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1. INTRODUCTION

Text-to-speech (TTS), also known as speech synthesis, 
is a technology that converts written words into spoken 
language. It plays an important role in modern technology. 
Most artificial intelligence chatbots, smart devices, and 
even organizations use such systems to provide fast, more 
realistic, and enjoyable service. For example, by converting 
written text into natural-sounding speech, this technology 

is mainly utilized in human-computer interaction systems 
to make them more user-friendly [1]–[3]. An advanced 
TTS system should not only read what has been written, 
but also be able to maintain emotion, rhythm, punctuation, 
and many other properties to produce speech that sounds 
like a real human.

However, achieving these capabilities is not equally accessible 
across all languages. For widely spoken languages such as 
English, Spanish, and Arabic, TTS technology has been 
improved significantly [4], while low-resource languages are 
neglected and outdated [5]. In the case of  Kurdish, while 
recent studies [6]–[8] have made noticeable progress, they 
often show limitations in fluency and emotional expression, 
as indicated by their reported mean opinion score (MOS) of  
4.1 [8] and 3.9 [7]. The two major reasons for this gap are: 
unavailability of  a high-quality, domain-diverse dataset, and 
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the use of  outdated TTS models that are not suitable for 
low-resource languages [5].

The Kurdish Sorani script is similar to that of  Arabic, Persian, 
and other related languages. These languages share some 
phonetic consistency [9], [10]. Most words in Kurdish Sorani 
script are pronounced as they are written. However, this 
phonetic transparency does not eliminate challenges faced 
when building a TTS dataset. For example, during natural 
speech or when expressing emotions, speakers often skip 
or merge letters, alter pronunciation, or blend sounds [11]. 
In addition, the Kurdish language also lacks a standardized 
punctuation convention [11], [12], which makes it more 
difficult to map Kurdish script to speech. These issues 
introduce more complexity to the process of  creating a clean 
and usable dataset for TTS models.

Given these inherent challenges in Kurdish TTS development, 
this work presents the first fine-tuned F5-TTS model for 
the Kurdish Sorani language. F5-TTS, which stands for A 
Fairytaler that Fakes Fluent and Faithful Speech with Flow 
Matching, is a recently developed open-source model that 
leverages flow-matching and diffusion-based techniques to 
generate natural and emotional speech without the need for 
extensive training data [13]. The process of  fine-tuning this 
model began with the collection of  10.11 h of  high-quality 
speech from professional TV recordings, which were then 
segmented into over 4,800 carefully curated samples covering 
diverse topics and speech styles. Each sample was manually 
reviewed for transcription accuracy and balanced duration.

The following are key contributions of  this study:
•	 Introduces the first fine-tuned F5-TTS model for 

Kurdish Sorani, a low-resource language.
•	 Constructs a high-quality single-speaker Kurdish Sorani 

dataset with balanced segment durations, emotional 
variability, and transcription precision.

•	 Provides the first Kurdish TTS evaluation that combines 
both objective metrics (Character error rate [CER] and 
word error rate [WER]) and subjective MOS ratings, 
offering a more comprehensive assessment than prior 
studies.

The rest of  this paper begins with a review of  related studies 
on speech synthesis for low-resource languages and prior 
efforts in Kurdish TTS. Next, the dataset design is discussed, 
including how the speech data was collected, segmented, and 
transcribed. This is followed by an explanation of  the F5-TTS 
model architecture and the fine-tuning process. Finally, the 
evaluation results are presented, and the implications of  

the findings are discussed, with concluding remarks and 
directions for future research.

2. RELATED WORK

TTS technology has seen fast advancements in recent years. 
However, for low-resource languages such as Kurdish, 
progress has been slower due to limited attention and support 
in the field of  speech synthesis. This section provides an 
overview of  traditional and neural speech synthesis methods, 
with a focus on approaches adapted to low-resource settings, 
and mentions previous efforts related to Kurdish TTS systems.

2.1. Traditional and Neural Speech Synthesis Methods
In the past, concatenative speech synthesis methods were the 
most widely used. They could achieve a noticeable amount of  
naturalness [14]. Concatenative data-driven approaches even 
made their way into speech recognition and some musical 
synthesis applications. Although some statistical techniques 
like the hidden Markov model provided some advancements 
in the field [15], [16], they were still lacking naturalness and 
accuracy [17].

Recent advancements in neural network-based models 
have led to improvements in TTS models [18]. End-to-end 
architectures such as Tacotron and Tacotron 2 [19] were 
able to produce more realistic and natural speech, but they 
require large amounts of  high-quality training data. This leads 
to more difficulty when using it with low-resource languages 
like Kurdish.

