is the total number of  requests observed during 
the capture interval and Telapsed is the duration of  the 
interval (in seconds). High request rates are generally a sign of  

application-layer DDoS (e.g., HTTP floods). By monitoring 
(Rreq), it is straightforward to detect hosts generating more 
requests than normal.

2.	 Packet arrival rate: The packet arrival rate (Rpkt) quantifies 
how frequently a host transmits packets in seconds:

  pkt
pkt

elapsed

N
R

T
= � (2)

In volumetric DDoS attacks, attackers flood the network with 
an unusually large volume of  packets. A sudden surge in (Rpkt) 
thus indicates beforehand that there can be a flood, marking 
normal bursts apart from more sustained malicious traffic.

3.	 Download rate: The download rate (Rbytes) is the average 
rate of  data being transferred from a host over time:

  total
bytes

elapsed

B
R

T
= � (3)

Here, Btotal is the quantity of  bytes received by the host 
during the capture window. Bandwidth-depletion DDoS 
attacks attempt to exhaust a victim’s network link capacity 
by transferring large volumes of  data. Tracking (Rbytes) helps 
identify this behavior.

4.	 Uptime: The uptime (Utime) measure indicates that the 
duration a host has been actively sending traffic during 
the period observed:

_ _   time last packet first packetU T T= − � (4)

DDoS attacks in other instances are composed of  high 
activity sustained over an extended period of  time. 
Alternatively, legitimate clients will have more sporadic or 
short sessions. Thus, continually high Uptime can be an 
indicator of  ongoing attack traffic as opposed to regular 
user-initiated behavior.

5.	 Flow duration variability: (Vflow) is the standard deviation 
of  flow durations across hosts. If  each flow 𝑖 has 
duration 𝐷𝑖, and D  is their mean, then:

2
1

1
  ( )flowN

flow ii
flow

V D D
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= −∑ � (5)

Although there are legitimate long-lived and persistent 
flows (e.g., media streaming), the flows that result from 



Saleem and Beitollahi: Advanced DDoS Detection in SDN

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 189

DDoS attacks are normally high rates of  extremely short or 
unusual flows. Therefore, analyzing (Vf  low) reveals patterns 
indicating bursty or inconsistent traffic typical of  malicious 
activity

6.	 Retransmission rate: The retransmission rate (Rretrans) 
is the amount of  packets retransmitted by a host per 
second:

  retrans
bytes

elapsed

N
R

T
= � (6)

Misbehaving activities such as SYN floods or poorly 
misconfigured bots could generate a lot of  duplicate packets 
or half-opened connections. An elevated (Rretrans) can signal 
malicious floods or repeated attempts at scanning for a victim 
server without completing up connections.

7.	 Unique IP count: The unique IP count (CUnique IP) reveals 
how many distinct destination IP addresses a source host 
target:

{ }_  
IPUnique destC IP= � (7)

In certain DDoS cases (or scanning attacks), an aggressive 
host rapidly probes many different IPs. However, a normal 
user tends to connect to fewer places in a short span of  time, 
thus making an unusually high (CUnique IP) suspicious.

8.	 Sequential request patterns: Sequential Request Patterns 
(S seq) capture repeated requests to the same port from 
one host. Specifically,

{ }( )( )seq reqS Max N P= � (8)

Where Nreq(P) is the frequency of  a host’s repeated 
requests for the same port PPP consecutively. Automated 
scripts usually use repeated instances of  the same actions 
that repeatedly hammer the same service endpoint a classic 
indication of  possible DDoS or brute-force attacks.

9.	 Flow count per host: The flow count per host (Nflows) 
is the sum of  flows originated by a source:

1
  1sessionsN

flows i
N

−
= ∑ � (9)

Malicious hosts may establish dozens or hundreds of  
ephemeral flows in an attempt to overwhelm a server’s 

bandwidth. High rates of  flows over a brief  period are 
therefore an extremely strong indication of  possible DDoS 
or network scanning.

