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1. INTRODUCTION

Conjugate gradient (CG) methods are a category 
of  unconstrained optimization algorithms that are 
distinguished by their low memory requirements and 
robust local and global convergence characteristics [1]. 
The main objective of  the CG method was to solve a 
linear system, Hestenes and Stiefel [2]. Later, the method 
was modified to address an unconstrained optimization 
problem because solving a linear system is equivalent 
to minimizing a positive definite quadratic function [3]. 

CG methods have significantly contributed to solving 
large-scale non-linear optimization problems. The CG 
method is often used to solve the following unconstrained 
optimization problem:

min
x n

f x
∈

( ) � (1)

where f n: →  is a smooth non-linear function with an 
available gradient.

The iterative formula of  the CG method is expressed as 
follows,

x n
0 ∈

x(k+1) = x k+αk dk.k = 0,1,…n� (2)

and
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In this context, x0 is the initial point, and xk represents the 
present iteration. The gradient of  f at point xk is given by 
gk = ∇f(xk). The search direction is denoted by dk., and the 
conjugate (update) parameter. βk ∈  determines various 
iterations of  the CG method. In addition, the step size, which 
can be achieved using numerous line search methods, is 
represented by a positive value αk>0.

In this study, we use an inexact line search called the strong 
Wolfe line search, which has garnered significant focus in 
convergence analysis and the execution of  CG methods and 
is characterized by the following requirements [4,5].

f fk k k k k k
T

kx d x g d+( ) − ( )≤� ��� � (4)

g d g dk
T

k k
T

k+ ≤ −1 � σ � (5)

where δ, σ are scalars and satisfy 0<δ≤σ<0.5.

Assume that ‖.‖ is Euclideannorm and yk = gk+1−gk. If  f is a 
strongly convex quadratic, then theoretically, all six options 
for the update parameter in Table 1 are equal to an exact 
line search [12]. However, they exhibit distinct behavior for 

general non-quadratic functions with inexact line search. 
Various CG methods correspond to different values based 
on the scalar parameter βk. The methods can be classified 
into two groups.

In the first group, all CG parameters have the same numerator 
g yk
T

k+1 . The methods have been proposed by Hestenes and 
Stiefel (HS), Polak, Ribiere, and Polyak (PRP), and Liu and 
Storey (LS) using the following CG parameters [1].

β β βk
HS k

T
k

k
T

k
k
PRP k

T
k

k
k
LS k

T
k

k
T

k
= = =

−
+ + +g y
y d

g y
g

g y
d g

1 1 1
2,� ,� .

In the second group, gk+1
2  is the common numerator of  

all the CG parameters. The following CG parameters were 
proposed by Fletcher and Reeves (FR), Fletcher (conjugate 
descent or CD), and Dai and Yuan (DY), and include the 
following CG parameters [1].

β β βk
FR k

k
k
CD k

k
T

k
k
DY k

k
T

k
= =

−
=

+ + +g

g

g

g d

g

y d
1
2

2

1
2

1
2

,� ,�

Each CG method has distinct advantages and disadvantages. 
The second group of  FR, CD, and DY methods with gk+1

2
 

in the numerator has significantly worse numerical 
performance than the first group of  HS, PRP, and LS 
algorithms [13]. The poor numerical performance of  the 
second group can be attributed to the jamming phenomenon, 
whereby the algorithm may execute several brief  iterations 
without achieving much advancement toward the 
minimum [13]. Nonetheless, the first group HS, PRP, and LS 
with g yk

T
k+1  in the numerator inherently has an automated 

approximation restart mechanism that prevents jamming. 
Specifically, when the step αk is small, the component yk in 
the numerator approaches zero. Consequently, βk decreases, 
and the new search direction dk+1 approximates the steepest 
descent direction. However, Powell [14] developed a three-
dimensional counterexample demonstrating that the PRP 
and HS methods may cycle indefinitely without a solution, 
indicating their lack of  global convergence under specific 
conditions.

The FR, CD, and DY methods generally exhibit strong global 
convergence features [15], although their computational 
performance may be limited [13]. Simultaneously, the HS, 
PRP, and LS methods can fail to consistently converge, even 
though they often exhibit superior computing efficiency [13]. 

TABLE 1: Choices of βk in standard conjugate 
gradient methods.
Formula Description

β += 1
T

HS k k
k T

k k

g y

d y

(1952) Hestenes and Stiefel linear 
(CG) [2]

β +=
2

1
2

kFR
k

k

g

g

(1964) Fletcher and Reeves 
non‑linear (CG) [6]

β += 1
2
yT

PRP k k
k

k

g

g

(1969) Polak and Ribiere [7], 
Polyak [8]

β
+

=
−

2
1kCD

k T
k k

g

g d

(1987) Conjugate Descent (CD) by 
Fletcher [9]

β +=
−

1
T

LS k k
k T

k k

g y

d g

(1991) Liu and Storey [10]

β +=
2

1 kDY
k T

k k

g

y d

(1999) Dai and Yuan [11]
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In Hager and Zhang [1] asserts that a comprehensive review 
of  several CG approaches was presented.

The most important category of  CG algorithms is hybrid 
CG algorithms. The goal of  this study was to improve the 
computing speed and maintain robust global convergence 
by combining four types of  CG methods. Hybrid CG 
methods include switching a parameter in the second group 
to the first group when iterations are stuck [16]. Recently, 
some hybrid CG methods have been proposed. Andrei 
p roposed  the  fo l l ow ing  hyb r id  CG me thod : 
� � � � �k
hyb

k k
HS

k k
DY� = −( ) +1  [17]. Djordjević proposed 

f o l l o w i n g  h y b r i d  C G  m e t h o d s : 
� � � � � � � � � �k k k k k k k k k k
hyb PRP FR hyb LS FR= −( ) + = −( ) +1 1,  

[18,19]. Babando et al. proposed this hybrid method: 
� � � � �k
hyb

k k
PRP

k k
DY� � �= −( ) +1  [3]. Liu and Li introduced a 

new hybrid approach that combines the two methods: 
� � � � �k
hyb

k k k k
� = −( ) +1 LS DY  [20]. Hanachi et al. presented a 

hybrid approach that is a combination of  three CG methods, 
as described in [21] and [22].

� � � � � � � �

� � � � � �
k k k k k k k k

k k k k k

New FR DY PRP

New LS FR

= + + − −( )
= + + −

1

1

,

kk k k−( )� � PRP .

Inspired by the research of  Hanachi et al. [21] and [22], we 
propose a new hybrid CG method that combines the LS, 
FR, DY, and PRP methods to solve problem (1). This study 
represents the first research effort to propose and analyze 
a hybrid CG method that utilizes a convex combination of  
four classical CG methods. To the best of  our knowledge, 
no previous study has explored such a combination for 
developing of  CG algorithms. The remainder of  this paper is 
organized as follows: In section 2, we introduce the hybrid CG 
approach and demonstrate how we obtained the parameters 
ζk,ξk and ωk using various methods. Under moderate 
circumstances, we show that the chosen method, when used 
with a strong Wolfe line search, provides directions that satisfy 
the sufficient descent condition. The algorithm is described in 
section 3. In section 4, we examine the convergence properties 
of  the proposed method. Through comprehensive numerical 
comparisons with several existing hybrid methods in the 
literature using 170 distinct test problems, demonstrating the 
improved efficiency of  the proposed method in section 5, was 
also validated for an application to image impulse denoising 
in section 6. Section 7 concludes with a brief  summary.