2.2. TTS for Low-Resource Languages
Due to limited data availability, fine-tuning TTS models for 
low-resource languages presents several difficulties [20]. 
A common approach to address these challenges is transfer 
learning [21]. Transfer learning involves utilizing a pre-trained 
model and extending it to a new language. For example, a 
recent study [22] compared multiple cross-lingual transfer 
techniques for some low-resource languages, including 
Bulgarian, Georgian, Kazakh, Swahili, Urdu, and Uzbek. 
The source languages used in their research were English, 
Finnish, Hindi, Japanese, and Russian. This variability helped 
identify the source language that produced the best quality 
results. Achieving CERs from 6.70% to 61.92% and predicted 
MOS scores between 2.24 and 3.02, the study demonstrated 
that phonological features offer better generalization and are 
more effective than conventional phone mapping in cross-
lingual TTS. However, their approach relied on around 10 h 
of  source-language data and 10 min of  target data.
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Another technique that supports low-resource languages is 
multilingual training [23]–[25]. Training a model on multiple 
languages simultaneously can improve performance on low-
resource languages by sharing linguistic properties among 
them.

Un addition, zero-shot learning techniques, where a model 
performs a task without having been explicitly trained on 
that task or language, can also help models to generalize to 
unseen languages [26], [27] without requiring a large amount 
of  training data.

2.3. Related Kurdish TTS Work
At present, only a limited number of  neural network-
based TTS models exist for the Kurdish language. Some 
organizations have privately developed datasets and models 
for the language to meet internal needs. For example, Rudaw 
TV has developed a TTS model for reading news on their 
website. On the other hand, some recent studies have made 
noticeable contributions in the field:
•	 Muhamad and Veisi [6]: Utilizing transfer learning 

within an end-to-end architecture, they used a pretrained 
HiFi-GAN vocoder, a model that converts intermediate 
acoustic features into audible waveforms, together 
with Tacotron 2 on LJ-Speech dataset [28] to develop 
a Kurdish TTS system. They used English character 
embedding from a pretrained English model while 
feeding Kurdish characters as input. The dataset used in 
this study consisted of  approximately 10 h of  Kurdish 
speech recordings and corresponding transcriptions. 
Results showed a MOS of  4.1, which indicates a high 
level of  naturalness of  the developed TTS system 
compared to TTS systems in high-resource languages.

•	 Ahmad and Rashid [7]: They introduced an end-
to-end TTS system specifically for Kurdish Sorani 
dialect. Their approach uses a pretrained variational 
autoencoder, a generative model that learns compact 
latent representations of  data and reconstructs them 
back into realistic outputs, for audio waveform 
reconstruction, combined with adversarial training, a 
technique where a generator and discriminator compete 
to improve realism, to enhance the quality of  the 
synthesized speech. In addition, they incorporated a 
stochastic duration predictor to enhance the naturalness 
of  the output audio. The method facilitates real-time 
generation of  Kurdish speech audio with variations 
in pitch and rhythm. Evaluation on a custom dataset 
showed a MOS of  3.94, showing better performance 
compared to one-stage and two-stage models using 
subjective human evaluation.

•	 Abdullah et al. [8]: Instead of  using pretrained English 
models, this study improves an existing Kurdish TTS 
architecture based on Tacotron by training a WaveGlow 
vocoder from scratch. The training data consist of  a 21-h 
native Kurdish speech dataset, particularly for Central 
Kurdish (Sorani) dialect. In addition to optimizing 
WaveGlow architecture, the study also introduces 
advanced prosody modeling techniques to improve the 
rhythm, stress, and intonation of  synthesized speech. 
The adapted model achieved a MOS of  4.91, which sets 
a new benchmark for Kurdish speech synthesis.

While these studies have shown significant progress in the 
field of  speech synthesis, they either depend on English-
based architectures or need a large amount of  training data. 
In contrast, our study focuses on fine-tuning F5-TTS, a more 
modern, up-to-date, and efficient architecture for the Kurdish 
Sorani language using a carefully prepared dataset.

3. DATASET DESIGN

Building a speech dataset from scratch is a gradual and careful 
process in which every single detail matters [20], [29]. You 
must care about every single detail. In the case of  TTS, every 
single word matters because the quality and the diversity of  
the training data will undoubtedly impact the performance 
of  the resulting model.