10.	 Host communication frequency: Host Communication 
Frequency (fcomm) measures how many unique hosts 
a source communicates with per second:

  hosts
comm

elapsed

N
f

T
= � (10)

This feature indicates whether a source is quickly propagating 
traffic to multiple targets (e.g., in a spread-based attack or 
scanning approach). In benign use cases, one typically sees 
smaller values that rise more slowly.

11.	 Port usage distribution: The Port Usage Distribution 
(Dports) gives the number of  distinct destination ports 
utilized:

Dports = |{Pdest}|� (11)

Attackers might attempt multi-port scanning or flooding to 
identify open services to attack. If  one source is connecting 
to an unusually high number of  different ports, it is either 
malicious probing or an advanced DDoS attack targeting 
multiple services.

12.	 TCP SYN count: The TCP SYN Count (Nsyn) measures 
how many TCP SYN packets a host sends.

1
( ) packetsN

syn SYNi
N iδ

−
=∑ � (12)

Where δSYN (i) is 1 if  the i -th packet is a SYN flag set, and 
0 otherwise. SYN flood attacks are one of  the most common 
types of  DDoS, therefore large SYN counts within a short 
time interval a sure sign of  potential flooding.

13.	 TCP ACK count: The TCP ACK Count (NACK) is the 
analogous measure for ACK packets:

1
( ) packetsN

ACK ACKi
N iδ

−
=∑ � (13)

Although the ACK flag alone is not always malicious, 
analyzing its relationship to SYN packets (e.g., the ratio 
of  SYN to ACK) can highlight incomplete handshakes or 
unusual session behaviors that typify DDoS attempts.
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14.	 Connections per second: Connections per second 
(Rconn) is the sum of  new connections established by 
a host in one second:

_  new conn
conn

elapsed

N
R

T
= � (14)

Flooding attackers or active scanners have the tendency to 
establish many connections in quick succession to overload a 
target. Thus, a high (Rconn) distinguishes probable attackers 
from valid clients, which establish connections at a slower 
pace.

15.	 Failed connection attempts: Failed Connection Attempts 
(Nfailed) refer to the number of  connections attempted 
which fail to finish the TCP handshake. Monitoring can 
be done as follows:

 
 failed
Failed Attempts

N
Telpased

= � (15)

Where NSYN is the number of  SYN packets that were sent, 
and NSYN_ACKN is the number that was responded to 
with a SYN-ACK. In partial-handshake attacks (e.g., SYN 
floods), the attacker never finishes the server’s response, so 
there are many incomplete or failed sessions.

The selection of  features for this study was guided by a 
literature review as well as domain knowledge pertaining to 
DDoS attack patterns. Request Rate, Packet Arrival Rate, 
TCP SYN Count, and Port Usage Distribution are a few of  
the features used extensively in previous studies on DDoS 
detection in SDN and traditional networks [2], [13], [21], [22]. 
But on top of  that, we also have some sophisticated or 
innovative features such as Sequential Request Patterns and 
Failed Connection Attempts that exceed the typical ones in 
benchmark research. The reasoning behind these features is 
to attack application-layer session behavior and incomplete 
handshake patterns, especially relevant to SDN environments 
but commonly omitted in earlier research works. That 
combined approach provides more comprehensive and 
SDN-focused detection capacity.

3.2. Dataset Creation
The development of  a labeled dataset is crucial for the 
effective training and evaluation of  ML models in DDoS 
attack detection. To generate realistic traffic data, we 
implemented a two-phase approach over 6 days: An initial 
phase for normal traffic generation, followed by a phase 
dedicated to creating malicious traffic.

As shown in Fig. 3, the normal traffic phase spanned 2 days, 
during which typical user interactions with the web server 
were simulated. 11,186 aggregated samples which users sent 
normal traffic to the web server during these 2 days. These 
activities included browsing, page requests, occasional form 
submissions, and SSH interactions. Concurrently, background 
operations such as normal file downloads and MySQL 
queries were initiated to emulate a more diverse network 
environment.