2. HYBRID CG ALGORITHM

In this section, to enhance the performance of  the CG 
updating parameter proposed by Hestenes and Stiefel [2], 
Fletcher and Reeves [6], Dai and Yuan [11], Polak and 
Ribiere [7] and Polyak [8], CG methods, we employed their 
convex combination, in which the parameter βk in the 
proposed method, referred to as βk

hRH , i.e.,

� � � � � � � � � � �k k k k k k k k k k k
hRH LS FR DY PRP= + + + − − −( )1 	

� (6)

The parameters ζk,ξk,ωk in equation (6) that meet the condition 
0≤ζk, ξk, ωk≤1 are referred to as hybridization parameters. 
These parameters are obtained in a specific manner, which 
will be discussed in detail later and the search direction dk is 
computed from

d
g

g dk
k

k k
hRH

k

if k

if k
=

− =

− + ≥


 −

, � � ,

, � � .

0

11β
� (7)

To determine the step length αk, we utilize the strong Wolfe 
line search (4), (5).

There are 15 separate cases depending on the parameter 
values where 0≤ζk, ξk, ωk≤1 and ζk+ξk+ωk≤1.

Case 1: If  ζk=1, ξk=0, ωk=0, then β βk k
hRH LS=

Case 2: If  ζk=0, ξk=0, ωk=1, then β βk k
hRH FR=

Case 3: If  ζk=0, ξk=0, ωk=1, then β βk k
hRH DY=

Case 4: If  ζk=0, ξk=0, ωk=0, then β βk k
hRH PRP=

C a s e  5 :  I f  0 < ζ k < 1 ,  ξ k = 0 ,  ω k = 0 ,  t h e n 
� � � � �k k k k k
hRH LS PRP= + −( )1

C a s e  6 :  I f  ζ k = 0 ,  0 < ξ k < 1 ,  ω k = 0 ,  t h e n 
� � � � �k k k k k
hRH FR PRP= + −( )1

C a s e  7 :  I f  ζ k = 0 ,  ξ k = 0 ,  0 < ω k < 1 ,  t h e n 
� � � � �k k k k k
hRH DY PRP= + −( )1

Case 8: If  0<ζk<1, 0<ξk<1, ωk=0 and ζk+ξk=1, then 

� � � � �k k k k k
hRH LS FR= + −( )1
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Case 9: If  0<ζk<1, 0<ξk<1, ωk=0 and 0<ζk+ξk<1, then 
� � � � � � � �k k k k k k k k
hRH LS FR PRP= + + − −( )1

Case 10: If  0<ζk<1, ξk=0, 0<ωk<1 and ζk+ωk=1, then 
� � � � �k k k k k
hRH LS DY= + −( )1

Case 11: If  0<ζk<1, ξk=0, 0<ωk<1 and 0<ζk+ωk<1, then 

� � � � � � � �k k k k k k k k
hRH LS DY PRP= + + − −( )1

Case 12: If  ζk=0, 0<ξk<1, 0<ωk<1 and <ξk+ωk=1, then 
� � � � �k k k k k
hRH FR DY= + −( )1

Case 13: If ζk=0, 0<ξk<1, 0<ωk<1 and 0<ξk+ωk<1, then 

� � � � � � � �k k k k k k k k
hRH FR DY PRP= + + − −( )1

Case 14: If  0<ζk<1, 0<ξk<1, 0<ωk<1 and ζk+ξk+ωk=1, then 

� � � � � � �k k k k k k k
hRH LS FR DY= + +

Case 15: If  0<ζk<1, 0<ξk<1, 0<ωk<1 and 0<ζk+ξk+ωk<1, 
t h e n 
� � � � � � � � � � �k k k k k k k k k k k
hRH LS FR DY PRP= + + + − − −( )1

It is clear from equations (6) and (7) that
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For both numerical computation and convergence analysis, 
the traditional conjugacy condition is crucial in the CG 
method. This condition is based on an exact line search to 
obtain the step size αk; however, in practical computations, 
where an inexact line search is commonly utilized, the 
condition may not be strictly satisfied.

d yk
T

k+ =1 0 � (9)

In 1978, Perry [25] generalized the conjugacy condition 
and incorporated ideas from quasi-Newton methods. In 
particular, Perry supplemented the conjugacy condition by 
adding modifications to the standard conjugacy condition. 
The secant equation was incorporated into this formulation. 
Perry’s extension enables the CG method to be brought in 
line with the quasi-Newton direction, is flexible, and is more 
robust under an exact line search.

d y g sk
T

k k
T

k+ += −1 1 � (10)

However, it is still contingent on the exact line search and 
is therefore not particularly effective in certain numerical 
optimization procedures. In addition, inexact line searches 
rather than exact line searches are used to determine the 
step size αk.

Therefore, in 2001, Dai and Liao [26] suggested a less 
stringent conjugacy condition called the D-L conjugacy 
condition:

d y sk
T

k k
T

ktg t+ += − ≥1 1 0,�� � (11)

Where sk = xk+1−xk, and t is a non-negative modulating 
parameter. The selection of  an optimal value for t remains 
an active area of  research, with several potential choices 
proposed in [27-35]. Notably, for t=0, equation (11) simplifies 
to equation (9), while for t=1, it corresponds to equation 

(10). To select parameter t, this study employs t k
T

k

k

k

k
= +
s y
s

y
s2  

as specified in [30]. The parameters ζk, ξk, and ωk are chosen 
by applying the D-L conjugacy condition, as given in equation 
(11). Taking the inner product of  equation (3) with the vector 
yk
T  and calculating βk using equation (6) yields

d y g y d yk
T

k k
T

k k
hRH

k
T

k+ += − + ( )1 1 β

By enforcing the D-L condition d y g sk
T

k k
T

kt+ += −1 1 , we obtain

− = − +
+ +

+ − − −( )


+ +t k
T

k k
T

k
k k

LS
k k

FR
k k

DY

k k k k
PRPg s g y1 1 1

� � � � � �

� � � �





 ( )d yk

T
k

To simplify the presentation, we define the following terms:

ALS k
LS

k
T

k
k
T

k

k
T

k
k
T

k= ( ) = − ( )+β d y
g y
g d

d y1 � (12)
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AFR k
FR

k
T

k
k

k
k
T

k= ( ) = ( )+β d y
g

g
d y1

2

2 � (13)

ADY k
DY

k
T

k
k

k
T

k
k
T

k k= ( ) = ( ) =+
+β d y

g
d y

d y g1
2

1
2 � (14)

A
y

PRP k
PRP

k
T

k
k
T

k

k
k
T

k= ( ) = ( )+β d y
g
g

d y1
2 �� (15)

Rearranging the equation to solve for the hybridization 
parameters yields

− + − = −( )
+ −( ) + −

+ +t A A A

A A A A
k
T

k k
T

k PRP k LS PRP

k FR PRP k DY PR

g s g y1 1 �

� � PP( )

