
UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 37

1. INTRODUCTION

In this paper, we propose a rejuvenation framework that
addresses software aging on abstract level. The changing
world demands faster and better alignment of software
systems with business requirements to cope with the rising
demand for better and faster services. This simply means
that a perfectly untouched functioning software ages just
because it has not been touched. The aging phenomenon
occurs in software products in similar ways to human;
Parnas [1] draw correlations between the aging symptoms
in human and software. As demands for functionality
grow software complexity rises, and as a result software,
underperformance and malfunctioning became apparent [2].
Software aging is a known phenomenon with recognized

symptoms such as increase in failure rate [3]. Researchers
have identified a number of causes of software aging,
for example, accumulation of errors over time during
system operation. One other cause is “weight gain” as in
human, software gains weight as more codes are added
to an application to accommodate new functionalities,
and consequently, the system loses performance. There
are numerous examples where software aging has caused
electronic accidents in complex systems such as in billing and
telecommunication switching systems [4]. Beside the causes
researchers in the field have identified a number of aging
indicators such as increased rate of resource (e.g., memory)
consumption [5]. Another aging indicator is how robust a
system is against security attacks if observed over time. This
is because security attack techniques are becoming more
sophisticated by day. However, more is needed to be done
to address the aging phenomena. Grottke et al. [5] claim that
the conceptual aspect of software aging has not been paid
adequate attention by researchers to cover the fundamentals
of software aging.

Currently, addressing software aging is mostly done using
reengineering techniques such as:

A Simple Software Rejuvenation Framework
Based on Model Driven Development
Hoger Mahmud
Department of Computer Science, College of Science and Technology, University	 of Human Development, Iraq

A B S T R A C T
In the current dynamic-natured business environment, it is inevitable that today’s software systems may not be suitable
for tomorrow’s business challenges which indicate that the software in use has aged. Although we cannot prevent
software aging, we can try to prolong the aging process of software so that it can be used for longer. In this paper, we
outline a conceptual software rejuvenation framework based on model driven development approach. The framework
is simple but effective and can be implemented in a recursive five step process. We have illustrated the applicability of
the framework using a simple business case study which highlights the effectiveness of the framework. This work adds
to the existing literature on software aging and its preventative measures. It also fills in the research gap which exists
about software aging caused by changing requirements.

Index Terms: Model Driven Development, Software Aging, Software Rejuvenation Framework

Corresponding author’s e-mail: hoger.mahmud@uhd.edu.iq

Received: 02-07-2017	 Accepted: 22-08-2017 	 Published: 30-08-2017

Access this article online

DOI: 10.21928/uhdjst.v1n2y2017.pp37-45 E-ISSN: 2521-4217

P-ISSN: 2521-4209

Copyright © 2017 Mahmud. This is an open access article distributed
under the Creative Commons Attribution Non-Commercial No
Derivatives License 4.0 (CC BY-NC-ND 4.0)

ORIGINAL RESEARCH ARTICLE UHD JOURNAL OF SCIENCE AND TECHNOLOGY

Hoger Mahmud: A Simple Software Rejuvenation Framework Based on Model Driven Development

38	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

1.	 Forward engineering concerns with moving from high-
level abstraction to physical implementation of a system

2.	 Reverse engineering concerns with analyzing a system to
identify components and connectors of that system to
represent the system in a different form or higher level
of abstraction

3.	 Redocumentation deals with creation or revision of
semantically equivalent representation within the same
abstract level

4.	 Design recovery concerns with reproducing all required
information about a system so that a person can
understand what the program does

5.	 Restructuring concerns with transfor ming a
representation of a system to a different one, without
any modification to the functionality of the system.

Reengineering can facilitate the examination of a system
and learn more about it so that appropriate changes can
be made. However, it is not the ideal solution for software
upgrade as the process is extremely time-consuming and
resource expensive. In this paper, we present a conceptual
software rejuvenation framework based on model driven
development (MDD) techniques capable of addressing
software aging with less time and resource. The framework
is most effective where the software aging is due to changing
business requirements which in effect requires the addition
or omission of functionalities. We have illustrated the
applicability of the framework through a simple business case
study which supports the effectiveness of the framework.
This work contributes to the field of software aging by
presenting a novel conceptual framework to software
developers that can be utilized to dilute software aging.

