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1. INTRODUCTION

The IoT is booming, and wireless sensor networks (WSNs) 
have become an omnipresent critical infrastructure of  
modern-day communication technologies. However, they 
are susceptible to various cybersecurity threats due to their 

distributed architecture (no central access point) and low 
computing resources for countering attacks. As such, the 
newest threats targeting them are zero-day attacks, which 
can make use of  zero-day vulnerabilities (without exploits 
traveling through signature databases to prevent them from 
implementation). Most cybersecurity systems rely on known 
patterns and signatures to prevent known vulnerabilities [1]; 
therefore, zero-day attacks are especially novel.

Machine learning and deep learning techniques have 
emerged as anomaly detection alternatives, but many rely on 
a substantial amount of  labeled training data with extreme 
computational needs, which are hardly found in resource-
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constrained sensor networks [2]. Other solutions need 
centralized data collection, which results in massive privacy 
and security vulnerabilities. However, Federated Learning 
(FL) allows for training without moving any raw data, as 
determined by McMahan et al. [3,4], which works well to 
solve the zero-day problem without a trained knowledge of  
all nodes; however, without enough training data on zero-day 
attacks, FL is ineffective.

Detecting zero-day attacks in WSNs faces three fundamental 
challenges: (1) The nature of  the attack is not known, so 
trained machine learning models don’t have patterns from 
which to operate, (2) WSNs do not have ideal hardware (low 
computation power, small memory capacity, limited energy 
means that DL involves heavier models that can’t be deployed 
or avoided), (3) since the data is non-IID distribution means 
that FL cannot converge properly. While Finn et al. [5] present 
the Model-Agnostic Meta-Learning (MAML) algorithm to 
learn new models rapidly with few samples from previously 
explored ones, this could be a solution in case zero-days come 
up with few samples. Pan and Yang [6] surveyed Transfer 
Learning (TL) as an option where related tasks decrease the 
need for lots of  training data; using TL, meta-learning, and 
FL could be the optimal solution to find zero-day detection 
in WSNs with limited resources.

Definition of  Zero-Day Attack: Zero-day attacks, in this 
study, are completely new attack types which are not 
included in any form of  training (thus, they are different 
attack types with unique characteristics [Heartbleed, DoS 
GoldenEye] yet with limited labeled samples [5-20] post-
initial investigation). This differs from traditional anomaly 
detection (zero labeled samples) and supervised learning 
(thousands of  samples).

Few-Shot Zero-Day Scenario: Thus, our solution covers 
a realistic situation which involves real-world defenses: 
(1) Anomaly-based monitoring/signature-based detection 
returns anomalous behavior, (2) a security analyst for WSN 
reviews and highlights a small number [5-20] as benign/
malicious using manual investigation/threat intelligence/
sandbox investigation, (3) our proposed model takes these 
few samples and utilizes rapid adaptation to subsequently 
find them effectively when needed. This situation is realistic 
because there is rarely enough accurate anomaly detection 
information to avoid all false positive (FP) results; waiting 
for thousands of  labeled samples since these are novel 
threats would take too long, and security analysts can 
usually highlight 5–20 after a few minutes to a few hours of  
investigative efforts.

Zero-Day Detection Mechanism: Our solution generates 
zero-day detection based on three synergizing mechanisms: 
(1) Meta-learning initialization through MAML means rapid 
adaptation is possible even with 5–20 samples and few iterations 
of  gradients, (2) attack semantics can be transferred from pre-
training meaning the intentional malicious characteristics can 
recognize general patterns that transfer across any attack that 
the network exists as a need for protection, (3) personalized 
local adaptation through the personalization layer helps 
maintain any unique version of  the zero-day attack through 
meta-knowledge gained globally from such adaptation.

Principal Contributions: First, this creates a unified architecture 
that avoids three solutions working simultaneously since FL 
preserves privacy, FL simultaneously generates MAML for 
rapid adaptation, and TL for pre-knowledge acquisition. 
Second, the resulting model is small (only 12.79 KB) and 
adaptable for severely resource-constrained sensors. Third, 
layer-wise personalization allows each sensor to adapt the 
global model for local characteristics; this helps adjust for 
data heterogeneity. Fourth, extensive experiments evaluate 
accuracy in realistic zero-day attacks through CICIDS2017 
to prove the utility of  entirely unknown attacks with only 
5–20 samples per class. Experimental results show that our 
proposed method achieves 467% relative improvement over 
the baseline in the 20-shot scenario while still being applicable 
in resource-constrained environments.

Paper Organization: Section 2 reviews the state-of-the-art in 
four different fields to determine gaps that no other method 
approaches. The third section presents our three-phase 
approach, including complicated analysis and architecture for 
lightweight considerations. Section 4 evaluates the proposed 
method with experiments conducted on CICIDS2017. 
Finally, Section 5 discusses limitations for future research 
considerations. Section 6 concludes by determining the 
contributions and future works.

2. RELATED WORK

The detection of  zero-day attacks via transfer and meta-
learning in resource-constrained IoT networks is challenged 
by limited training samples, privacy-preserving specifications, 
computational limitations, and heterogeneous data. This 
section outlines related work across four fields.