This is an underdetermined linear equation in ζk,ξk,ωk. For 
our algorithm, we propose a strategy in which we compute 
one parameter based on the values of  the other two (which 
can be set to defaults or previous values). This yields the 
following update rule:

�

�

�
k

k
T

k k
T

k PRP k FR PRP

k DY PRP

LS

t A A A

A A
A

�=

− + −( ) − −( )
− −( )

−

+ +g s g y1 1

AAPRP
� (16)

�

�

�
k

k
T

k k
T

k PRP k LS PRP

k DY PRP

FR

t A A A

A A
A

�=

− + −( ) − −( )
− −( )

−

+ +g s g y1 1

AAPRP
� (17)

�

�

�
k

k
T

k k
T

k PRP k LS PRP

k FR PRP

DY

t A A A

A A
A

�=

− + −( ) − −( )
− −( )

−

+ +g s g y1 1

AAPRP
� (18)

Note that while these formulas appear simpler, substituting 
the full expressions for ALS, AFR, ADY, and APRP would 
recover more detailed forms of  the equations. However, 
this formulation makes the underlying structure of  the linear 
system explicit. In our algorithm, care is taken to handle cases 
in which any denominator is close to zero.

The parameters ζk,ξk, and ωk. may lie beyond the interval 
[0, 1]. The following rule must be applied to obtain a valid 
convex combination in equation (6): If  ζk,ξk,ωk≤0, then set 

ζk,ξk,ωk=0 in (6). If  ζk,ξk,ωk≥1, then we assign ζk,ξk,ωk=1 in 
(6). If  ζk+ξk+ωk≥1, then we change ζk,ξk,ωk=1 in (6).

Algorithm 1: hybrid Rega and Hawraz Algorithm

Require: Initial point x0∈Rn, parameters δ,σ with 0 <δ≤σ<0.5, 
tolerance: ϵ = 10−6

Initialization: Set k = 0, compute f(x0), g0 =∇f(x0). If  ||g0 
|| < ϵ, stop.

Set: d0 = −g0.

           while ||gk||≥ϵ do

           �Line Search: Find step size αk > 0 satisfying strong 
Wolfe conditions (4) and (5).

           �Update variables:

           xk+1 = xk+αkdk; g{k+1} = ∇f(xk+1)

           sk = xk+1−xk; yk = g{k+1}−gk.

           Compute hybridization parameters:

           Compute t: Set t
s y
s

y
s

k
T

k

k

k

k
�

|| ||�
= +2

           Compute ALS, AFR, ADY, APRP using equations (12)-(15).

           �Compute initial values for ζk,ξk,ωk using equations 
(16)-(18).

           �If  any denominator is near zero, the corresponding 
parameter is set to zero.

           �Enforce convex combination constraints: Clamp 
each parameter to the interval [0, 1]:

           ζk← max(0, min(1, ζk))

           ξk← max(0, min(1, ξk))

           ωk← max(0, min(1, ωk))

           if  ζk+ξk+ωk > 1 then

           Normalize the sum to 1: 

Sum
Sum Sum Sumk k k k
k

k
k

k
k← + + ← ← ←� � � �

�
�

�
�

�
� � ;�� ;�� ;�� .
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           end if

           Compute conjugate parameter ββk
hRH

           Calculate 
� � � � � � � � � � �k
hRH

k k
LS

k k
FR

k k
DY

k k k k
PRP� � � � � � � � � � �= + + + − − −( )1

           Update search direction: Set d g dk k k
hRH

k+ +=− +1 1� � � �β

           Restart condition (Powell):

           if  g g gk
T

k k+ +≥1 1
20 2� � .  then

           d gk k+ +←−1 1�

           end if

           Iteration Update: Set k← k+1

           end while

3. SUFFICIENT DESCENT CONDITION

In this section, we demonstrate the sufficient descent of  
the proposed method, which is crucial for examining global 
convergence. These fundamental assumptions regarding the 
objective function are required to demonstrate the global 
convergence of  the hRH method.

Assumption 1. The level set  = ∈ ≤ ( ){ }x f x f xn  ( ) 0  is 
bounded, i.e., ∃ a constant B>0 such that

‖x‖≤B,∀x∈L� (19)

Assumption 2. In a neighborhood N of  L, the function f is 
continuously differentiable, and its gradient ∇f(x) is Lipschitz 
continuous, that is, ∃ a constant 0<L<∞ such that:

‖∇f(x)-∇f(y)‖≤L‖x−y‖,∀x,y∈N� (20)

Under Assumptions (1) and (2) on f, ∃ a constant c such that

( ) , f x x L∇ ≤ Γ ∀ ∈‖ ‖ � (21)

Theorem 3.1. If  the relations (6) and (7) are valid, then

d d d d dhRH LS FR DY PRP
k k k k k k k k k k k+ + + + += + + + − − −( )1 1 1 1 11� � � � � � .

Proof. Now, from (7), we have

d g dhRH hRH
k k k k+ += − +1 1 β .

Given in the equation (6), the final form is given by

d ghRH
LS FR DY

PRPk k
k k k k k k

k k k k
+ += − +

+ +

+ − − −( )








1 1 1

� � � � � �

� � � �
ddk

can write

d ghRH

LS FR DY

k k k k k k k k

k k k k k k

+ += − − + − + − +( )
+ + + +

1 11�

�

� � � � � �

� � � � � � 11

11 1 1 1

− − −( )( )
= − + + + − −+ + + +

� � � �

� � � �

k k k k k

k k k k k k k k

PRP

hRH

d

d g g g� �� �

� � � � � � � � � �

k k k

k k k k k k k k k k k

−( )( )
+ + + + − − −( )( )

+g

dLS FR DY PRP

1

1�

It follows that
dk k k k k k k k k

k k k k

+ + +

+

= − +( ) + − +( ) +
− +(

1 1 1

1

hRH LS FR

DY

g d g d

g d

� � � �

� �� )) + − − −( ) − +( )+1 1� � � �k k k k k kg dPRP

Here, we obtain

d d d d dhRH LS FR DY PRP
k k k k k k k k k k k+ + + + += + + + − − −( )1 1 1 1 11� � � � � � 	

� (22)

Thus, the theorem has been proven.

Theorem 3.2. Let the sequences {gk} and {dk} be generated 
by the hRH method. The search direction dk satisfies the 
sufficient descent condition.

g d gk
T

k kc k where c+ + +≤ − ∀ ≥ >1 1 1
2 0 0,� ,� � 	 (23)

Proof. According to the hRH method, when the Powell 
restart criterion is satisfied, that is, g g gk

T
k k+ +≥1 1

20 2.  it 
follows that dk+1=−gk+1 and (23) is also valid. We proceeded 
with the assumption that the Powell restart criterion was 
invalid. Next, we obtain

g g gk
T

k k+ +≤1 1
20 2. � (24)

We demonstrate the proof  by mathematical induction for 
k=0, d0 = −g0 so g d gT

0 0 0
2= −  We found that the sufficient 

descent condition is satisfied for k=0. We now assume that 
(23) is hold for k, thus
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g d gk
T

k kc≤ − 2 � (25)

We now show that this is true for k+1. From the strong 
Wolfe condition (5),

≤ + +
−

+ =� � �LD
c r r c r

LD
r

M
2

2

2

2

2 21( )
.