The rest of this paper is organised as follows, in Section 2
we provide a brief background about software aging and
rejuvenation and in Section 3 we present some related works.
In Section 4, we outline the frame work and in Section 5, we
illustrate the applicability of the framework using a simple
business case study. In Section 6 and 7, we discuss, conclude,
and provide some recommendations.

2. BACKGROUND

In this section, we provide a brief background to both software
aging and software rejuvenation with the aim to provide better
understanding of the proposed framework later in Section 4.

A. Software Aging
Software aging was first introduced by Huang et al. [6]
and since then the interest in the topic has risen among

academics and industries. Complex systems rely on an
intricate architectural setup to function, if the structure is
slowly destroyed by maintaining and updating the system
software aging becomes inevitable [7]. It is a known fact that
a system maintainer can mess up perfectly fine functioning
software through changing codes or inserting incorrect codes
which is known as “ignorant injection” [8]. To provide a
focus view of research areas on software aging Cotroneo
et al. [9] have analyzed more than 70 papers in which they
have concluded that overall there are two major categories
of research into understanding software aging the first is
model-based analysis and the second is measurement-based
analysis. Several measureable techniques have been proposed
to detect software aging such as “aging indicators” and “time
series analysis.” The techniques are used to collect data about
resources used in a system, and then, analyze it to see if the
consumption rate has increased over time which is a sign of
aging [3]. As for the causes of software aging, there are two
major classes, the first is known as “ignorant surgery” and
the second is known as “lack of movement.” Fig. 1 shows
the major contributors to the two classes of software aging
causes.

B. Software Rejuvenation
To keep critical systems functioning correctly software
rejuvenation is recognized as an effective technique [10].
The objective of software rejuvenation is to rollback a
system continuously to maintain the normal operation of
the system and prevent failures. According to Cotroneo
et al. [3] application-specific and application-generic are two
main classes of software rejuvenation techniques in which
the former works on specific system features and the latter
works on the whole system (e.g., system restart).

To further elaborate on the two main classes, researchers have
provided a number of examples for both; flushing of kernel,
file system defragmentation and resource reprioritization are
examples of application specific rejuvenation and application
restart, cluster failover, and operating system reboot are
examples of application generic rejuvenation [3]. Fig. 2
illustrates the two classes of software rejuvenation techniques.

3. RELATED WORK

There have been a number of attempts to tackle software
aging similar to what we propose here. The authors of Huang
et al. [6] present a model-based rejuvenation approach for
billing applications and Okamura and Dohi [10] proposes
dynamic software rejuvenation policies by extending
models presented in Pfening et al. [11]. The approach is case

Hoger Mahmud: A Simple Software Rejuvenation Framework Based on Model Driven Development

UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 39

specific and cannot be applied to a domain; this, however,
has similarities with what we are proposing since they also
use models to rejuvenate software. Saravakos et al. [12]
proposes the use of continuous time Markov chains to
model and analyze software aging and rejuvenation to
better understand causes of aging which helps putting in
place mitigating measures. This approach is suitable to
treat symptoms of aging that happens for technical reasons
rather than changes in requirements. Dohi et al. [13] models
optimal rejuvenation schedule using semi-Markov processes
to maximize availability and minimize cost. The focus here
is aging caused due to processing attributes; however, unlike
this work we focus on the functionality attributes of a system
Garg et al. [14]. Adopts the periodic rejuvenation technique
proposed by Huang et al. [6] and uses stochastic petri net to
model stochastic behavior of software aging. Beside modeling
techniques, others have used techniques such a time triggered
rejuvenation technique used by Salfner and Wolter [15] and
software life-extension technique used by Machida et al. [16]
to counteract software aging in which they take preventative

measures to ease software aging and allow more time for
system rethink. Huang et al. [6] proposes a proactive technique
to counteract software aging with the aim to prevent failure
using periodic preemptive rollback of running applications.
To detect symptoms of aging techniques such as machine
learning is used to analyze data through adopting artificial
intelligent algorithms (e.g., classifiers) [17]. Garg et al. [18]
discuss measures for software aging symptom detection
with the aim to diagnose and treat the aging taking place,
others have used pattern recognition techniques to detect
aging symptoms [17]. These works propose how to detect
symptoms of software aging without proposing a suitable
mechanism to treat the symptoms.