2.1. FL-based Intrusion Detection
FL facilitates developing effective IDS training across 
heterogeneous clients to maintain privacy. IDAC is an 
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FL-based IDS where a candidate for attack is auto-labeled 
in the training stage and validated in the other timeframes 
by Online OC-SVM [7]. Yet auto-labeling relies on accurate 
threshold tuning, which may or may not be effective in 
all situations. A  similar study regarding zero-day attacks 
instigated by botnets detected on edge IoT devices used 
Bot-IoT and N-BaIoT datasets [8], which attained decent 
classification with low communication overhead under FL. 
Yet it never assessed attacks specific to botnets only.

Limitations: FL-based IDS assumes clients are IID, since FL 
is inherently time-saving, FL does not generate adaptability 
to new threats with limited samples, and FL-based IDS lacks 
personalization to local heterogeneity.

2.2. Meta/Little Learning-based IDS
Meta-learning benefits from a few cases of  data. A MAML-
based solution in a laboratory-controlled environment with 
UNSW-NB15 and NSL-KDD99 attained fast, adaptable 
results with few data [9], yet a MAML-based solution 
cannot be utilized in edge environments with limited MIPS 
and memory. FC-Net with few-shot detection transforms 
packet data into RGB images, attaining >90% accuracy with 
CICIDS2017 [10], yet resource-constrained devices will not 
be able to possess sufficient computing power to convert 
the data from packets to images. Prototypical networks 
employing adaptive feature fusion classification attain>98% 
for multi-class classification [11], yet feature extraction is 
more computationally intensive than assumed. MAML-
L2F realizes few-shot NIDS through a forgetting-to-learn 
mechanism for faster convergence [12], yet it only works 
in binary classification modes. A  meta-learning approach 
to IIoT and 5G-IoT involves the generation of  samples, 
mapping features, and mapping the metric of  features [13], 
yet zero-shot operates only on anticipated types of  attacks 
mapped out, which are not unknown types.

Limitations: Applicable in few-shot learning but not 
integrated with FL for decentralized, privacy-preserving 
scenarios. Mostly cannot achieve personalization for 
heterogeneous networks and ultra-low resource consumption 
(<15 KB).

2.3. TL-based Attack Detection
TL allows for knowledge acquisition without large data 
collection and from akin tasks. ConvNet with minimal TL 
operations attained good performance on KDDTest+ and 
KDDTest-21 [14] as it learned high-level features of  attack 
and payload. Attention-based TL using Convolutional Block 
Attention Module (CBAM) based on BoT-IoT dataset notes 

that pre-trained models with relative TL realized the highest 
detection accuracy [15], meaning it learned to focus on 
needed features while paying less attention to noise. TL with 
FL integrates CNN, which was tested on CICIDS2017 as the 
source dataset for a 5G environment [16], attaining decent 
levels of  accuracy for IoT Settings with less information 
labeled.

Limitations: Most of  the TL methods run without concern 
for resource limitations. While TL reduces needs, it fails to 
incorporate meta-learning for rapid few-shot scenarios with 
heterogeneous federated environments for personalization.

2.4. Personalized FL
Personalized FL came about to address client heterogeneity 
attributable to different data distributions. Cedar offered 
federated meta-learning, secure and cost-effective, on 
personalized IoT with layer-wise assembly but highly 
effective personalization [17]. FedMEM, in essence, enabled 
personalized FL via a multi-exit selection probability aiming 
for bandwidth-limited mobile edge operations [18]. Edge-
based clustering with blockchain and edge computing 
solved for the challenges presented by non-IID data 
effects [19]. Hierarchical FL in mobile edge computing was 
found to generate personalized models in the edge server 
layer [20]. A contribution-oriented module (COWA module) 
for personalized FL evaluated contributions from clients 
for a principled synthesis of  global agreement and local 
adaptation [21].

Gaps: They generalize personalization (but not for zero-day 
attack detection), they fail to apply meta-learning to few-
shot adaptations, and they do not offer the ultra-resource 
efficiency required by highly constrained IoT devices.

2.5. Research Gap and Contributions
Thus, no one has offered all these four advantages together 
thus far: (1) Distributed, privacy-preserving federated 
solution, (2) rapid adaptation to zero-day attacks (5–
20 samples), (3) personalized for heterogeneous sensor nodes 
exposing no local characteristics, and (4) ultra-lightweight 
model (<15 KB). Thus, our contribution is a personalized 
solution of  12.79 KB that merges the benefits of  FL, MAML, 
and TL that are nuanced for few-shot zero-day detection for 
resource-constrained WSNs. FL-based IDS assumes class 
labels obtain enough (>50) samples, where we do not even 
achieve 64% accuracy with 20 samples per novel attack class. 
Meta-learning IDS does not keep privacy during training, 
where FL does. TL-based assumptions believe enough 
retraining will justify incorporation; our MAML offers rapid 
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adaptation. Existing personalized FL research fails to nuance 
for this; ours focuses on attack characteristics for localized 
variances while still recognizing global tendencies for being 
a zero-day.

3. METHODOLOGY

This subsection describes our federated meta-learning 
approach for zero-day attack detection in constrained WSNs, 
which combines TL, FL, and MAML since attack data is scant 
and the need for protection is in a decentralized environment.