�
 	 � (26)

Multiplying (22) by gk
T
+1  from the left yields

g d g d g d g dLS FR DY
k
T

k k k
T

k k k
T

k k k
T

k

k

+ + + + + + + += + +

+ − −
1 1 1 1 1 1 1 1

1

� � �

� �kk k k
T

k−( ) + +� g dPRP1 1 � (27)

It is necessary to prove 15 cases depending on the parameter 
values:

Case 1: If  ζk=1, ξk=0 and ωk=0, then the relation (27) 
becomes

g d g dLSk
T

k k
T

k+ + + +=1 1 1 1.

The search direction for the LS method is given by

d g dLS LS
k k k k+ += − +1 1 β � (28)

Taking the inner product of  (28) with gk
T
+1

g d g g g d

g
g y
d g

LS LS
k
T

k k
T

k k k
T

k

k
k
T

k

k
T

+ + + + +

+
+

= −( ) +

= − +
−

1 1 1 1 1

1
2 1

�

�

β

kk
k
T

k




 +g d1

Using the definition yk = gk+1−gk, we can expand the term 
g yk
T

k+1 :

g d g
g g g

d g
g d

g

LS
k
T

k k
k
T

k k

k
T

k
k
T

k

k

+ + +
+ +

+= − +
−( )

−







= −

1 1 1
2 1 1

1�

� ++
+ +

+

+
+ +

+
−

−











= − +

1
2 1

2
1

1

1
2 1

2
1

g g g
d g

g d

g
g g d

k k
T

k

k
T

k
k
T

k

k
k k

T
k�

−−
−
( )( )

−
+ +

d g

g g g d

d gk
T

k

k
T

k k
T

k

k
T

k

1 1

By taking the absolute value and applying the triangle 
inequality, we obtain

g d g
g d
d g

g
g d
d g

g gLS
k
T

k k
k
T

k

k
T

k
k

k
T

k

k
T

k
k
T

k+ + +
+

+
+

+≤ − +
−

+
−1 1 1

2 1
1
2 1

1 ..

From the second strong Wolfe condition (5) and dk is a 
descent direction (25), which gives

g d
d g
k
T

k

k
T

k

+

−
≤1 σ � (29)

Substituting (29) into our main expression, we obtain

g d g g g g

g g g

LS
k
T

k k k k
T

k

k k
T

k

+ + + + +

+ +

≤ − + + =

− − +

1 1 1
2

1
2

1

1
2

11

σ σ

σ σ( )

Since we are assumed that the Powell restart condition is 
not  met, we have from (24) that g g gk

T
k k+ +≤1 1

20 2. . 
Substituting into (30):

g d g g

g

LS
k
T

k k k

k

+ + + +

+

≤ − − + ( )
= − − −

= −

1 1 1
2

1
2

1
2

1 0 2

1 0 2

� ( ) .

� ( . )

� (

σ σ

σ σ

11 1 2 1
2− +. )σ gk

Let c1 = (1−1.2σ). Since σ<0.5, we have c1>0. Therefore:

g d g �LS
k
T

k kc where c+ + +≤ − >1 1 1 1
2

1 0, � �

Therefore, the search direction dLSk+1  fulfills the sufficient 
descent condition.

Case 2: If  ζk=0, ξk=1 and ωk=0, then the relation (27) 
becomes

g d g dFRk
T

k k
T

k+ + + +=1 1 1 1.

A sufficient descent condition for the FR method under 
strong Wolfe conditions was established in [1]. Thus, ∃ a 
constant c2 > 0 such that

g d gFR
k
T

k kc+ + +≤ −1 1 2 1
2

Case 3: If  ζk=0, ξk=0 and ωk=1, then the relation (27) 
becomes
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( )

( )

DY
1 1 1 1

DY
1 1 1

2 DY
1 1 1

2
2 1

1 1

2
2 1

1 1

2
2 1

1

                      g d    g d

   g  g d

   g  g d

 g
   g  g d

y d

 g
   g d g

d y

 g
   g  g d  (     (5)

(1 )d  g

T T
k k k k

T
k k k k

T
k k k k

k T
k k kT

k k

k T
k k kT

k k

k T
k k kT

k k

by using

β

β

σ
σ

+ + + +

+ + +

+ + +

+
+ +

+
+ +

+
+

=

= − +

= − +

= − +

≤ − +

≤ − + −
− −

2
1

   (26))

1 2
     g                                                                                           

1 k

and

σ
σ +

−
≤ −

− 	
� (31)

Let c3
1 2
1

= −
−
σ
σ

. Since σ < 0.5, we have c3 > 0. Therefore:

g d gDY
k
T

k kc+ + +≤ −1 1 3 1
2

Thus, it has been shown that dk
DY
+1
�  fulfills the sufficient 

descent condition.

Case 4: If  ζk=0, ξk=0 and ωk=0 then the relation (27) becomes

g d g dPRPk
T

k k
T

k+ + + +=1 1 1 1 .

We demonstrate the sufficient descent condition of  the PRP 
method by the following theorem.

Theorem 3.3. [19] Under Assumptions (1) and (2), suppose 
that the step sizes αk satisfy conditions (4) and (5) with 

σ < 1
2
.  If  ‖sk‖→0 and there exist non-negative constants 

τ1 and τ2 such that

g sk k
2

1
2≥τ � (32)

g sk k+ ≤1
2

2τ � (33)

where sk = xk+1−xk = αdk. Subsequently, dk
PRP
+( )1  satisfies the 

sufficient descent condition ∀k.

Proof.

d g sPRP
k k

T
k k+ += − +1 1 β � (34)

Now, multiplying (34) by gk
T
+1  from the left, we get

g d g g sPRP PRP
k
T

k k k k
T

k+ + + += − +1 1 1
2

1β � (35)

g d g
g y
g

g sPRP
k
T

k k
k
T

k

k
k
T

k+ + +
+

+= − +1 1 1
2 1

2 1 � (36)

g d g
g y g s

g
PRP

k
T

k k
k
T

k k
T

k

k
+ + +

+ +≤ − +1 1 1
2 1 1

2

 
� (37)

By the Cauchy-Schwarz inequality, we have

g d g
g y g s

g
PRP

k
T

k k
k k k k

k
+ + +

+ +≤ − +1 1 1
2 1 1

2 � (38)

g d g
g y s

g
PRP

k
T

k k
k k k

k
+ + +

+≤ − +1 1 1
2 1

2

2 � (39)

From (20), ‖yk‖≤L‖sk‖, so

g d g
g s

g
PRP

k
T

k k
k k

k

L
+ + +

+≤ − +1 1 1
2 1

2 2

2 � (40)

By using (33), we get

g d g
s

g
PRP

k
T

k k
k

k

L
+ + +≤ − +1 1 1

2 2
3

2

τ
� (41)

Using (32), it further becomes

g d g sPRP
k
T

k k kL+ + +≤ − +1 1 1
2

1
2

1
τ

τ � (42)

However, because assumption ‖sk‖→0, the second summand 
in (42) tends to zero, so there exists a number 0<γ<1, such 
that

1

1
2 1

2

τ
L k k� �s g≤ + � (43)

Now, (42) becomes

g d g gPRP
k
T

k k k+ + + +≤ − +1 1 1
2

1
2γ � (44)

g d gPRP
k
T

k k+ + +≤ −1 1 1
21( )γ � (45)

g d gPRP
k
T

k kc+ + +≤ −1 1 4 1
2 � (46)

where c4 = 1−γ>0� (47)
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Therefore, a sufficient descent condition holds for all k.