Upon capturing sufficient normal traffic data, the network 
configuration was transitioned to a malicious environment, 
which was sustained for 4 consecutive days. During this 
phase, various DDoS attack techniques were employed. 
A  custom, multi-threaded Python script was utilized to 
generate continuous multi-threaded HTTP floods targeting 
the web server. In addition, high-volume SYN floods were 
launched using tools such as hping3 and iperf, alongside 
application layer resource exhaustion attacks. These attacks 
were designed to mimic common DDoS characteristics, 
5 such as rapid request generation, incomplete TCP 
handshakes, and excessive consumption of  server resources. 
In total, 11,469 aggregated samples in which bot machines 
participate in creating malicious traffic during the 4 days.

Throughout both phases, packet capture was consistently 
performed on the monitor host using Scapy. This ensured 
that all network activity originating from a source IP within 
a defined time window was recorded. Each captured network 
session was then labeled as either normal (0) or attack (1), 
resulting in a comprehensive dataset of  benign and malicious 
network traffic.

The complete dataset used in this study is publicly available 
at https://www.kaggle.com/datasets/aramsaleem21/sddos-
sdn-2025.

To clarify our choice of  using a custom dataset instead 
of  public alternatives like CICDDoS2019. A  few of  the 
engineered features used in this study are not computable 
or aggregable directly from the CICDDoS2019 dataset due 
to the granularity and content limitations of  the available 
data. For example, Request Rate (req/sec) and Sequential 
Request Patterns depend on the application layer to recognize 
and count the distinct user interactions and their sequence. 
CICDDoS2019 does not have this application-level visibility.

Retransmission Rate depends on monitoring TCP sequence 
numbers to detect duplicate transmissions, which is not 
feasible without raw packet captures and sequence monitoring 
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not available in CICDDoS2019. Failed Connection Attempts 
Rate must maintain connection state on a per-host basis, i.e., 
unmatched SYNs or aborted handshakes through RST/FIN 
flags. CICDDoS2019 does not maintain this level of  TCP 
control information.

In contrast, our dataset was built from full packet captures of  
a controlled SDN setup and captures both application and 
transport-layer behavior for a diverse set of  traffic scenarios. 
This provides the ability to extract more expressive, real-time, 
and SDN-specific traffic features and hence provides a more 
fertile ground for evaluating advanced machine learning (ML) 
models under conditions more closely aligned with real-world 
network operation.

Following the collection of  a comprehensive dataset 
comprising DDoS and normal traffic, the subsequent step 
involved data preprocessing. This process transformed raw 
packet-level data into a structured dataset suitable for ML-
based classification. The following subsections detail the 
preprocessing and validation procedures.
1.	 Data cleaning: It includes two stages. (a) Removal of  

Duplicates: Overlapping capture intervals and sniffer 
buffering occasionally resulted in duplicate entries. These 
were identified and removed using (Timestamp, Source 
IP, Destination IP) tuples. (b) Handling Missing Values: 
Records with undetermined features due to missing 
session information were either dropped or imputed 
using the mean/median, depending on whether the ratio 
of  missing data was low (1%).

2.	 Label encoding (binary labels): Each traffic sample was 
labeled as “0” for benign or “1” for attack. To mitigate 
potential label noise (e.g., suspicious-looking but benign 
traffic), cross-validation was performed using known 
malicious tools (iperf, hping3) during the attack phase.

3.	 Normalization/scaling: It includes two steps. (a) Feature 
scaling: To prevent feature scale sensitivity in certain ML 

algorithms, MinMax or Standard scaling was applied 
where necessary. This ensured that no single feature, such 
as raw byte counts, unduly influenced model training. (b) 
Outlier Treatment: Extreme values (e.g., an extremely 
high Packet Arrival Rate from a short, intense attack) 
can skew model training. While outliers can indicate 
attacks, they were capped at a maximum value (e.g., the 
99.9th percentile) to stabilize training without eliminating 
the underlying malicious patterns.