3.1. Dataset Collection
As the goal of  this work was to fine-tune the F5-TTS model 
with a single-speaker dataset, a consistent and high-quality audio 
source was needed. After multiple options were evaluated, the 
recordings of  Shaho Amin, a well-known newsreader from 
Rudaw TV, were selected for the following reasons:
•	 Public Availability: Rudaw TV’s archives are publicly 

available and can be easily collected from online sources.
•	 Clear Pronunciat ion:  The speaker’s  voice is 

understandable, clear, and well expressed.
•	 Loudness: Audio levels are consistent, and additional 

normalization is not required.
•	 Recording quality: As a major media channel, Rudaw TV 

uses advanced recording equipment, resulting in clean 
and high-fidelity audio.

•	 Familiarity: The speaker’s voice is widely recognized, 
which allows listeners to better judge the similarity 
between synthesized and real speech.

Although the final dataset contains 10.11 h of  audio, more than 
15 h of  video were initially collected. During preprocessing, 
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low-quality and noisy sections were removed. The two main 
sources for the recordings were Rudaw TV’s website and 
YouTube Channel. For further processing, all collected 
content was then converted into WAV format using a lossless 
conversion process to preserve audio quality.

The collected recordings covered a variety of  topics, 
including news broadcasts, interviews, shorts, and other 
random videos. This diversity was intended to increase the 
model’s generalization by providing emotions, intonation 
patterns, and different speech rates in the dataset. After it 
was observed that the speaker’s vocal tone was evolving over 
time, recordings were selected from different time periods 
(2018–2024). This helped enhance the dataset by adding 
more variability to the data.

3.2. Data Segmentation
After data collection, the dataset passed several preparation 
stages, with segmentation and transcription being the most 
time-consuming steps. In data segmentation, audio files were 
divided into manageable clips while ensuring the following:
•	 Proper logical sentence boundaries
•	 Natural starting and ending tone
•	 A balanced distribution of  clip durations.

To achieve a balanced dataset, segments were distributed 
approximately equally across different duration ranges 
(e.g., 2–4 s, 4–6 s, 6–8 s, etc.), as shown in Fig.  1. This 
prevented the model from overfitting to specific speech length 
ranges. During this process, Ocenaudio software was utilized, 
as it allows the manual selection and export of  clean segments.

3.3. Transcription Process
After all segments were cleaned, finalized, and prepared, 
the transcription process was initiated. Initially, segments 
were transcribed quickly to match what was heard in the 

recordings. In later stages, each segment was carefully 
reviewed multiple times word by word to eliminate the 
remaining spelling mistakes.

Since punctuation plays an important role in expressing the 
tone and rhythm of  synthesized speech, it was added where 
appropriate. Adding punctuation in the transcription helped 
the model to produce more realistic and expressive audio. 
Moreover, it allowed better control over speaking style when 
synthesizing new text. Most common punctuation use cases 
were:
•	 Adding a full stop (.) at the end of  complete sentences 

to indicate closure
•	 Using a comma (,) to include short pauses or transitions 

between phrases
•	 Using a colon (:) when introducing reported speech
•	 Using question mark (?) for interrogative sentences
•	 Using an exclamation mark (!) for astonishing expressions.

While punctuation was added for expressiveness, each 
word itself  was transcribed exactly as it was recited in the 
recordings. As Kurdish language is a non-phonemic writing 
system like Arabic and Persian, several challenges unique 
to the language were encountered despite efforts to avoid 
transcription mistakes:
•	 Some letters are written in a way but pronounced 

differently. For example, the letter (س) is pronounced as 
شەست in words like (ص) موسولمان,   (ت) ,similarly ;سەت, 
may be pronounced as (ط) in پێنجسەت, سەتا, تازە.

•	 In fast speech, some letters are dropped or merged. For 
example, in تیژبێ  is clearly (ت) only one ,چاوت 
pronounced.

•	 Sometimes, when a letter comes twice repeatedly, it is 
hard to distinguish whether it is recited as one letter or 
two. For example, words like چاککردنەوە  ڕێککەوتنی, 
contain consecutive (ک) sounds, but it is often unclear 
whether one or both are audibly pronounced.

•	 The English/ŋ/sound appears in some Kurdish words 
such as مانگ, سنگ, while there is not a dedicated letter 
for the sound in script.

3.4. Dataset Statistics
The final version of  the dataset was 10.11  h long in 
4,856 samples. Each sample was stored in WAV format. The 
dataset vocabulary had 2,567 unique tokens. Detailed statistics 
are provided in Table 1.