Case 5: If  ξk=0, ωk=0 and 0<ζk<1, then the relation (27) 
becomes

g d g d g d g dLS PRP LSPRP
k
T

k k k
T

k k k
T

k k
T

k+ + + + + + + += + −( ) =1 1 1 1 1 1 1 11ζ ζ

The sufficient descent condition is satisfied and discussed 
in [36], such that

g d gk
T

k
LSPRP

kc+ + +≤ −1 1 5 1
2� , where c5>0

Case 6: If  ζk=0, 0<ξk<1 and ωk=0, then the relation (27) 
becomes

g d g d g d g dFR PRP FRPRP
k
T

k k k
T

k k k
T

k k
T

k+ + + + + + + += + −( ) =1 1 1 1 1 1 1 11ξ ξ

Djordjević established in [18] that the sufficient descent 
condition is satisfied for dk

FRPRP
+1

�

g d gFRPRP
k
T

k kc+ + +≤ −1 1 6 1
2  where c6>0

Case 7: If  ζk=0, ξk=0 and 0<ωk<1, then the relation (27) 
becomes

g d g d g d g dDY PRP DYPRP
k
T

k k k
T

k k k
T

k k
T

k+ + + + + + + += + −( ) =1 1 1 1 1 1 1 11ω ω .

In Babando et al. [3], proved that the sufficient descent 

condition holds for dk
DYPRP
+1

�

g d gk
T

k
DYPRP

kc+ + +≤ −1 1 7 1
2� , where c7>0

Case 8: If  ζk+ξk=1, 0<ζk<1, 0<ξk<1 and ωk=0, then the 
relation (27) becomes

g d g d g d g dLS FR LSFR
k
T

k k k
T

k k k
T

k k
T

k+ + + + + + + += + −( ) =1 1 1 1 1 1 1 11ζ ζ

In Djordjević [19], Djordjević shown that the sufficient 
descent condition is satisfied for dk

LSFR
+1

� .

g d gLSFR
k
T

k kc+ + +≤ −1 1 8 1
2

Case 9: If  0<ζk<1, 0<ξk<1, ωk=0 and 0<ζk+ξk<1, then the 
relation (27) becomes

g d g d g d g dLS FR PR
k
T

k k k
T

k k k
T

k k k k
T

k+ + + + + + + += + + − −( )1 1 1 1 1 1 1 11� � � � PP

LSFRPRPg d= + +k
T

k1 1

Hanachi et al. proved in [22] that dk
LSFRPRP
+1

�  satisfies the 
sufficient descent condition ∀k, i.e.,

g d gk
T

k
LSFRPPP

kc+ + +≤ −1 1 9 1
2� , where c9>0

Case 10: If  0<ζk<1, 0<ωk<1, ξk=0 and ζk+ωk=1, then the 
relation (27) becomes

g d g d g d g dLS DY LSDY
k
T

k k k
T

k k k
T

k k
T

k+ + + + + + + += + −( ) =1 1 1 1 1 1 1 11ζ ζ

Liu and Li in [20] shown that dk
LSDY
+1

�  satisfies the sufficient 
descent condition ∀k, i.e.,

g d gLSDY
k
T

k kc+ + +≤ −1 1 10 1
2 , where c10>0

Case 11: If  0<ζk<1, 0<ωk<1, ξk=0 and 0<ζk+ωk<1, then 
there exist constants φ1,φ2,φ3,φ4 such that 0<φ1≤ζk≤φ3<1 and 
0<φ2≤ωk≤φ4<1. Now, the relation (27) becomes

g d
g d g d

g
LSDYPRP

LS DY

k
T

k
k
T

k k
T

k

k
+ +

+ + + +

+

≤ +

+ − −( )1 1
1 1 1 2 1 1

3 41

� ϕ ϕ

ϕ ϕ 11 1

1 1 1
2

2 3 1
2

3 4 4 1
21

T
k

k k

k

c c

c

d

g g

g

PRP
+

+ +

+

≤ − −

− − −( )
� ϕ ϕ

ϕ ϕ

Hence

g d g �k
T

k
LSDYPRP

k with
c c

c+ + +≤ − =
+

+ − −( )



1 1 1

2 1 1 2 2

3 4 41
� , � �� �

� �

� �



 > 0

Thus, it has been shown that dk
LSDYPRP
+1

�  fulfills the sufficient 
descent condition.

Case 12: If  0<ξk<1, 0<ωk<1, ζk=0 and ζk+ωk=1, then the 
relation (27) becomes

g d g d g d g dFR DY FRDY
k
T

k k k
T

k k k
T

k k
T

k+ + + + + + + += + −( ) =1 1 1 1 1 1 1 11ξ ξ

Abubakar et al. in [37] shown that dk
FRDY
+1

�  satisfies the 

sufficient descent condition∀k, i.e.,

g d gFRDY
k
T

k kc+ + +≤ −1 1 12 1
2 , where c12>0

Case 13: If  0<ξk<1, 0<ωk<1, ζk=0 and 0<ξk+ωk<1, then the 
relation (27) becomes

g d g d g d g dFR DY PR
k
T

k k k
T

k k k
T

k k k k
T

k+ + + + + + + += + + − −( )1 1 1 1 1 1 1 11� � � � PP

FRDYPRPg d= + +k
T

k1 1

Hanachi et al. proved in [21] that dk
FRDYPRP
+1

� satisfies the 
sufficient descent condition ∀k, i.e.,
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g d gFRDYPRP
k
T

k kc+ + +≤ −1 1 13 1
2 , where c13>0

Case 14: If  0<ζk<1, 0<ωk<1 and 0<ξk<1 with ζk+ξk+ωk=1, 
then there exist constants γ1,γ2,γ3 such that 0<γ1≤ζk≤1, 
0<γ2≤ξk≤1, and 0<γ3≤ωk≤1. Now, the relation (27) becomes

g d g d g d g dLSFRDY LS FR DY
k
T

k k
T

k k
T

k k
T

k+ + + + + + + +≤ + +1 1 1 1 1 2 1 1 3 1 1� γ γ γ

��≤ − − −+ + +γ γ γ1 1 1
2

2 2 1
2

3 1
2c ck k kg g g

Hence

g d g �k
T

k
LSFRDY

k with c c c+ + +≤ − = + +[ ] >1 1 1
2

1 1 2 2 3 3 0� , � �� � � � �

Thus, it has been shown that dk
LSFRDY
+1

� fulfills the sufficient 
descent condition.