This preprocessing pipeline ensured the final dataset’s 
cleanliness, consistency, and appropriate scaling before 
classification.

3.3. Model Selection and Training Strategy
To comprehensively evaluate the effectiveness of  ML 
techniques for DDoS detection, we selected eight classification 
models:
•	 Gradient boosting ensembles: LightGBM, XGBoost, 

CatBoost, and Gradient Boosting Decision Trees. These 
tree-based ensembles are recognized for their strong 
performance in handling diverse feature sets, robustness 
against overfitting due to boosting mechanisms, and 
interpretability of  feature importance.

•	 Ensemble methods: AdaBoost and Bagging (Bootstrap 
Aggregating). While conceptually related to gradient 
boosting, these methods typically combine multiple weak 
estimators (e.g., Decision Trees) to achieve a favorable 
bias-variance trade-off.

•	 One-class SVM: A classical anomaly detection algorithm 
that learns the boundary of  normal data to identify 
outliers. Although theoretically appealing for 0-day 
DDoS attack detection, it may exhibit a high FP rate if  
legitimate traffic deviates significantly from the training 
reference.

•	 Bayesian networks: A  graphical probabilistic model 
that represents dependencies among features. While 

Fig. 3. (Dataset creation) highlights the two-phase normal vs. malicious data gathering.
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often surpassed by ensemble methods in high-volume 
applications, Bayesian networks offer explainable insights 
into conditional probabilities of  attack versus benign 
behavior.

The preprocessed dataset was partitioned into training (70%), 
validation (15%), and test (15%) sets. This partitioning strategy 
ensures an unbiased evaluation of  model performance on 
unseen data.

Within the training set, k-fold cross-validation was employed. 
In each iteration, a model was trained on k-1 folds, and 
performance metrics were computed on the remaining fold. 
This process was repeated k times, and the resulting average 
metrics mitigate variance associated with a single train-test split.

We optimized the hyperparameters of  each model to 
maximize performance. For Gradient Boosting models, a 
grid search was conducted across the number of  estimators, 
learning rate, maximum tree depth (max depth), and 
subsample ratio to identify optimal configurations. For 
AdaBoost and Bagging, we varied the base estimator depth 
and the number of  estimators to achieve a balance between 
model complexity and overfitting. For the One-Class SVM, 
we experimented with RBF and linear kernels and tuned 
the “nu” parameter, which controls the fraction of  outliers. 
Finally, for Bayesian Networks, we explored score-based 
and constraint-based structure learning algorithms and 
employed partial hill-climbing to identify effective network 
structures. The accuracy, area under curve (AUC), and F1-
score metrics guided the selection of  optimal hyperparameter 
configurations. The final model configurations were then 
retrained using the combined training and validation sets and 
evaluated on the held-out test set.

4. IMPLEMENTATION IN THE SDN ENVIRONMENT

During the deployment phase, each web server within the 
SDN environment is equipped with its own ML model for 
DDoS detection. Upon detecting an attack signature, a web 
server promptly notifies the SDN controller. This design 
choice enhances scalability by distributing computational load 
to the servers and reduces detection latency through real-
time classification of  incoming traffic at the network edge, 
enabling instantaneous detection and immediate reporting 
of  malicious IP addresses.

When a server identifies an IP address as malicious, the 
SDN controller immediately enforces drop rules across 

the network to mitigate potential damage. To ensure secure 
communication of  identified malicious IP addresses, the web 
servers utilize a CA-based security mechanism, restricting 
participation in the detection and mitigation process to 
trusted entities. The SDN controller then installs drop 
rules on the OpenFlow switches throughout the network, 
effectively isolating attackers from all hosts within the SDN 
environment. This distributed deployment of  classifiers 
serves two primary functions:
1.	 Controller load reduction: By delegating attack 

detection to individual web servers, the SDN controller 
is relieved of  the burden of  inspecting every request. 
This architecture minimizes the risk of  overwhelming 
the controller with high-volume traffic and eliminates 
latency associated with packet forwarding to and from 
a centralized analysis unit.