All the related works presented so fare address software
aging from technical and performance viewpoint and none
consider aging caused as a result of changing requirements.
This allows us to claim that our framework contributes to
the software aging and rejuvenation literature by filling in
this gap and take a new direction in tackling software aging.

4. FRAMEWORK OUTLINE

The base of our conceptual rejuvenation framework is MDD
technique [19], [20]. France et al. [21] claim that abstract
design languages and high-level programming languages can
provide automated support for software developers in terms
of solution road map that fast-forward system developments.
Following their direction we use Model Driven Development
(MDD) techniques to design a rejuvenation framework
to tackle requirement-based software aging. MDD simply
means constructing a model of the system with fine details
before transferring it into code. It provides the mapping
functions between different models for integration and model
reusing purposes [22]. MDD is a generic framework that can
accommodate both application specific and application generic
classes of software rejuvenation. Mayer et al. [23] states MDD
is ideal for visualizing systems and not losing the semantic link
between different components of the system at the same time.
It is inevitable that extensive manual coding in developing a
system escalates human errors in the system; this issue can
be addressed through code automation which is the ultimate
aim of MMD. Building and rebuilding system is an expensive
process that requires time and resource; model driven aims
at using, weaving and extending models to maintain, develop
and redevelop systems. Experts in the field claim that
MDD improves quality as models are continuously refined
and reduce costs by automating the development process
[22]. This process changes models from being expenses to

Fig. 1. Major causes of software aging

Fig. 2. Software rejuvenation techniques

Hoger Mahmud: A Simple Software Rejuvenation Framework Based on Model Driven Development

40	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

important assets for businesses. Researchers have identified the
conceptual gap between problem domain and implementation
as a major obstacle in the way of developing complex systems.
Models have been utilized to bridge the gap between problem
domain abstractions and software implementation through
code generation tools and automated development support [2].
Models can serve many purposes such as:
1.	 Simplifying the concept of a complex system to aid

better understanding of the problem domain and
system transformation to a form that can be analyzed
mechanically [24]

2.	 Models are platform and language independent
3.	 Automatic code generation using models reduce human

errors
4.	 For new requirements only the change in model is

required this reduces the issue explained previously
known as weight gain.

A. Framework Steps
We propose a five step recursive software rejuvenation
framework to address the issue of software aging. As
mentioned the framework is based on model driven software
development which is implemented in the following steps:
1.	 First developers gather system requirements which is one

of the must do tasks in every software development
2.	 Developers design the entire system in great details using

tools such as unified modeling language (UML)
3.	 The complete design is fed into code generators such as

Code Cooker (http://codecooker.net) and Eclipse UML
to Java Generator to generate system codes

4.	 Software codes are integrated, tested, and finalised, this
step is necessary since a code generator tool capable
of generating 100% of the code is yet to exist. This
limitation is discussed in Section 6

5.	 In the final step where the new product is delivered and
installed.

Fig. 3 illustrates the five steps explained in a recursive setting,
i.e., when a new feature is required to be added to the system to
address a new requirement the system is upgraded through the
model rather than though code injection. The models are kept
as assets and refined as new requirements come in, the next
section provide more inside as to how the framework works.

5. CASE STUDY

To illustrate the applicability of the framework we present a
simple none-trivial business case study specific to Kurdistan
region.

Mr. X is a supermarket owner in the city of Sulaymaniyah
who sells domestic goods and he employs 10 people in his
supermarket. Currently, his shop is equipped with electronic
point of sale (ePOS) systems to record transactions and
the form of payment by customers is cash only. Electronic
payment is not feasible due to unavailability of electronic
payment systems in the region’s banks. His current ePOS
system is capable of performing the following functionalities:
1.	 Store individual item details such as name, price, barcode,

and expiry dates
2.	 Store information about employees such as name,

address, date of birth, and telephone numbers
3.	 Retrieve and match barcodes on products to display and

record item details
4.	 Calculate total price and print out customer receipts
5.	 Record all transactions and generate various reports such

as daily sales report, weekly sales report, and sale by item
report

6.	 The administration side of the system is managed
through a user management subsystem which allows
adding, deleting, updating, and searching on users. The
system also contains a product management subsystem
that allows managing products through adding, deleting,
updating, and searching on item.