Fig.  1 demonstrates how samples are distributed evenly 
based on duration, which helps the model generalize across 
different speech lengths.Fig. 1. Distribution of dataset samples.
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TABLE 1: Training dataset statistics
Metric Value
Total duration 10.11 h
Number of samples 4,856
Shortest clip 2.0 s
Longest clip 13.0 s
Audio format WAV
Vocabulary (Unique words) 2,567

4. F5-TTS MODEL FINE-TUNING

Fine-tuning TTS models for low-resource languages like 
Kurdish Sorani can be challenging, primarily due to the lack 
of  training data and limited computational resources. This 
section describes the steps taken to fine-tune the F5-TTS 
model for Kurdish Sorani using a specialized speech dataset. 
It includes an overview of  the F5-TTS architecture, the data 
preparation and training environment, and a description of  
the fine-tuning process. An overview of  the full training 
pipeline is presented in Fig. 2.

4.1. Overview of F5-TTS Architecture
Recent advancements in TTS technologies have improved the 
naturalness and flexibility of  synthesized speech. Previous 
TTS systems were primarily based on auto-regressive (AR) 
models, which generate speech one token at a time, with 
each step depending on the last. Although models such as 
variational inference with adversarial learning for end-to-end 
text-to-speech and Tacotron2 [19] achieved high-quality 
results, they still suffer from inference latency and errors 
during sequential generation.

Fig. 2. Proposed model workflow.

F5-TTS is a fully non-autoregressive (NAR) TTS system, 
meaning it generates all audio tokens in parallel rather 
than sequentially, that produces high-quality speech 
using a flow matching framework, a generative modeling 
technique that learns to map noise into realistic data 
distributions [30], combined with a diffusion transformer 
(DiT) backbone, a transformer-based architecture tailored 
for diffusion models [31]. NAR approaches, particularly those 
based on diffusion-based models, which iteratively denoise 
random noise to produce realistic data [32], and flow matching 
techniques, allow for faster and more robust synthesis.

Unlike traditional TTS systems that rely on phoneme 
alignment, explicit duration models, or complex text 
encoders, F5-TTS presents a simplified architecture. It can 
directly learn how to speak from text characters and noisy 
speech. The model architecture can be described in five main 
phases, as shown below:
•	 Input Processing: The input text is turned into a sequence 

of  characters, then padded with filler tokens to match the 
length of  target speech frames. This enables the model 
to learn implicit alignment during training, which leads 
to a more natural rhythm.

•	 Feature Refinement: Input text features are refined 
using ConvNeXt blocks, a modern convolutional 
neural network design that improves feature extraction 
efficiency and alignment with speech frames.

•	 Denoising Process: A DiT gradually denoises a sampled 
noisy speech signal, conditioned on the refined text 
representation. It turns the noise into clear speech based 
on input text.



Ahmad and Mohammed: Fine-Tuning F5-TTS for Kurdish Sorani

UHD Journal of Science and Technology | Jul 2025 | Vol 9 | Issue 2	 203

•	 Training Objective: Training optimizes a flow-matching 
loss combined with a text-guided speech infilling task.

•	 Inference Strategy: Since diffusion models are typically 
slow due to step-by-step denoising, F5-TTS employs 
a sway sampling technique, an accelerated sampling 
method that reduces generation time while maintaining 
naturalness.

An overview of  F5-TTS training (left) and inference (right) 
flow is illustrated in Fig. 3.

4.2. Data Pipeline and Training Environment
The dataset used for fine-tuning comprised 4,856 audio-text 
samples, totaling 10.11  h of  Kurdish Sorani audio. Since 
the audio samples varied in duration, dynamic batching, a 
technique that groups sequences of  similar lengths together 
to optimize training efficiency [33], was employed based 
on the number of  spectrogram frames, with each batch 
being configured to contain approximately 8,786 frames to 
maximize GPU utilization [34]. As F5-TTS is a resource-
intensive model, the fine-tuning process was conducted on 
Google Colab in a well-optimized environment. Hardware 

specifications and configuration parameters of  the training 
process are provided in Tables 2 and 3.

4.3. Fine-tuning Process
After the environment was set up on Google Colab and 
2 TB of  Google Drive storage was allocated for saving 
checkpoints, the fine-tuning process began on April 18th, 
2025, and continued for approximately 1 week without major 
difficulties.