3.1. Proposed Approach Overview
The combined method is shown in Fig. 1 and operates in 
three stages: (1) Pretraining with attack types already known, 
(2) federated meta-learning across five sensor nodes, and 
(3) rapid adaptation to zero-day attacks. The first stage is 
where an off-the-shelf  model is trained with known attack-
type datasets and benign traffic to understand where, in a 
newly established network, intrusion patterns exist. The 
second stage represents the federated meta-learning across 
five sensor nodes. Each runs its instance of  MAML with 
5-20 samples per node representing local training. Each node 
then sends its trained parameters (minus the personalization 

layer) to the global server to combine efforts. The last stage 
signifies the rapid adaptation to the zero-day attacks as an 
adapted version of  the meta-trained model learns from a few 
labeled samples as intended.

Lightweight Neural Network Architecture: The architecture 
is composed of  three main components. First, the shared 
layers (general features of  network traffic all clients can use) 
consist of: a linear layer (input dimensions equal features of  
the data, output 32); batch normalization; ReLU activation; 
dropout (P = 0.2); linear layer (input 32, output 16); batch 
normalization; ReLU activation. Second, the personalization 
layer (linear, 16 -> 8 neurons) is the most novel component 
not shared with the central server, as it becomes acquainted 
with a more specific environment since its trained in a local 
manner per client and not sent to the central server for 
composite inclusion. Third, the classifier layer (8 -> 2 output) 
classifies whether the traffic is benign/malicious. The full 
model size is approximately 12.79 KB, which is compatible 
with IoT devices with minimal memory (<256 KB RAM, 
<100 MHz processing speed).

3.1.1. Phase 1: TL pre-training
During the initial phase, we performed model pre-training 
using a dataset that included both known attacks and benign 

Fig. 1. Comprehensive architecture of personalized federated meta-learning for zero-day attack detection showing three phases: (1) Pre-training 
with known attacks, (2) distributed federated meta-learning across five sensor nodes, and (3) rapid adaptation to zero-day attacks
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traffic. This stage is vital because it lays the groundwork for 
the model’s understanding of  general attack patterns, which 
later facilitates the rapid learning of  new attacks. In our 
implementation, we utilized the cross-entropy loss function, 
as specified in Equation (1).

L retrain y log yp i i= − ⋅ ( )( )∑  � (1)

In Equation (1), yt is the true label of  the class i and yi  does 
the model for the class predict the probability i. To optimize 
the model parameters, we used the Adam algorithm with a 
learning rate of  0.001, which updates the parameters 
according to Equations (2-4).

m m gt t t= + −( )−( ) 1
1

11· · � (2)

v v gt t t= + −( )−( ) 2
1

2 21· · � (3)

θ θ η εt t t tm v= − ( ) +( )−( )1 · / � (4)

In Equations (2-4), gt is the gradient at time t, mt is the first 
moment estimate, vt is the second-moment estimate; β₁ and 
β₂ are the decay rates of  the moments (typically 0.9 and 
0.999); η is the learning rate (0.001); ε is a minimal value 
for numerical stability (10⁻⁸); and θ represents the model 
parameters. The training process consisted of  10 epochs 
with a batch size of  512 samples, selected based on empirical 
experiments to achieve an appropriate balance between 
training time and model performance.

3.1.2. Phase 2: Federated meta-learning
The second phase, which is the core of  the proposed 
algorithm, implements federated meta-learning. In this phase, 
five sensor nodes collaboratively train a global model without 
sharing their local data. Each round of  FL includes two loops: 
an inner loop that performs local updates in each client and 
an outer loop that aggregates the global model based on the 
received updates. In the inner loop, each sensor node first gets 
the current international model parameters from the central 
server. Then, using the few-shot sampling function, a small 
set of  local data is selected, containing an equal number of  
samples from the benign and malicious classes. According to 
Equation (5), the number of  these samples, denoted by nshot, 
can be 5, 10, or 20, which we examined in three scenarios in 
the experiments. For each sensor node i:

D upport x ys
i

j
i

j
i

j

nshot
= ( )( )

=( )

( )
,

·

1

2
� (5)

In Equation (5), half  of  the samples are selected from the 
benign class and the other half  from the malicious class. 

Using this support set, the sensor node creates a copy of  
the global model and fine-tunes it. This process, called the 
MAML inner update, was repeated for 10 steps using the 
SGD optimization algorithm. In each step of  the inner 
update, the local loss is calculated using Eq. (6), where 
fθ represents the model with parameters θ. Then, using 
Equation (7), the gradient of  this loss with respect to the 
model parameters is calculated.

L CrossEntropy f D upporti s
i ( ) = ( )( ) � (6)

g Li i= ∇ ( )  � (7)

In addition, using Equation (8), the local model parameters 
are updated using the gradient.

θ θ αi ig
' ·= − � (8)

In Equation (8), α is the inner learning rate, which was set to 
0.01 in our implementation. This process is repeated 10 times 
to ensure the local model adapts well to the local data. The 
critical point here is that during these local updates, the 
personalization layer is also updated; however, these updates 
are not sent to the server and are only kept in the local node.