2.	 Scalability and low-latency detection: As the number of  
web servers increases (e.g., due to data center expansion), 
the number of  detection nodes scales proportionally. 
Each server performs traffic classification independently, 
imposing minimal overhead on the central controller and 
facilitating real-time or low-latency detection.

4.1. Local ML Detection
Each web server continuously monitors incoming traffic 
and analyzes features such as request rate, packet size, and 
unusual TCP flags. Upon detecting suspicious activity within 
a “five-second” window, the local ML model generates a list 
of  the responsible IP addresses. This localized detection 
approach ensures rapid response times and avoids bottlenecks 
associated with centralized traffic analysis.

4.2. Secure IP List Transmission with CA-Based Sessions
Before transmitting the list of  malicious IP addresses to 
the SDN controller, the web server establishes a secure 
communication channel using CA-issued certificates. The 
session establishment process involves the server first 
validating the controller’s certificate (issued by a trusted 
CA). Subsequently, the server encrypts a randomly generated 
session key with the controller’s public key. The controller then 
decrypts this encrypted session key using its corresponding 
private key, thereby acquiring the session key required for 
symmetric encryption. Finally, the server encrypts the list of  
malicious IP addresses using AES-256 encryption with the 
established session key, ensuring confidentiality and integrity 
during transmission.

4.3. Immediate Network-Wide Blocking
Once the IP list is decrypted, the SDN controller enforces 
network-wide blocking by commanding the OpenFlow 
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switches to discard all packets from the labeled IP addresses. 
The blocking occurs in a short time and thus prevents 
malicious hosts from further flooding or compromising 
network resources. Because each web server handles traffic 
classification independently, the network gains horizontal 
scalability: Adding more servers proportionally enhances the 
overall detection capability of  the network, while the central 
controller remains focused on coordinating drop rules rather 
than performing high-volume traffic analysis.

Fig. 4 provides a more step-by-step illustration of  the entire 
process, from when an attack is identified by a server to where 
the bad traffic is dropped in the network fabric.

In such an architecture, real-time detection at the server 
level prevents making the SDN controller a computational 
bottleneck. Whereas CA-based session establishment ensures 
mutual authentication and secure key exchange, AES256 
encryption protects the IP lists against eavesdropping and 
tampering. With fast blocking of  malicious traffic at the 
switch level, the entire network becomes resilient against 
DDoS disruption, illustrating how a distributed model of  
detection nicely complements SDN’s centralization of  policy 
enforcement.

5. RESULTS

This section outlines the results obtained from evaluating the 
eight ML models on the SDN-based DDoS dataset. Model 

performance is assessed using a variety of  metrics, and further 
analysis is conducted using confusion matrices and ROC 
curves. The findings provide a comparative analysis of  each 
model’s ability to effectively detect and classify DDoS attacks. 
Next, a comprehensive discussion of  the results is presented.

5.1. Overall Classification Outcomes
Table 1 provides a comparative overview of  the performance 
of  the eight ML models, evaluated on the SDN-based DDoS 
dataset. The performance of  each model was assessed using 
the following metrics: accuracy, precision, recall, F1-score, 
AUC, Cohen’s Kappa, Matthews correlation coefficient 
(MCC), FP rate (FPR), false-negative rate (FNR), and cross-
validated accuracy.

5.2. Confusion Matrices: Minimal Misclassifications
To better visualize model performance, confusion matrices 
were generated for each of  the eight classifiers as shown 
in Fig. 5. These matrices illustrate the distribution of  true 
positives, FP, true negatives (TN), and false negatives (FN). 
The confusion matrices highlight that ensemble methods, 
particularly gradient boosting techniques, achieve a strong 
balance between high detection rates and low false alarm 
rates.