The model started to produce reasonable speech within the 
first few thousand steps, and the quality gradually improved 
over time. While the fine-tuning was originally set to 3,091 
epochs, it was terminated after 1,710 epochs (around 700,000 
steps) because live output evaluations conducted every 5,000 
steps revealed a close resemblance between the synthesized 
speech samples and the original recordings, indicating that 
further training was unnecessary.

As shown in Fig.  4, early in the training, the loss value 
hardly went under 0.4. However, by the final steps, the 
loss had decreased to 0.24272, which demonstrates a real 

Fig. 3. F5-text-to-speech model architecture [13].
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Fig. 4. Training loss value over steps.

TABLE 4: Training loss value over time
From To Runtime loss (Min) lr
April 26, 2025 09:09 April 27, 2025, 02:59 17 h 50 m 16 s 0.24272 4.47E‑06
April 25, 2025 02:54 April 26, 2025 02:46 23 h 52 m 27 s 0.25062 4.99E‑06
April 23, 2025 21:46 April 24, 2025 21:34 23 h 47 m 59 s 0.25407 5.67E‑06
April 22, 2025 20:36 April 23, 2025 20:30 23 h 54 m 15 s 0.27873 6.38E‑06
April 21, 2025 19:49 April 22, 2025 19:14 23 h 25 m 6 s 0.28213 7.08E‑06
April 20, 2025 17:58 April 21, 2025 17:49 23 h 51 m 46 s 0.28673 7.71E‑06
April, 20 2025 07:47 April 20, 2025 16:52 9 h 4 m 31 s 0.30502 8.40E‑06
April 19, 2025 06:42 April 20, 2025 06:08 23 h 26 m 19 s 0.31336 8.64E‑06
April 18, 2025 06:50 April 19, 2025 04:49 21 h 58 m 36 s 0.3218 9.36E‑06

improvement in the model’s convergence. This trend is 
also shown in Table 4, which presents the minimum loss 
values recorded across different fine-tuning intervals. In 
parallel, the learning rate schedule, demonstrated in Fig. 5, 

shows a gradual reduction in learning rate, contributing to a 
more stable training process. During the training, important 
metrics such as the loss curve, learning rate schedule, and 
other training statistics were monitored and recorded using 
the Weights and Biases (wandb) platform [35]. The decision 
to end the training early in the process was influenced by 
these tracking tools.

5. RESULTS DISCUSSION AND EVALUATION

The loss curve shown in Fig.  4 proves that the model 
has achieved excellent convergence and effective learning 
throughout the training process. To further assess the 
performance of  the fine-tuned model, three evaluation 
metrics were used: CER, WER, and MOS. CER and WER 
are objective metrics that measure transcription accuracy at 
the character and word level, while MOS is a 1–5 scale for 
subjective rating of  naturalness.

For objective metrics, the synthesized speech was transcribed 
using a pretrained Whisper Kurdish Sorani Automatic Speech 
Recognition (ASR) model (“PawanKrd/asr-large-ckb”), and 
the transcriptions were then compared to the original text. 
In contrast, the MOS metric was obtained based on human 
listener ratings, as the naturalness of  speech may not be fully 
captured by objective metrics alone.

The results of  CER and WER for three different samples 
are presented in Table  5. In both metrics, lower average 
scores indicate better synthesis quality. The average WER 
was 20.37%, and the average CER was 4.3%. These results 
demonstrate the model’s strong transcription accuracy, 
particularly at the character level. The relatively high WER 
value of  20.37% may be due to limitations in the ASR 
model for Kurdish Sorani rather than actual quality issues, as 
demonstrated by the low CER and high MOS scores.

TABLE 2: Training environment specifications
Component Specification
GPU NVIDIA L4 (22.5 GB VRAM)
CPU 6 physical cores, 12 logical threads
Operating system Linux (Kernel 6.1.123+)
Python version 3.11.12
Training framework PyTorch (with Weights and Biases (wandb) 

logging)

TABLE 3: Training configuration parameters
Parameter Value
Batch size per GPU 8,786 frames
Batch size type Frame‑based
GPUs used 1
Gradient accumulation steps 1
Maximum samples 64
Learning rate 1e–5
Maximum gradient norm 1
Number of warmup updates 242
Number of epochs 3,091
Logging Weights and Biases (wandb)
Checkpoint saving Every 5,000 updates; save last at 

2,000 updates
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Fig. 5. Learning rate schedule during training.