After completing the inner updates in all the sensor nodes, 
the central server enters the outer loop. At this stage, the 
server receives the updated parameters from all nodes and 
performs an aggregation process.

 g
N

ilobal N i= ( ) =( )∑1 1/ · ' � (9)

According to Equation (9), for aggregation, a simple 
averaging method is used, where N is the total number of  
participating nodes (five nodes in our case) and  i

'  is the 
updated parameter of  node i. This averaging is performed 
separately for each layer of  the network, except for the 
personalization layer, which, owing to its local nature, does 
not participate in the aggregation process. The updated global 
model is then sent to all sensor nodes, and this process is 
repeated for 10 rounds until the global model converges.

3.1.3. Phase 3: Zero-day attack adaptation
In the third phase, when a zero-day attack is detected in the 
network, the model performs rapid parameter adaptation 
with 5-20 labeled samples of  the new attack. This capability 
is one of  the key advantages of  the meta-learning approach, 
which enables the model to use its prior knowledge to learn 
quickly. To adapt to zero-day attacks, a small number of  
samples from the new attack (typically twice nshot, which can 
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be 10, 20, or 40 samples) are collected. These samples were 
used as a support set for the final fine-tuning of  the model. 
The fine-tuning process was performed using the Adam 
optimization algorithm with a learning rate of  0.001. At this 
stage, all model layers, including the shared, personalization, 
and classifier layers, are trainable.

L inetune CrossEntropy f Df zeroday= ( )( ) � (10)

According to Equation (10), the loss at this stage is calculated, 
where Dzeroday is a small set of  zero-day attack samples. 
This fine-tuning process is repeated for 20 epochs, where 
this number of  epochs was selected based on empirical 
experiments to achieve the best balance between adaptation 
speed and final performance. Parameter updates at this stage 
are performed similarly to Equations 2, 3, and 4, but using 
zero-day data.

One of  the important points in this phase is that, owing to 
meta-training, the model has already learned how to learn 
with few samples. In other words, during the second phase, 
the model not only learned to detect different attacks but 
also learned how to quickly adapt to new attacks. This 
characteristic, which is the core nature of  meta-learning, 
enables the accurate detection of  zero-day attacks with a 
minimal labeled sample.

3.2. Lightweight Model Architecture
•	 Shared Feature Extraction Layers: Shared between clients, 

global characteristics of  network traffic can be extracted 
from two linear layers (78→32→16 neurons) in the 
classification head while receiving batch normalization, 
ReLU activation, and dropout (0.2), which reduce feature 
dimensionality and consolidate input.

•	 Personalization Layer: The novel component of  this 
architecture, a linear layer (16→8 neurons), operates at 
the personalized, client level, is not sent to the server 
for the model, and instead, captures personalized 
characteristics for optimal learning from local traffic and 
local attacks.

•	 Why This Layer is Important: The local layer plays 
an essential role in few-shot zero-day adaptation as 
it captures local characteristics that differ from other 
locations with heterogeneous sensor installations 
with unique traffic patterns (industrial IoT vs. smart 
home), attack expression, and baseline expectations. 
The 8-neuron layer captures such differentiation but 
does not send any adjustments to the global server to 
maintain the privacy of  anything important specific 
to the environment. The reason why this layer is not 

sent to federated averaging is so (1) the local zero-day 
attack pattern can be adapted more quickly with as 
low as 5-20  samples, without international averaging 
diluting it, and (2) so heterogeneous patterns do not 
negatively transfer when aggregated. Thus, personalized 
recognition of  the attack but global sensitivity of  the 
meta-knowledge and parameters based on shared 
experience benefit detection, where zero-day attacks are 
expressed differently in different contexts. Classification 
Layer: Final layer (8→2 neurons) is a simple binary 
classification of  whether traffic is deemed benign or 
malicious.

•	 Size of  the Model: This 12.79 KB model includes the 
parameters that are involved in federated aggregation. 
The first two layers have a total of  3,008 parameters 
(78 × 32 = 2,496; 32 × 16 = 512), and the classification 
layer has 16 (8 × 2). Thus, 3,024 as 32-bit floats yield 
12,096 bytes (11.81 KB). With batch normalization 
(values = 64 bytes and 256 bytes), it adds up to 12.35 
KB. Thus, the reported aggregate of  12.79 KB can be 
accounted for with some small overhead from metadata. 
The personalization layer (128 = 0.5 KB) is excluded 
since it will never be shared from the beginning. The 
runtime memory, including activations, is <14 KB, which 
allows for deployment on devices that have at least 256 
KB (Arduino Mega, ESP32).

3.3. FL Configuration
Our FL setting mimics a real-world distributed WSN scenario 
with five sensor nodes that comprise critical infrastructure 
monitoring. Data are non-IID because these sensor nodes 
are from different network areas, and although some may 
receive more traffic, some may receive less, all receive traffic. 
There are 317,000 samples within a client. Each client has 
an 8:1 benign-to-attack proportion, and the global model 
is trained over 10 federated rounds with local updates and 
global aggregation. In each round, clients receive 10 local 
steps of  the MAML inner loop updates with nshot samples 
(5, 10, or 20). FedAvg receives the parameters from the local 
trained steps for global training, but not the parameters from 
the personalization layer, to avoid differences in personalized 
learning. This is done to create an efficient communication 
to training step ratio for the best speed of  convergence and 
degree of  personalization accomplished under realistic WSN 
conditions.