We make an assumption that in the next 6 months electronic
payment systems (ePayment) will become available in
Kurdistan for businesses to use. Now Mr. X would like to
gain an edge over his competitors and add ePayment system to
his current ePOS system. Fig. 4 is the UML use case diagram
for the current ePOS system in Mr. X’s supermarket which
shows the use cases than can be performed by each actor.

Fig. 3. Model driven development-based software rejuvenation
framework

Hoger Mahmud: A Simple Software Rejuvenation Framework Based on Model Driven Development

UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 41

Fig. 5 is the future use case diagram for the new system which
shows the addition of a new actor called “customer” and a
new use case called “pay electronically” coted in yellow. Now,
we assume developers of the system had the framework in
mind when they developed the system and have kept a design
model of the system similar to the one illustrated in Fig. 6
which shows a UML class diagram design model of the ePOS
system. Mr. X now goes back to them and request that the new

functionality (electronic payment) to be added to the system.
Using the framework the developers refine the UML class
diagram model (new classes coted in yellow) to accommodate
the new requirement and produce a new design similar to
the one shown in Fig. 7. The new design is now ready to be
fed into code generators to generate the codes for the new
system. Using the framework the developers have performed
a rejuvenation process on Mr. X’s system without touching

Fig. 4. Current electronic point of sale unified modeling language use case diagram

Fig. 5. Future electronic point of sale unified modeling language use case diagram

Hoger Mahmud: A Simple Software Rejuvenation Framework Based on Model Driven Development

42	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

the current operating ePOS. It is important to point out that
the framework tackles software rejuvenation conceptually
and on abstract level which means we are bypassing all the
technicalities of implementation and testing processes. During
our search, we did not come across any related work that
considers design for software rejuvenation rather than an actual
system, which indicates that our approach is unique. However,
it has to be said that although being unique is an advantage,
it has made it difficult for us to compare the applicability of
our framework with other existing frameworks.

6. DISCUSSION

Researchers in the field have concluded that software aging is
inevitable and as software ages it loses its ability to keep up.
In this paper, we have proposed a five step recursive software
rejuvenation framework based on model driven software
development approach. To illustrate the applicability of
the framework we have outlined a simple business scenario
and explained how the framework rejuvenates the current
system in use by the business. The framework will provide the
following advantages over existing rejuvenation techniques:
1.	 The model is used to redevelop the system without

taking the old system out of operation which leads to
reduction in down time (unavailability) which otherwise
lead to lose of customers and profits

2.	 Using models to maintain and update software gives the
development process an edge as models are language
independent and can be used to develop systems in
the state of the art programming languages which in
turn ease software aging as the technology used in the
development is current [25]

3.	 As codes are generated automatically human errors are
reduced, which is one of the contributors of software
aging

4.	 Redevelopment costs and times are reduced as
developments are automated.

The objective of software rejuvenation is to rollback a
system continuously to maintain the normal operation of the
system and prevent failures. However, software rejuvenation
increases system downtime as the system is taken out of
operation while the rejuvenation process is performed.
Knowing when to perform rejuvenation process on a system
is a crucial factor recognized by researchers to minimize
cost and maximize availability [3]. The framework we have
proposed addresses this issue by working on the system on
design level without terminating the system operation while
the rejuvenation solution is finalized. It is important to
stress that the framework is conceptual and requires further
research as there are a number of limitations that need be
addressed to make the framework fully applicable. The
limitations can be summarized as follows:

Fig. 6. Current electronic point of sale unified modeling language class diagram

Hoger Mahmud: A Simple Software Rejuvenation Framework Based on Model Driven Development

UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 43

1.	 Available software modeling tools such as UML 2.0 which
is an industry standard currently does not provide the
ability to model systems from user-defined viewpoint [21]

2.	 MDD is not widely used [22] although it has gained
momentum with a potential for industry wide adaptation

3.	 Once the models are developed and finalized there comes
the issues of translating it completely into code as a tool
to generate 100% codes from a model not yet exist

4.	 The issue of measuring the quality of models is realized
by researchers to tackle this issue France and Rumpe [2]
suggests that modeling methods should come with
modeling criteria that modelers can use as a guide for
system modeling. However, such criterions are yet to
be presented by modeling language and tool developers
such as developers of UML (www.omg.org)

5.	 In the course of developing a system, many different
models are created at varying abstract levels which creates
model tracking, integration, and management issues and
the current modeling tools are not sophisticated enough
to deal with the issues.