Case 15: If  0<ζk<1, 0<ωk<1 and 0<ξk<1 with 0<ζk+ξk+ωk<1, 
then there exist constants ϖ1,ϖ2,ϖ3,ϖ4,ϖ5,ϖ6 such that 
0<ϖ1≤ζk≤ϖ4<1, 0<ϖ2≤ξk≤ϖ5<1, and 0<ϖ3≤ωk≤ϖ6<1. 
Now, the relation (27) becomes

( )

( )

( )

LS FR DY
1 1 1 1 1 2 1 1 3 1 1

PRP
4 5 6 1 1

2 2
1 1 1 2 2 1

2 2
3 3 1 4 5 6 4 1

2
1 1 1

1 1 2 2 3 3 4 5 6 4

g d g d g d g d

  1 g d

  g g

  g 1 g .

g d   g

    1 0.

T T T T
k k k k k k k k

T
k k

k k

k k

T
k k k

c c

c c

with c c c c

ϖ ϖ ϖ

ϖ ϖ ϖ

ϖ ϖ

ϖ ϖ ϖ ϖ

ϖ ϖ ϖ ϖ ϖ ϖ

Ψ

Ψ

+ + + + + + + +

+ +

+ +

+ +

+ + +

≤ + +

+ − − −

≤ − −

− − − − −

≤ −

 = + + + − − − > 

Thus, it has been shown that dk
LSFRDYPRP
+1

� fulfills the sufficient 
descent condition.

4. CONVERGENCE ANALYSIS

In this section, we study the global convergence properties 
of  the proposed CG method. For further consideration, we 
need Assumptions (1) and (2), and the following important 
result, established by Zoutendijk [38] and Wolfe [4].

Theorem 4.1. Suppose that Assumptions (1) and (2) hold. 
Consider the iterative method (2), in which, ∀k≥0, the search 
direction dk is the descent direction, and the step size αk 
satisfies the strong Wolfe conditions (4) and (5). Then

k
k k

=
∑ < ∞
0

2 2
∞

cos gφ � (48)

Where

cos
g d
g d

φk
k
T

k

k k

= − 2 � (49)

Inequality (48) is called the Zoutendijk condition.

Lemma 1. Assume that Assumptions (1) and (2) hold. Let 
dk be a descent direction (23) and suppose the step size αk 
satisfies (5). Then, the step size αk satisfies the following 
lower bound,

�
�

k
k
T

k

k
L

k≥ − ∀ ≥( )
,�

1
02

d g

d
� (49)

Proof. From the (26), we have

− − ≤ − = −( )+( )1 1σ σd g d g d g d g gk
T

k k
T

k k
T

k k
T

k k

By applying the Cauchy-Schwarz inequality and Lipschitz 
condition (20), we obtain

d g g d g g d d

d

k
T

k k k k k k k k

k k

L

L

+ +−( ) ≤ ⋅ − ≤ ⋅

=

1 1

2

α

α

Combining the above inequalities yields

− − ≤( )1 2� �d g dk
T

k k kL

Rearranging gives the desired result (49).

According to Lemma (1) and Assumption (1), (2), the 
strong Wolfe condition (4), (5), and decent direction (23), 
we conclude that αk, obtained from our innovative method, 
is non-zero, i.e., ∃ a constant η > 0 such that

αk≥η,∀k≥0� (50)

The global convergence of  the hRH method is demonstrated 
by the following theorem:

Theorem 4.2. Assume that Assumptions (1) and (2) holds. 
The sequence {xk} and {dk} generated by the hRH algorithm, 
and the search direction dk is a descent direction, and the 
stepsize αk satisfies the strong Wolfe conditions (4) and (5), 
then

lim g
k kinf
→

=
∞

0 � (51)
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Proof. A contradiction is used to prove this theorem. Assume 
that formula (51) does not hold. Therefore, ∃ a constant 
r > 0 such that

‖gk‖≥r, ∀k≥1� (52)

According to Theorem (3.2), it can be deduced that

g d g �k
T

k kc c≤ − ∀ >2 0,

We can write it as

− ≥ ∀ >g d gk
T

k kc c2 0,�

Then, by (26) and (53), we get

d y d g d g d g gk
T

k k
T

k k
T

k k
T

k kc= − − − −+1
21 1 ( ) ( )σ σ � (54)

From (20), we obtain

‖yk‖ = ‖gk+1−gk‖≤L‖sk‖≤LD� (55)

where D=max{‖x−y‖,x,y∈N} is the diameter of  N and 
sk=xk+1−xk.

We have
d g d

d g d

hRH

hRH

k k K k

k k K k

+ +

+ +

= − +

≤ +
1 1

1 1

�

�

β

β

From (6), we obtain

� �� � � � � � � � � � �

�
k k k k k k k k k k k

K

k

hRH LS FR DY PRP

hRH

g

�

�

= + + + − − −( )

= +

1

1
TT

k

k
T

k

k

k

k

k
T

k

k
T

k

k

k k

k

k

c

y

d g

g

g

g

d y

g y

g

g y

g

g

+ + +

≤ +

+ + +

+ +

1
2

2
1
2

1
2

1
2

1
2

�
gg

g

g

g y

gk

k

k

k k

kc2
1
2

2
1

21
+

−
++ +

( )�

By using (52) and (54), we get

≤ + +
−

+ =� � �LD
c r r c r

LD
r

M
2

2

2

2

2 21( )
.

�

The initial inequality is derived from the conditions 
0<ζk,ξk,ωk<1 and 0<1−ζk−ξk−ωk<1. The second inequality 
uses the Cauchy-Schwarz inequality with (23). The final 

inequality utilizes (21), (52), and (55). Therefore, (3) and (50) 
imply that
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This contradicts Theorem (4.1). Therefore, equation (52) is 
invalid, and the claim in (51) is proven.

5. THE NUMERICAL RESULTS

This section presents a numerical evaluation of  the proposed 
hRH method compared to the established methods: DHF 
[23], HLSDY [20], HLSFR [19], and HDYCDHS [24]. The 
evaluations used 170 benchmark test problems obtained 
from [39-41] with different dimensions (n) ranging from 
2 to 200,000. The measures adopted included the time 
required to solve the problem, the number of  iterations, 
and the number of  function and gradient evaluations. The 
implementation was performed using MATLAB (R2024b) on 
a personal computer with an Intel(R) Core (TM) i5-8250U 
CPU @ 1.60 GHz, 8.00 GB RAM, and a 64-bit Windows 11 
Education operating system. The convergence criterion was 
set to ‖gk‖≤0−6 or when the maximum number of  iterations 
reaches 2000. A comprehensive list of  these test problems 
is provided in Table 2. All of  these algorithms implement 
the strong Wolfe parameters and are fixed at δ  =  0.0001 
and σ = 0.1. The numerical comparisons were based on 
the performance profile framework proposed by Dolan 
and Moré [42]. In the analysis of  the performance profiles, 
the upper curve indicates that the method is better. The 
effectiveness of  the method is determined according to the 
performance metric Ps(τ), which measures the performance 
of  the solver on a set of  benchmark problems. Here, Ps(τ) 
denotes the proportion of  problems solved by the solver 
with a performance ratio less than or equal to τ. Using 
this metric, we obtained the ratio of  the solver’s capacity 
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to properly assess how this optimization problems can be 
solved. Thus, efficient procedures must be considered and 

simplified. Taking Ps(τ) = P(τ), it is also taken that S = τ, The 
numerical results were compared graphically. Figs. 1-3 show 
the comparison results.