5.3. Cross-Validation and Consistency
Cross-validation accuracies remain consistently above 
0.998 for LightGBM, CatBoost, Bagging, and XGBoost. 
This consistency across different folds indicates that their 

Fig. 4. Server-centric real-time distributed denial of service detection with CA-based security and immediate drop rules installed by the Software 
Defined Networking controller in this design, real-time detection at the server.
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performance is robust and not attributable to overfitting on a 
specific train-test split. In contrast, cross-validation accuracy 
for One-Class  SVM drops to 0.9505, revealing higher 
performance variability and emphasizing the importance 
of  meticulous threshold tuning in anomaly-based detection 
systems.

6. DISCUSSION

The results illustrate clear differences in what each ML 
method is capable of  doing for DDoS detection on SDN 
networks. With a dataset containing both traffic volume 
and behavior attributes, we can see which models are more 
accurate and more capable of  preventing FP. The following 
section discusses these findings in more detail, starting with 
ensemble method advantages.

6.1. Ensemble Methods and Their Dominance
The results clearly demonstrate the superior performance 
of  ensemble-based approaches, particularly LightGBM 
and CatBoost. Their near-perfect scores highlight two key 
strengths:
1.	 Robust feature handling: The 15 features, encompassing 

volumetric, connection, and distribution-based metrics, 
are well-suited to tree-based algorithms that inherently 
manage mixed data distributions.

2.	 Resilience to overfitting: Gradient boosting models 
iteratively construct weak learners (decision trees), 
enabling them to effectively identify subtle patterns while 
mitigating overfitting to noise.

The iterative refinement of  gradient boosting, combined with 
the feature-rich dataset used in this study, likely contributes to 
the observed 0.9999 AUC scores in many cases. These high 
AUC values suggest that the malicious and benign traffic 
classes are distinctly separated within this dataset.

In computational efficiency, ensemble models such as 
LightGBM and CatBoost had fast convergence during 
training and low-latency predictions, which is suitable for 
real-time SDN deployments where response time is critical.

6.2. Trade-Offs with Anomaly Detection (One-Class 
SVM)
While One-Class  SVM worked very well at identifying 
almost all attacks (recall = 0.9998), the sharp increase in FP 
(FPR = 0.1077) reflects a serious deficiency of  anomaly-
based detectors. It suggests that, when legitimate traffic 
significantly deviates from the baseline model, the model will 
end up marking benign requests as malicious. In operational 
scenarios, high FPR can lead to resource overhead in 
investigating benign events.

6.3. Bayesian Networks and Interpretability
Interestingly, the Bayesian Network achieved perfect 
precision (1.0000) at the expense of  having a fairly 
elevated FNR (0.0035). That is, while it never misclassified 
benign traffic as an attack, it occasionally missed real 
attacks. Bayesian Networks do offer interpretability in the 
sense that they are graphical models whose conditional 
dependencies among features can make it easy to 
understand. For advanced research that aims to discover 
the underlying causal relations for attack patterns, this 
feature could provide new analytical contributions beyond 
bare classification.

Existing research has also explored the use of  gradient 
boosting models such as LightGBM and CatBoost for DDoS 
detection. The majority of  research, however, evaluates these 
models on typical data such as CICDDoS2019 or UNSW-
15 and does not consider SDN-special traffic or real-time 
deployment. In contrast to our method, which is aimed at 
real SDN deployments and integrates these models with 

Table 1: Classification performance metrics across different models
Model Accuracy Precision Recall F1‑Score AUC Cohen’s 

Kappa
MCC FPR FNR Cross‑validated 

accuracy
LightGBM 0.9998 0.9999 0.9996 0.9998 0.9999 0.9996 0.9996 0.0001 0.0004 0.9992
XGBoost 0.9989 0.9996 0.9983 0.9989 0.9996 0.9978 0.9978 0.0004 0.0017 0.9985
CatBoost 0.9993 0.9999 0.9987 0.9993 0.9999 0.9987 0.9987 0.0001 0.0013 0.9986
Gradient boosting 
decision trees