Despite all the limitations, we believe the fundamental
concept behind the framework has great potentials to be
advanced and implemented in the future.

7. CONCLUSION AND RECOMMENDATIONS

Software aging is inevitable which occurs as a result of
changing requirements, ignorant injections, and weight
gain. Researchers have proposed a number of different
approaches to tackle software aging; however, nearly all
approaches are trying to address the aging caused by
technical update or software malfunction. In this paper, we
have outlined a framework for software rejuvenation that
uses MDD approach as base for the rejuvenation process.
The framework addresses software aging from a change in
business requirement point of view which is different from
what current researchers are proposing. It is simple, effective,
and applicable as demonstrated by applying it to a simple
business case study.

Fig. 7. Future electronic point of sale unified modeling language class diagram

Hoger Mahmud: A Simple Software Rejuvenation Framework Based on Model Driven Development

44	 UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2

The foundation concept developed in this paper contributes
to the field of software aging and paves the way for looking
at software aging in a different angle.

Now to delay software aging, we recommend a number of
quick mitigating actions as follows:
1.	 Characterize the changes that are likely to occur over the

lifetime of a software product, and the way to achieve
this characterization is by applying principles such as
object orientation

2.	 Design and develop the software code in a way that
changes can be carried out; to achieve this concise and
clear documentation is the key

3.	 Reviewing and getting a second opinion on the design
and documentation of a product helps in prolonging the
lifetime of a software product.

When the aging has already occurred there are things we
could do to treat it such as:
1.	 Prevent the aging process to get worse by introducing

and creating structures whenever changes are made to
the product

2.	 As changes are introduced to a product a review and
update of the documentation is often a very effective
step in slowing the aging process

3.	 Understanding and applying the principle of
modularization is a good way to ease the future
maintenance of a product

4.	 Combining different versions of similar functions into
one system can increase efficiency of a software product
and reduce the size of its code which is one the causes
of software aging.

REFERENCES

  [1]	 D. L. Parnas. “Software aging.” in Proceedings of the
16th International Conference on Software Engineering, 1994,
pp. 279-287.

  [2]	 R. France and B. Rumpe. “Model-driven development of complex
software: A research roadmap.” in 2007 Future of Software
Engineering. Washington, DC, USA: IEEE Computer Society,
2007, pp. 37-54.

  [3]	 D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. “A survey
of software aging and rejuvenation studies.” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 10,
no. 1, pp. 8, 2014.

  [4]	 A. Avritzer and E. J. Weyuker. “Monitoring smoothly degrading
systems for increased dependability.” Empirical Software
Engineering, vol. 2, no. 1, pp. 59-77, 1997.

  [5]	 M. Grottke, R. Matias, and K. S. Trivedi. “The fundamentals of
software aging.” in Software Reliability Engineering Workshops,
2008. ISSRE Wksp 2008. IEEE International Conference on, 2008,
pp. 1-6.

  [6]	 Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. “Software
rejuvenation: Analysis, module and applications.” in Fault-Tolerant
Computing, 1995. FTCS-25. Digest of Papers, Twenty-Fifth
International Symposium on, 1995, pp. 381-390.

  [7]	 C. Jones. “The economics of software maintenance in the twenty
first century.” Unpublished Manuscript, 2006. Available: http://www.
compaid.com/caiinternet/ezine/capersjones-maintenance.pdf.
[Last Accessed on 2017 May 15].

  [8]	 R. L. Glass. “On the aging of software.” Information Systems
Management, vol. 28, no. 2, pp. 184-185, 2011.