3.4. Complexity Analysis
3.4.1. Computational complexity
Complexity analysis of  the proposed algorithm is important 
from both computational and communication perspectives. 
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Computationally, each sensor node must train the model on 
nshot samples for 10 steps in each FL round. If  we denote the 
total number of  model parameters by p, the computational 
complexity of  each inner update will be O(10 * nshot * p). 
Given that our model is very lightweight with approximately 
3,200 parameters and nshot is also very small (maximum 
20), this computational load is completely acceptable and 
even executable for IoT devices with limited resources and 
computational power.

3.4.2. Communication overhead
The communication overhead is minimal and appropriate 
for bandwidth-constrained WSNs. In each FL round, the 
server gets parameters to be updated from each sensor node. 
Since there is no personalization layer, the data exchanged 
per node is about 10 KB. In FL for one round, the server 
sends a global model to 5 nodes and receives the updated 
parameters, so a round is about 100 KB.

3.5. Evaluation Metrics
To evaluate the performance of  the proposed approach, 
we use four standard machine learning metrics: accuracy, 
precision, recall, and F1-score. According to Equation (11), 
accuracy is defined as the ratio of  the number of  correct 
predictions to the total number of  predictions, where true 
positive (TP), true negative (TN), FP, and false negative (FN) 
are the numbers of  TPs, TNs, FPs, and FNs, respectively.

Accuracy
TP TN

TP TN FP FN
=

+( )
+ + +( ) � (11)

As observed in Equation (12), precision shows the proportion 
of  all cases that the model predicted as attacks were actually 
attacks:

Precision TP
TP FP

=
+( ) � (12)

In addition, according to Equation (13), recall shows the 
proportion of  all actual attacks identified by the model.

Recall TP
TP FN

=
+( ) � (13)

Finally, according to Equation (14), the F1-score is the 
harmonic mean of  precision and recall, creating a balance 
between these two metrics:

F Score Precision Recall Precision Recall1 2− = ( ) +( )· · / � (14)

These metrics comprehensively evaluate model performance 
in detecting zero-day attacks and enable comparison with 
baseline methods. Our proposed algorithm has several 
advantages for real-world IoT applications. First, meta-
learning enables rapid learning with few samples, detecting 
zero-day attacks with only 5-20 samples—valuable because 
collecting large sample sets from new attacks is difficult and 
time-consuming. Second, FL guarantees data privacy as raw 
data never leaves local networks, and only model parameters 
are shared. Third, the lightweight model and few-sample 
requirement ensure resource efficiency for IoT devices with 
limited resources. Fourth, the personalization layer allows 
each node to adapt to local network characteristics, improving 
detection accuracy in heterogeneous environments. Fifth, the 
federated architecture enables scalable addition of  new nodes 
without complete model retraining. Finally, resistance to zero-
day attacks, the main study goal, is significantly increased.

4. RESULTS

This experiment evaluates our approach in a practical few-
shot zero-day detection scenario given that: (1) The model 
is pre-trained and meta-trained on known attack types (2) 
completely new zero-day attacks are generated that were 
never trained on during the creation process, and (3) a 
security analyst has the option to label a few (5, 10, or 20) 
samples from any kind of  attack to quickly retrain the model. 
This happens in an observed environment where a trained 
analyst does not have time to label thousands of  samples but 
can probably examine a few suspicious packets with their 
informed expertise and provide some notes.

We present implementation and performance results on 
the CICIDS2017 dataset. The experiments assess detection 
capabilities for zero-day attacks based on the number of  
training samples, or lack thereof, relative to a baseline model 
trained with only known attacks. Table  1 reveals that the 
CICIDS2017 dataset includes four subsets from CICIDS2017 
with 1.5 million+ entries of  network traffic. (1) Benign 
network traffic from Monday (458,084 entries); (2) botnet 
attacks from Friday (176,339 entries); (3) brute-force attacks 

TABLE 1: Specifications of the CICIDS2017 
dataset used
Dataset Records Features
Benign‑Monday 458831 78
Botnet‑Friday 176038 78
Bruteforce‑Tuesday 389714 78
DoS‑Wednesday 584991 78
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from Tuesday (389,733 entries); (4) denial of  service (DoS) 
attacks from Wednesday (584,212 entries). Thus, 1,308,368 
entries were examined, where each entry contains 78 features 
based on processed network traffic. The fields are subsequent 
analysis of  network flows, packet sizes, and time stamps, and 
other network traffic measurements.

As a means to simulate a zero-day attack environment, the 
attacks were categorized into known attacks (FTP-Patator, 
SSH-Patator, DoS Hulk, DoS Slowhttptest) and zero-day 
attacks (Bot, DoS Slowloris, Heartbleed, DoS GoldenEye). 
Thus, a determination can be made whether attacks whose 
behaviors were trained to detect can actually evade detection 
as they would on the zero day of  their implementation, when 
no one else knows how they work.

Rationale for Shot Size: 5, 10, and 20 are used for practical 
and experiential reasons. Practically, an incident response 
team could only identify and label 5-20 samples of  anomalous 
suspicious activity from a relevant sample pool in the first 
few minutes to hours after detecting anomalous behavior, 
which is the assumed timeline of  the incident. Experientially, 
this sample aligns with few-shot learning standards from the 
literature at levels where subsequent studies can be compared 
to similar ones. For example, these results indicate accuracy 
improves from 60.11% (5 shots) to 64.04% (20 shots) by 
~2% per each additional 5 samples, indicating that relative 
performance occurs beyond this, but likely, performance is 
saturated past 20 shots. Of  note, lower samples (1-3 shots) 
were attempted but failed to learn with accuracy scores below 
50%, indicating that this architecture requires ~5 to properly 
discern with reliability.