0.9988 0.9991 0.9987 0.9989 0.9992 0.9978 0.9978 0.0009 0.0013 0.9993

AdaBoost 0.9987 0.9991 0.9983 0.9987 0.9992 0.9974 0.9974 0.0009 0.0017 0.9989
Bagging (bootstrap 
aggregating)

0.9991 0.9996 0.9987 0.9991 0.9999 0.9982 0.9982 0.0004 0.0013 0.9992

One‑class svm 0.9823 0.9794 0.9998 0.9895 0.9998 0.9322 0.9343 0.1077 0.0002 0.9505
Bayesian Network 0.9982 1.0000 0.9965 0.9983 0.9983 0.9965 0.9965 0.0000 0.0035 0.9984

MCC: Matthews correlation coefficient, FPR: False‑positive rate, FNR: False‑negative rate, AUC: Area under curve
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an ongoing mitigation process, existing literature does not. 
Table 2 indicates a comparison between this proposal and 
existing works.

6.4. Implications for Advanced SDN-Based Research
With the network-level perspective of  an SDN controller, 
high-performance ensemble models can be combined to offer 

Fig. 5. Confusion matrices for each classifier showing the distribution of true positives, false positives, true negatives, and false.
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a scalable and precise method for handling evolving DDoS 
threats. The distributed detection model with each server 
running the final classifier locally and securely notifying the 
controller of  malicious IPs ensures low latency and effective 
utilization of  resources. For mission-critical or large-scale 
deployments (e.g., data centers, cloud infrastructures), 
an extremely low FPR (essentially 0.0000) is required 
to avoid disrupting rightful traffic. Such minimal FPR 
(very nearly 0.0001) achieved by LightGBM and CatBoost 
shows that both models are well positioned for highly 
available scenarios fulfilling strict service-level agreements.

6.5. Limitations and Future Work
Although the ensemble methods have produced excellent 
results for this dataset, some of  the potential avenues remain 
available for future work:
4.	 Temporal and incremental learning: Real networks have 

continuous traffic fluctuations. Online or incremental 
learning methods could be further explored to improve 
adaptability over time.

5.	 Multi-controller SDN: Even though in this research a 
single controller (Ryu) has been utilized, modern SDN 
deployments may have multiple controllers for fault 
tolerance and load balance. Classifier consistency in Mult 
controllers is an appealing area of  future research.

6.	 Encrypted traffic analysis: Many application-layer 
protocols employ TLS/SSL encryption. Future work 
could be focused on feature extraction from encrypted 
flows, e.g., analysis of  metadata or packet timing without 
analyzing payloads.

7. CONCLUSION

This study presents an ensemble-based DDoS detection 
framework tailored for SDN environments. It introduces a 
custom dataset collected in two phases, covering both normal 
and attack traffic and extracts 15 statistical features relevant 

to SDN traffic behavior. Eight ML models were evaluated, 
demonstrating high accuracy and suitability for real-time 
SDN deployment. Ensemble-based models, particularly 
LightGBM and CatBoost, significantly surpassed the 
performance of  the other algorithms, achieving exceptional 
detection metrics (accuracy 0.9998, precision = 0.9999, and 
0.0001 false alarms). These results underscore the suitability 
of  advanced, tree-based methods for effectively processing 
the high-dimensional and heterogeneous data characteristic 
of  network traffic logs. From an architectural perspective, 
distributing the ML detection process across web servers 
minimizes the processing load on the SDN controller and 
facilitates rapid attack detection. The use of  CA-based secure 
delivery of  IP lists ensures that only authenticated entities 
(controller and servers) are involved in the mitigation process. 
Upon receiving these IP lists, the controller implements 
network-wide blocking in real time, providing robust 
protection for the entire SDN environment against large-
scale DDoS attacks.
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