In Fig.  1, we present the performance curves of  the 
computational time. The vertical axis represents the fraction 
solved within a given ratio τ, while the horizontal axis 
represents the time ratio τ. When 0<τ≤0.5, hRH shows better 
performance and solves 77% of  the problems in less time 
than the other methods, while HLSDY and HLSFR 70% 
and HDYCDHS and DHF 67% and 51%, respectively. With 
τ rising to τ≥0.5, hRH remains the most efficient at 95%,

TABLE 2: List of test problems, dimensions, and 
initial points
Function name Dimensions tested 

(n)
Initial point 

(s)
ARGLINB 2, 500, 1000
BV 500, 1000, 10000, 20000, 

30000
(0,…,0)

COSINE 10, 100, 1000, 10000, 100000 (1,…,1)
DIXMAANA 300, 30000, 60000, 90000, 

120000
(2,…,2)

DIXMAANL 3000, 9000, 30000, 60000 (2,…,2)
DIXMAANK 3000, 9000, 30000, 60000, 

120000
(2,…,2)

DIAGONAL 4 100, 1000, 10000, 100000, 
200000

(1,…,1)

DIAGONAL 5 100, 1000, 10000, 50000, 
200000

(1.1,…,1.1)

DIAGONAL 6 100, 1000, 10000, 50000, 
100000

(−1.3,…,−1.3)

DIAGONAL 8 1000, 5000, 10000 (1,…,1)
DQRTIC 5000, 10000, 50000, 100000, 

150000
(2,…,2)

EDENSCH 2, 100, 1000, 10000, 100000 (0,…,0)
DENSCHNF 10, 100, 1000, 10000, 100000 (0.02,…,0.02)
EDENSCHNB 2, 100, 10000, 100000 (0.3,…,0.3)
ETRIG1 2, 1000, 10000 (0.5,…,0.5)
ENGVAL1 10, 1000, 10000 (−1,…,−1)
EVF 2 (11,…,11)
EXPENALTY 100, 1000, 25000, 50000 (0.5,…,0.5)
EXTROSNB 2, 500, 1000, 10000 (−2,…,−2)
EXROSEN 10, 100, 1000, 5000, 10000, 

50000, 100000
(2,…,2)

EXHIMMELBLAU 10, 1000, 10000 (−0.5,…,0.5)
GENHUMPS 2, 100, 500, 1500 (1,…,−1)
GENQUARTIC 1000, 25000, 75000 (1,…,1)
GQUARTIC 50, 100, 500, 1000 (1,…,1)
HARKERP 100, 1000, 10000, 50000 (−1,…,−1)
HIMMELBH 100, 10000, 100000 (0.2,…,0.2)
HIMMELBG 100, 1000, 10000, 100000 (1.5,…,1.5)
IE 100, 500, 1000 (0,…,0)
LIN 100, 250, 500 (1,…,1)
LIARWHD 1000, 50000, 100000 (4,…,4)
NONSCOMP 100, 5000, 25000, 50000, 

100000, 200000
(−1,…,−1)

PEN1 100, 250, 500 (1. or 0.5.)
QP1 1000, 10000, 25000, 50000 (−1,…,−1)
QP2 100, 1000, 10000, 100000 (10,…,10)
QP3 100, 1000, 10000, 100000 (−1,…,−1)
QUARTC 100, 1000, 10000, 25000, 

50000
(0.23,…,0.23)

QUARTICM 1000, 10000, 100000 (0.03,…,0.03)
RAYDAN1 50, 500, 50000 (1,…,1)
SINE 100, 1000, 5000, 50000, 

100000
(1,…,1)

SHALLOW 25000, 50000, 100000 (10,…,10)
TRID 10, 100, 1000, 2000, 5000 (−1,…,−1)
WOODS 1000, 100000, 150000, 

200000
(0.5,…,−2, 

0,…,0)

Fig. 1. Time performance for DHF, HLSDY, HLSFR, HDYCDHS, and 
hRH methods.

Fig. 2. Iteration count performance for DHF, HLSDY, HLSFR, 
HDYCDHS, and hRH methods.
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While HLSDY takes the second place producing 89%, 
third place is taken by DHF and HLSDY 88%, and HLSFR 
in last place 87%. As expected, hRH is faster in terms of  
computational time than the other algorithms. Concurrently, 
if  τ is between 0.5<τ≤1, our method solved 90% problems, 
and that of  the second-best method, HDYCDHS solved 
82% problems.

Fig. 2 shows the relative measures, which are the iteration 
counts of  each algorithm for convergence. In 0<τ≤0.5, 
the hRH method demonstrated the highest resolution 
rate compared to the other methods, solving 92% of  
the problems with a smaller number of  iterations than 
all the other methods, approximately 82%. Again, as 
τ≥0.5, the efficiency of  the hRH method is 95% while for 
HDYCDHS, it is 89%, and for the other methods, it is 
88%. Meanwhile, if  τ is between 0.5<τ≤1, the proposed 
method solved 95%, the HDYCDHS method 87% and 
the other methods 84%. These results demonstrate that 
the proposed hRH algorithm achieves a better solution 
with fewer iterations, particularly in high-dimensional or 
challenging problem domains.

The performance profile of  the number of  function/gradient 
evaluations is depicted in Fig. 3. The relative performance 
of  hRH within the range 0<τ≤0.5 is as follows: hRH solves 
88% of  the problems with fewer evaluations compared to 
HLSDY, HLSFR, and HDYCDHS solve 81% and DHF 
solves 76%. Up to τ≥1, the efficiency of  hRH is 95%, that 
of  the second-best method HDYCDHS is 89%, and that 
of  the others is 87%. The results show that the proposed 

hRH algorithm requires fewer function/gradient evaluations 
than other algorithms, while significantly reducing the overall 
computational cost.

For the EXROSEN function, the proposed (hRH) method 
uniquely succeeded in solving the problem across the seven 
tested dimensions, whereas the comparative methods (DHF, 
HLSDY, HLSFR, and HDYCDHS) failed in all dimensions 
because of  jamming, that is, generating many short steps 
without making significant progress toward the solution. The 
numerical simulation also confirmed the effectiveness of  the 
hRH method for the investigated performance parameters. 
It can be observed that it always performs better than the 
other methods in terms of  computational time, number of  
iterations, and number of  function/gradient evaluations. 
These results demonstrate that the proposed hRH algorithm 
is stable and fast for optimizing unconstrained optimization 
problems.

6. IMAGE RESTORATION PROBLEMS

In this section, we evaluate the performance of  the proposed 
hRH algorithm in restoring color images corrupted by 
impulse noise.

Following the spirit of  [43], we treat high-density noise in 
digital images using a dual-phase framework. In the first 
phase, we used an adaptive median-based method to identify 
the corrupted pixels. Let us assume that Z is a color image of  
dimensions M×N and Ω = {1,…M}×{1,…N} is the pixel 
index domain. Therefore, we assume that the subset of  noisy 
pixels, denoted by D, is a subset of  and choose |D| to be 
the total number of  noisy pixels. Every noisy pixel at location 
(i, j) has four immediate neighbors in the neighborhood Wi,j 
around it: {(i−1,j),(i+1,j),(i,j-1),(i,j+1)}.