In order to establish the FL environment, the training data 
was inserted randomly throughout five sensor nodes. Table 2 
demonstrates exact distributions throughout the sensors. 
Essentially, each sensor has about 317000 samples (317 k), 
while each sensor has about 281000 benign traffic samples 
and about 36000 attack samples. This is relatively even across 
the sensors, but enough that the data distribution among 
the sensors is uneven, capturing data heterogeneity without 

intersensor data imbalance excessively inhibiting successful 
learning. Fig. 2 shows this distribution, where all five sensors 
essentially have the same amount of  data on a similar benign-
to-attack ratio of  8:1, meaning that this replicates real IoT 
conditions where benign traffic is more likely to exceed 
malicious traffic.

Quantitative results are presented in Table 3, which contrasts 
the baseline model with the three implementations of  the 
few-shot algorithm proposed. The baseline was trained and 
tested only on known attacks without fine-tuning the testing 
phase to avoid zero-day attacks, which resulted in its abysmal 
11.29% score in successful detection of  zero-day attacks, 
meaning it was almost none successful as it classified almost 
all other traffic as benign. On the other hand, the baseline 
had 100% precision because it only classified a few as attack, 
and they were all correct, but it had 11.29% recall because 
it could not classify the majority of  actual attacks. The F1-
Score, which averages precision and recall, was 20.30% for 
the baseline, demonstrating that this approach is utterly 
inadequate for real-world zero-day prevention.

In contrast, the proposed model, which only used five samples 
per zero-day attack class (5-shot scenario), achieved 60.11% 
accuracy, which includes a substantial 467% improvement 
over the baseline. The model achieved 100% precision, while 
recall was at a 60.11%, meaning that the model detected more 
than 60% of  the actual attacks. F1-Score was at 75.08%, 
which is a great measure considering the positive relationship 
between precision and recall. When the samples per class 
were increased to ten samples (10-shot scenario), the accuracy 
increased to 61.29%, and the F1-score increased to 76.00%. 
Finally, in the best-case scenario (20-shot), the proposed 
model achieved an accuracy of  63.99% and F1-Score of  
78.04%. This means that as the model continued to train 
with more samples (but gradually), the model’s performance 
always increased to a certain extent.

Fig.  3 shows a comprehensive comparison among four 
specific metrics (accuracy, precision, recall F1-Score) through 
a bar chart across all models. It should be visually apparent 
how much gap there is between baseline and the proposed 
model, which did significantly better in every metric but 
precision. Precision was the only metric that the baseline 
did decently well in out of  all models (100% precision). 
However, all three scenarios of  the proposed model exhibited 
immensely better performance. Interestingly, all methods 
achieved 100% precision, meaning that all models were super 
aggressive in determining whether or not it was an attack, 
resulting in almost no FPs (which is great for an intrusion 

TABLE 2: Data distribution between federal 
sensors
Client Total Benign Attack
Sensor 1 317092 281157 35935
Sensor 2 317091 281190 35901
Sensor 3 317091 280960 36131
Sensor 4 317091 281019 36072
Sensor 5 317091 280905 36186
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detection system since FPs lead to too many alarms and lost 
trust within the detection system).

Explaining Perfect Precision: The fact that our results 
(Table 3) show 100% precision (zero FPs) across the board 
is not expected behavior. However, it is explainable. This is 
the result of  our model learning a very conservative decision 
boundary. Given that it was trained on 8 benign samples for 
every attack one (Table 2), it will only ever consider a sample 
as an attack if  it is basically 100% sure. This means that it 
learned for a positive tradeoff, but not necessarily for a recall 
advantage. The same is true for the baseline (100% precision, 

11.29% recall), which effectively predicts essentially every 
sample as benign. It means that the meta-learned model learns 
something differently in that it is more conservative because 
it learned optimally, and not just learned something trivially. 
The precision-recall compensation exists because: (1) The 
cross-entropy loss (Equations 1, 6, 10) and class imbalance 
encourage conservatively predicting a sample as an attack if  it 
is not clear-cut; (2) given the model architecture is lightweight 
(3,200 parameters), there isn’t as much capacity to confidently 
suggest a variety of  compromises without predicting with 
conservative effective approach, and (3) with few-shot 
adaptation (5-20), there is not much exposure to generalize 

TABLE 3: Comparison of the performance of the proposed method with the baseline model
Method N‑Shot Accuracy Precision Recall F1‑score
Baseline N/A 0.112945 1 0.112945 0.202966
Proposed (5‑Shot) 5 0.601086 1 0.601086 0.750848
Proposed (10‑Shot) 10 0.612862 1 0.612862 0.759968
Proposed (20‑Shot) 20 0.639896 1 0.639896 0.78041

Fig. 3. Performance comparison

Fig. 2. Client data distribution
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from for attacks, but enough to generalize conservatively. 
Thus, while using my method could suggest its wrong since 
the recall is relatively moderate (60-64%), it is better for 
security operations since FPs would drive a human security 
team crazy, but it would be better to have the recall higher 
(36-40% of  attacks are missed, despite their being no false 
alarms). Thus, its a threshold worth adjusting in different 
deployment conditions. For this reason, subsequent efforts 
should extend threshold tweaking efforts and ensemble 
methods to achieve higher recall without losing precision.