To complement these objective measures with human 
perception assessments, a subjective evaluation was 
conducted using the MOS metric. Synthesized speech 
samples were shared online with more than 50 different 
native Kurdish Sorani speakers of  different ages and genders. 
Each listener was asked to rate the naturalness of  the same 
set of  synthesized speech clips on a five-point scale ranging 
from 1 (Bad) to 5 (Excellent). The average score achieved 
in this metric was 4.72 out of  5, implying that the generated 
speech was perceived as highly natural. While this result is 
promising, it is important to remember that the number of  
listeners was limited, and no statistical significance testing 
was applied. Future evaluations with larger participant 
groups and formal statistical analysis would lead to more 
reliable results.

At the same time, these findings were obtained using clean 
single-speaker data in controlled settings. Several factors that 
may impact system performance in real-world scenarios, 
including background noise, overlapping speech, as well as 
speaker and dialect variability. Handling these challenges may 
require additional techniques and extended datasets, which 
can be explored in future research directions.

In comparison to older TTS approaches for low-resource 
languages such as transfer learning, the results of  our 
diffusion-based model show significant improvements. 
Table 6 provides a comparison of  various methods applied to 
low-resource languages, including different architectures and 
learning strategies. Notably, while prior Kurdish TTS studies 
have reported their MOS scores, none have evaluated their 
systems using objective evaluation metrics, such as CER or 
WER. This work is the first to apply these objective measures 
to Kurdish Sorani TTS for a more precise evaluation.

Beyond the technical achievements, this work has significant 
cultural and linguistic importance. Developing high-quality 
TTS systems for underrepresented Kurdish Sorani can 
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TABLE 6: Comparison of text‑to‑speech systems for low‑resource languages
Study Target language Model architecture Training data Learning type Character 

error rate (%)
Mean opinion 

score (1–5)
Do et al. 
[22]

Bulgarian (bg) FastSpeech 2+HiFi‑GAN Source: ~10 h/
speaker Target: 
~10 min/speaker

Transfer 
learning

6.70 3.02
Georgian (ka) 32.05 2.43
Kazakh (kk) 18.83 2.37

Abdullah 
et al. [8]

Kurdish Sorani (ku) Tacotron 2+HiFi‑GAN 10 h Transfer 
learning

N/A 4.1

Ahmad and 
Rashid [7]

Kurdish Sorani (ku) Variational 
autoencoder+Adversarial

Custom dataset Stochastic 
duration 
predictor

N/A 3.9

Proposed 
model

Kurdish Sorani (ku) F5‑TTS (diffusion‑based) 10.11 h Diffusion‑based 4.30 4.72

support digital inclusion, education, and even cultural 
preservation. It ensures the language is not left behind 
in the advancements of  TTS technology. The fine-tuned 
model becomes a core module in many applications such as 
audiobooks, e-learning materials, and automated dubbing 
tools. In addition, building computational resources for 
Kurdish helps document and standardize the language, which 
faces dialectal diversity and limited digital resources. For 
this reason, the benefits of  this research go beyond speech 
synthesis only; it can serve both practical applications and 
the preservation of  Kurdish language identity.

6. CONCLUSION AND FUTURE WORKS

In this study, the first F5-TTS model was successfully fine-
tuned for Kurdish Sorani, a low-resource language that has 
received less attention in the field of  speech synthesis. The 
process began by creating a 10.11-h speech dataset. The 
work focused mostly on balancing segments, topic variety, 
emotions, transcription accuracy, punctuation, and other 
details that optimized the dataset quality. Using this high-
quality dataset, the open-source F5-TTS model was fine-tuned 
in a well-optimized environment and configuration settings. 
Evaluations showed that the system learned to synthesize 
natural, emotional, and human-like Kurdish speech.

Compared to previous Kurdish TTS works, this study 
indicates that modern diffusion-based models like F5-
TTS can improve the naturalness and reliability of  speech 
synthesis for low-resource languages without requiring 
a massive amount of  training data or using a pre-trained 
English-based architecture. The results show that a carefully 
constructed dataset can overcome the typical limitations of  
low-resource TTS systems.

While the fine-tuned model provides good results, there are 
still some areas for further improvement. One limitation 

is the use of  a single-speaker dataset, which may reduce 
generalizability to different voices or dialects. Using a multi-
speaker dataset that includes various emotions and accents 
would enable additional training to improve this fine-tuned 
model. This can improve the model’s generalization for 
different speaking styles. In addition, real-world deployment 
introduces challenges such as background noise, overlapping 
speech, and speaker variability, which may reduce accuracy. 
Addressing these conditions in future work will improve the 
system’s robustness and support its integration into practical 
Kurdish applications such as audiobooks, dubbing, and other 
voice-based systems.
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