  [9]	 D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. “Software
aging and rejuvenation: Where we are and where we are going.”
in Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third
International Workshop on, 2011, pp. 1-6.

[10]	 H. Okamura and T. Dohi. “Dynamic software rejuvenation policies
in a transaction-based system under Markovian arrival processes.”
Performance Evaluation, vol. 70, no. 3, pp. 197-211, 2013.

[11]	 A. Pfening, S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. “Optimal
software rejuvenation for tolerating soft failures.” Performance
Evaluation, vol. 27, pp. 491-506, 1996.

[12]	 P. Saravakos, G. Gravvanis, V. Koutras, and A. Platis. “A
comprehensive approach to software aging and rejuvenation on
a single node software system.” in Proceedings of the 9th Hellenic
European Research on Computer Mathematics and its Applications
Conference (HERCMA 2009), 2009.

[13]	 T. Dohi, K. Goseva-Popstojanova and K. S. Trivedi. “Statistical non-
parametric algorithms to estimate the optimal software rejuvenation
schedule.” in Dependable Computing, 2000. Proceedings. 2000
Pacific Rim International Symposium on, 2000, pp. 77-84.

[14]	 S. Garg, A. Puliafito, M. Telek and K. S. Trivedi. “Analysis of
software rejuvenation using Markov regenerative stochastic Petri
net.” in Software Reliability Engineering, 1995. Proceedings, Sixth
International Symposium on, 1995, pp. 180-187.

[15]	 F. Salfner and K. Wolter. “Analysis of service availability for time-
triggered rejuvenation policies.” Journal of Systems and Software,
vol. 83, no. 9, pp. 1579-1590, 2010.

[16]	 F. Machida, J. Xiang, K. Tadano and Y. Maeno. “Software life-
extension: A new countermeasure to software aging.” in Software
Reliability Engineering (ISSRE), 2012 IEEE 23rd International
Symposium on, 2012, pp. 131-140.

[17]	 K. J. Cassidy, K. C. Gross and A. Malekpour. “Advanced pattern
recognition for detection of complex software aging phenomena
in online transaction processing servers.” in Dependable Systems
and Networks, 2002. DSN 2002. Proceedings. International
Conference on, 2002, pp. 478-482.

[18]	 S. Garg, A. van Moorsel, K. Vaidyanathan and K. S. Trivedi. “A
methodology for detection and estimation of software aging.” in
Software Reliability Engineering, 1998. Proceedings. The Ninth
International Symposium on, 1998, pp. 283-292.

[19]	 S. Beydeda, M. Book, V. Gruhn, G. Booch, A. Brown, S. Iyengar,
J. Rumbaugh and B. Selic. Model-Driven Software Development,
vol. 15. Berlin: Springer, 2005.

[20]	 J. P. Tolvanen and S. Kelly. “Model-driven development challenges
and solutions.” Modelsward, vol. 2016, p. 711, 2016.

[21]	 R. B. France, S. Ghosh, T. Dinh-Trong and A. Solberg. “Model-
driven development using UML 2.0: Promises and pitfalls.”
Computer, vol. 39, no. 2, pp. 59-66, 2006.

[22]	 S. J. Mellor, T. Clark and T. Futagami. “Model-driven development:
Guest editors’ introduction.” IEEE Software, vol. 20, no. 5, pp. 14-
18, 2003.

Hoger Mahmud: A Simple Software Rejuvenation Framework Based on Model Driven Development

UHD Journal of Science and Technology | August 2017 | Vol 1 | Issue 2	 45

[23]	 P. Mayer, A. Schroeder and N. Koch. “MDD4SOA: Model-driven
service orchestration.” in Enterprise Distributed Object Computing
Conference, 2008. EDOC’08. 12th International IEEE, 2008,
pp. 203-212.

[24]	 D. Harel, B. Rumpe. “Modeling languages: Syntax, semantics and

all that stuff (or, what’s the semantics of semantics?).” in Technical
Report MCS00-16, Weizmann Institute, Rehovot, Israel, 2004.

[25]	 N. B. Ruparelia. “Software development lifecycle models.”
SIGSOFT Software Engineering Notes, vol. 35, no. 3, pp. 8-13,
2010.