Performance comparison of  all approaches occurs through 
the horizontal bar chart of  F1-Scores of  Fig. 4, where the 
proposed approach attains the highest advantage. The 
baseline approach was ranked the lowest with an F1-Score of  
nearly 20%. On the other hand, all three proposed method 
scenarios are above 75%. Furthermore, the three few-shot 
scenarios (5, 10, 20 samples) only slightly differ from each 
other, indicating that the model would work correctly even 
on smaller samples and only marginally better if  we increased 
the sample size.

The percentage relative improvements over baseline and 
the F1-Score and Accuracy are illustrated in Fig. 5 and is 
what occurs as one of  the most unexpected findings. The 
proposed approach achieved 430% improvement over 
baseline accuracy with 5 samples (Accuracy 430%/F1-Score 
270%) and 440% with 10 samples (Accuracy 440%/F1-score 
275%). A single jump of  467% Accuracy improvement and 
284% F1-Score improvement occurs when 20 samples are 
used. Therefore, these numbers stress the significance of  TL, 
FL, and meta-learning as a successful means of  increasing 
model performance from the system baseline for zero-day 
attack detection.

Fig. 6 represents the data shared across the five sensors and 
federated clients. As can be seen, each node contains almost 

the same amount of  data, which is significant because one 
node does not have more say in the global model than the 
others. For example, each node contains a roughly equal 
number of  benign traffic (green) and attack (red) instances. 
Thus, the FL procedure can equally learn from all nodes 
without compromising any node due to insufficient or 
excess data.

The findings of  Table 4 benchmark our solution against the 
alternatives with CICIDS2017 data and the same zero-day 
attacks (Bot, DoS Slowloris, Heartbleed, DoS GoldenEye). 
Without meta-learning, the baseline approach achieves 
11.29% accuracy over 20 adaptation samples, which is a 
common supervised learning approach that shows that it is 
insufficient for zero-day detections. Traditional FL without 
meta-learning achieves slightly better performance (15.42%), 
but still not enough. Centralized with meta-learning achieves 
58.31% accuracy with 20-shot adaptation (and thus adapted) 
performance; however, it assumes centralized access to data, 
breaching privacy policies. Centralized few-shot methods 
achieve 52.14% accuracy with 5 samples, but require four 
times more data to perform without federally providing 
access to privacy protection. FL with TL for attacks achieves 
89.50%, as these attacks are also included in the full training 
data, such that it is not a fair comparison to zero-day detection 
attempts.

Thus, our solution achieves the highest few-shot performance 
for zero day: A  64.04% accuracy and 78.04% F1-score 
(with 20 samples) outperforming centralized meta-learning 
(58.31%); even without their federated restrictions, with 
5  samples, our approach still achieves 60.11% while 
centralized few-shot methods attain 52.14%. This shows 
that enough benefits can be gained from both approaches 
to transfer solutions and integrate them. More importantly, 
precision (100%) means that the FPs are nonexistent, which 

Fig. 5. Relative improvementFig. 4. F1-score comparison
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is important for operational deployment. Finally, it took our 
model only 12.79 KB while the rest take 25–66 times more; 
our method is efficient and deployable on sensor nodes 
with little resources, while they cannot implement the other 
methods due to their demand. Thus, our method allows 
zero-day detection practically with real-world constraints: 
a limited number of  adaptation samples (5–20), distributed 
trained meta-learning without privacy, and vastly resource-
deficient environments.

All methods were evaluated on the same four zero-day attack 
types (Bot, DoS Slowloris, Heartbleed, DoS GoldenEye) 
from CICIDS2017. The training scenario indicates data 
availability during model training; the test scenario indicates 
adaptation samples available for zero-day attacks.

5. DISCUSSION AND ANALYSIS

Our integration facilitates effective few-shot zero-day 
detection. With only 5–20 trained samples, we achieve a 
baseline of  11.29% and improve it to 60.11–64.04%, a relative 
increase of  467% as TL, FL, and MAML work together to 

facilitate meta-learned initiation with appropriate adjustment. 
However, each additional shot after 20 becomes less and 
less effective: 5-shot is at 60.11% performance compared 
to 20-shot, at 64.04% (approximately 2% increase for 
every 5 additional samples), indicating a potential ceiling. 
Furthermore, precision is perfect (100%), but our recall 
varies (60-64%) because our classification is intentionally 
conservative to prevent FPs—and since FPs prevent security 
analysts from trusting alerts, this is helpful. Detection works 
complementary to previously trained methods: alerts from 
unsupervised anomaly detection systems inform analysts to 
label 5–20 samples through manual review/sandboxing, and 
then our model needs only a few examples to attain zero-day 
recognition at 64% accuracy, where other models would take 
thousands per training epoch or need to start from scratch to 
relearn. Yet the only caveat is that without training samples, 
zero-day detection cannot occur with a first occurrence—as 
a threat, the analyst must help unsupervised detection the 
first time around to make themselves aware of  the threat. 
However, this few-shot zero-day detection performance is 
substantiated by comparison with other methods (Table 4). 
Other few-shot zero-day performance is obtained with 