We observe the noisy pixel value, denoted as zij, and the 
recovered value, denoted as vi,j. The denoising process is 
formulated as a non-smooth optimization.

min
v
( , )

, , ,
( )

,
( )

i j
i j i j i j i jv z R R

∈
∑ − + ⋅ +( )
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where the regularization terms are given by
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Fig. 3. Objective function/gradient calculation performance for DHF, 
HLSDY, HLSFR, HDYCDHS, and hRH methods.
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The function � �δ ( )t t= +2  acts as a smooth penalty term 
that preserves the edges and is characterized by a positive 
parameter δ. The vector v = [vi,j](i,j)∈D is a lexicographically 
ordered list of  unknowns. Directly minimizing (56) can be 
computationally expensive, particularly for high-resolution 
images with dense noise.

To resolve this issue, a smooth surrogate model was presented 
in [44], eliminating the non-smooth term and resulting in the 
following equivalent formulation:

min
v
G v
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With an increasing noise ratio, the number of  corrupted pixels 
also increases, and the size and complexity of  the problem 
(57) increase drastically. Nevertheless, as demonstrated 
in [44], CGMs remain efficient and scalable for this problem, 
even under severe corruption.

Nevertheless, color images require more attention than 
grayscale images because they are multichannel. Each of  
the three-color images contains three channels: Red, Green, 
and Blue (RGB), and there may be noise present in each of  
these channels differently. Therefore, the restoration process 
is much more complex. Therefore, we adopt a channel-wise 
restoration strategy where each RGB component is selectively 
restored independently using the same optimization 
procedure. To preserve reality in the final output, care is 

taken to ensure that the overall structure consists of  what 
is present across channels. We show that this strategy can 
be used effectively to handle independently corrupted color 
channels without introducing artifacts in the reconstructed 
image.

We then applied this model to tackle salt-and-pepper noise, 
which is the most prevalent form of  impulse corruption 
in color images. It was first operated using an adaptive 
median filter [45] to detect the noisy pixels across all color 
channels. The solution of  (57) using our proposed hRH 
algorithm is compared in the reconstruction step to several 
classical CGMs: PRP, LS, and FR methods. We evaluated 
the performance on several widely used test images of  
size 768×512: Girl, Lighthouse, Hats, and Macaws. The 
termination condition is defined as:

� � � �Iterations or
G G

G
k k

k

>
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≤− −300 101 4δ δ
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v

The experimental platform matches the one described in 
section 5. Restoration quality is quantified using the Peak 
Signal-to-Noise Ratio (PSNR), computed as

PSNR log= ⋅
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where xi j
r
,  and xi j

o
,  denote the restored and original pixel 

values, respectively, and

TABLE 3: Image denoising results for different methods (hRH, PRP, LS, and FR)
Image Noise Methods

hRH PRP LS FR
Itr Time PSNR Itr Time PSNR Itr Time PSNR Itr Time PSNR

Girl 0.30 17 28.59 83.14 77 81.96 18.67 27 83.28 77.27 82 21.67 51.10
0.50 21 54.45 80.79 74 79.97 17.67 28 81.01 73.68 80 20.00 43.03
0.70 22 66.74 78.48 71 77.98 18.33 64 78.42 70.89 77 22.00 71.70
0.90 31 139.79 75.78 69 75.33 23.00 72 69.19 68.67 75 22.33 75.34

House 0.30 21 32.75 81.46 81 83.06 20.33 28 81.57 81.69 83 15.33 16.08
0.50 20 67.59 79.57 80 81.15 20.67 72 79.04 79.27 82 17.33 61.51
0.70 26 51.05 76.89 77 79.10 13.33 41 75.46 75.60 79 21.00 41.35
0.90 16 71.86 72.66 72 74.53 24.67 86 73.10 74.55 76 20.67 89.77

Macaws 0.30 22 24.31 84.30 85 84.66 20.33 18 83.98 84.97 83 24.33 18.99
0.50 19 23.10 82.08 83 81.88 18.67 25 81.85 83.28 82 23.67 24.46
0.70 23 48.26 79.33 80 80.45 20.00 33 80.52 79.53 78 14.00 36.27
0.90 28 51.33 76.07 77 76.84 26.33 58 74.07 75.24 77 19.67 29.64

Hats 0.30 21 15.01 84.77 85 86.34 21.33 23 84.34 84.93 86 18.67 20.42
0.50 20 18.97 82.81 84 84.27 19.00 28 81.67 83.88 85 16.33 21.44
0.70 22 45.77 80.73 81 82.79 16.33 32 79.19 79.90 82 20.33 33.79
0.90 25 25.49 77.37 78 73.91 22.00 42 77.20 75.88 76 24.67 62.55



Jalal and Jabbar: Hybrid CG for optimization and imaging

180	 UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2

The key metrics, including the iteration count, calculation 
time, and PSNR for all tested methods, are summarized in 
Table 3. We only provide visual results for noise levels of  
70% and 90% in Figs. 4 and 5 to illustrate the original, noisy, 
and restored images, to conserve space.

The proposed hRH method demonstrates a marked advantage 
over the classical CG methods (PRP, LS, and FR) for image 
denoising. While the LS algorithm provides competitive 
PSNR values, our hRH method excels in high-noise scenarios, 
delivering superior or comparable image quality where it 

matters most. The most significant strength of  hRH lies in 
its convergence efficiency, as it consistently requires a fraction 
of  the iterations needed by the other methods. Although 
the FR method is frequently faster in terms of  computation 
time, it suffers from poor accuracy. Conversely, PRP and 
LS are generally slower without consistently outperforming 
hRH in quality. Overall, the hRH method provides the best 
trade-off  between accuracy and efficiency, proving to be 
the most robust and reliable algorithm tested, particularly in 
challenging denoising tasks.

Fig. 4. (a-x) Original images (first row), noisy images with 70% salt-and-pepper noise (second row), and restored results with hRH (row 3), 
PRP, (row 4), LS (row 5) and FR (row 6).
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7. CONCLUSION

In this study, a novel hybrid CG algorithm for unconstrained 
optimization is proposed and called βk

hRH . The update parameter 
is a convex combination of  the established CG formulas:

� � � � � � � � � � �k k k k k k k k k k k
hRH LS FR DY PRP= + + + − − −( )1 ,

where the coefficients are selected such that they satisfy 
the Dai-Liao conjugacy condition. The proposed method 
guarantees descent directions by an inexact line search and 

demonstrates global convergence under certain general 
conditions. Computational testing of  the hRH method on a 
range of  benchmark problems showed good performance, 
which was superior to that of  conventional CG methods. In 
addition, the practical feasibility of  the proposed method was 
demonstrated by its successful application to image impulse 
denoising, where the images were restored clearly despite 
the preservation of  the intrinsic structural information. The 
above results thus show the versatility and applicability of  
the proposed method to standard optimization problems 
and real-world image processing problems.

Fig. 5. (a-x) Original images (first row), noisy images with 90% salt-and-pepper noise (second row), and restored results with hRH (row 3), 
PRP, (row 4), LS (row 5) and FR (row 6).
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