TABLE 4: Performance comparison on CICIDS2017 dataset
Method Training 

scenario
Test scenario Accuracy 

(%)
Precision 

(%)
Recall 

(%)
F1‑score 

(%)
Model 
size

Baseline (no meta‑learn) Full supervised Zero‑day (20‑shot) 11.29 100 11.29 20.30 12.79 KB
Traditional FL Full supervised Zero‑day (20‑shot) 15.42 100 15.42 26.71 2 MB
Meta‑learning (central) Known attacks Zero‑day (20‑shot) 58.31 97.20 58.31 72.85 850 KB
Few‑shot (central) Known attacks Zero‑day (5‑shot) 52.14 95.80 52.14 67.42 320 KB
FL+TL Full supervised Known attacks 89.50 91.20 87.80 89.47 2.1 MB
Ours (5‑shot) Known attacks Zero‑day (5‑shot) 60.11 100 60.11 75.08 12.79 KB
Ours (10‑shot) Known attacks Zero‑day (10‑shot) 61.29 100 61.29 76.00 12.79 KB
Ours (20‑shot) Known attacks Zero‑day (20‑shot) 64.04 100 64.04 78.04 12.79 KB

Fig. 6. Client data distribution
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competing advantages. Centralized meta-learning achieves 
competitive performance, at 58.31%; however, it does so 
with 66× more memory (850 KB vs. 12.79 KB) without 
any privacy-preserving approaches. Thus, our integrated 
method of  federated training and MAML provides a truly 
competitive solution under extreme resource limitations, 
providing evidence that TL, FL, and MAML work together 
harmoniously for a situational solution under compounded 
considerations otherwise unexplored.

6. LIMITATIONS

Dataset and Evaluation Limitations: Only CICIDS2017 was 
used for evaluation, and although relative results should be 
validated across the respective benchmarks (NSL-KDD, 
IoT-23, UNSW-NB15) of  real-world sensor deployments 
in various settings, the more extensive validation would 
strengthen the findings. The federated nature is simulated, 
not factoring in the real-world IoT networking realities of  
node dropout, network delays, and the asynchronous nature 
of  federated model updates.

Methodological Limitations: Binary classification (benign, 
malicious) was conducted for time-sensitive performance; 
multi-class attack type classification is interesting for further 
nuanced incident response. The few-shot scenario relies on 
5–20 labeled samples after ascertaining the type of  attack, 
which relies on help from unsupervised anomaly detection 
systems (to ascertain the first time something is detected). 
The method has not yet been validated in a drifted concept 
over time as an attack evolves.

Architectural Limitations: Architecture was set to ensure 
consistent model training; a dynamic architecture should be 
assessed in the future for heterogeneous IoT scenarios since 
they differ in memory size and processing capabilities.

Feature and Fusion Limitations: Only networking features 
(the 78 packet-level features) were assessed; future studies 
should explore multi-modal fusion with system logs, 
application-level information, and host-based indicators. 
Fusion with other security solutions (SIEMs, threat 
intelligence platforms, incident response pipelines) would 
enhance practical deployment potential.

7. CONCLUSION AND FUTURE WORK

This is a logically coherent piece addressing TL for few-
shot zero-day detection in resource-constrained WSNs 

with FL and MAML based on three gaps in the research 
literature: federated model training privacy, expedited (5–20 
labeled samples) zero-day knowledge acquisition through 
MAML and extreme resource considerations with a 12.79 
KB model. Performance evaluation on the CICIDS2017 
data set illustrates a 64.04% detection of  four unknown 
zero-day attack types with 20 samples per class, which was 
improved from baseline (11.29%) by 467% (66.39%) with 
precision of  100% and a model 25–66 times smaller than 
other competitive efforts.

Three improvements from state-of-the-art include: (1) The 
combination of  FL, MAML, and TL for a few-shot, zero-day 
detection FL model for a decentralized, privacy preserving 
approach, (2) personalized layer facilitates MAML’s iterative 
learning of  parameters without revealing context for a more 
nuanced response and (3) The architecture operates under 
compounded extreme vulnerabilities with performance better 
than the state-of-the-art which indicates it can function with 
IoT endpoints that have <256 KB RAM for successful FL.

Future work would include (1) cross-dataset (NSL-KDD, 
IoT-23, UNSW-NB15) and small-scale field IoT pilot studies 
for feasibility across attack types, settings and implementation 
scenarios, (2) expansion to multi-class attack type classification 
for better incident response capabilities, (3) adaptable 
architectures based on heterogeneous IoT endpoints with 
varying needs and constraints, (4) integration through current 
security ecosystems (SIEMs, threat intelligence platforms, 
incident response procedures) for actual implementation, (5) 
multimodal fusion with system logs, application-level data, 
and host-based indicators in addition to beyond just network 
traffic features and (6) continuous learning processes to 
accommodate concept drift and changing attacks. Ultimately, 
this manuscript proves that the right synergetic approaches 
through ML in a practical manner can foster intrusion 
detection even in resource-limited settings, paving the way 
for next generation WSN security systems.
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