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ABSTRACT

Wireless sensor networks of loT have very relevant security threats regarding zero-day attacks, new attacks, and no
training patterns, which put conventional detection to the test. Not only does this pose a challenge to detection since
there are few labeled samples once the zero-day attacks are detected (5-20), but also limited power and processing
resources, in addition to privacy matters in decentralized settings. We present a state-of-the-art solution based on
personalized federated meta-learning and few-shot learning. Our solutions combine federated learning (FL) for privacy-
preserving decentralized training, model-agnostic meta-learning (MAML) for few-shot learning adaptation, and transfer
learning (TL) for prior exposure to the attacks. We implement a lightweight model (12.79 KB) with a personalized layer,
meaning that while the model is trained globally during federated training, each sensor node can also adapt to its specific
local network features. We validate our solution on CICIDS2017, which includes four completely unknown zero-day
attack types: Bot, DoS Slowloris, Heartbleed, and DoS GoldenEye. We achieve 64.04% accuracy and 77.93% F1-Score
in the 20-shot scenario, 467 % greater than the baseline (11.29% accuracy) while achieving 100% precision and size
of the model (25-66 times smaller than the rest). Our results prove that the combination of FL, MAML, and TL is an
effective solution for few-shot detection of zero-day attacks in real l1oT networks, where conventional solutions cannot
operate with such extreme limitations.

Index Terms: Federated Learning, Meta-Learning, Few-Shot Learning, Zero-Day Attack Detection, Wireless Sensor
Networks, MAMIL, Intrusion Detection System, loT Security

1. INTRODUCTION

The 10T is booming, and wireless sensor networks (WSNs)
have become an omnipresent critical infrastructure of
modern-day communication technologies. However, they
are susceptible to vatious cybersecurity threats due to their
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distributed architecture (no central access point) and low
computing resources for countering attacks. As such, the
newest threats targeting them are zero-day attacks, which
can make use of zero-day vulnerabilities (without exploits
traveling through signature databases to prevent them from
implementation). Most cybersecurity systems rely on known
patterns and signatures to prevent known vulnerabilities [1];
therefore, zero-day attacks are especially novel.

Machine learning and deep learning techniques have
emerged as anomaly detection alternatives, but many rely on
a substantial amount of labeled training data with extreme
computational needs, which are hardly found in resource-
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constrained sensor networks [2]. Other solutions need
centralized data collection, which results in massive privacy
and security vulnerabilities. However, Federated Learning
(FL) allows for training without moving any raw data, as
determined by McMahan e7 al. [3,4], which works well to
solve the zero-day problem without a trained knowledge of
all nodes; however, without enough training data on zero-day
attacks, FL is ineffective.

Detecting zero-day attacks in WSNss faces three fundamental
challenges: (1) The nature of the attack is not known, so
trained machine learning models don’t have patterns from
which to operate, (2) WSNs do not have ideal hardware (low
computation power, small memory capacity, limited energy
means that DL involves heavier models that can’t be deployed
or avoided), (3) since the data is non-11D distribution means
that FLL cannot converge properly. While Finn ez a/. [5] present
the Model-Agnostic Meta-Learning (MAML) algorithm to
learn new models rapidly with few samples from previously
explored ones, this could be a solution in case zero-days come
up with few samples. Pan and Yang [6] surveyed Transfer
Learning (TL) as an option where related tasks decrease the
need for lots of training data; using TL, meta-learning, and
FL could be the optimal solution to find zero-day detection
in WSNs with limited resources.

Definition of Zero-Day Attack: Zero-day attacks, in this
study, are completely new attack types which are not
included in any form of training (thus, they are different
attack types with unique characteristics [Heartbleed, DoS
GoldenEye] yet with limited labeled samples [5-20] post-
initial investigation). This differs from traditional anomaly
detection (zero labeled samples) and supervised learning
(thousands of samples).

Few-Shot Zero-Day Scenario: Thus, our solution covers
a realistic situation which involves real-world defenses:
(1) Anomaly-based monitoring/signature-based detection
returns anomalous behavior, (2) a security analyst for WSN
reviews and highlights a small number [5-20] as benign/
malicious using manual investigation/threat intelligence/
sandbox investigation, (3) our proposed model takes these
few samples and utilizes rapid adaptation to subsequently
find them effectively when needed. This situation is realistic
because there is rarely enough accurate anomaly detection
information to avoid all false positive (FP) results; waiting
for thousands of labeled samples since these are novel
threats would take too long, and security analysts can
usually highlight 5-20 after a few minutes to a few hours of
investigative efforts.
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Zero-Day Detection Mechanism: Our solution generates
zero-day detection based on three synergizing mechanisms:
(1) Meta-learning initialization through MAML means rapid
adaptation is possible even with 5-20 samples and few iterations
of gradients, (2) attack semantics can be transferred from pre-
training meaning the intentional malicious characteristics can
recognize general patterns that transfer across any attack that
the network exists as a need for protection, (3) personalized
local adaptation through the personalization layer helps
maintain any unique version of the zero-day attack through
meta-knowledge gained globally from such adaptation.

Principal Contributions: First, this creates a unified architecture
that avoids three solutions working simultaneously since FL.
preserves privacy, FL simultaneously generates MAML for
rapid adaptation, and TL for pre-knowledge acquisition.
Second, the resulting model is small (only 12.79 KB) and
adaptable for severely resource-constrained sensors. Third,
layer-wise personalization allows each sensor to adapt the
global model for local characteristics; this helps adjust for
data heterogeneity. Fourth, extensive experiments evaluate
accuracy in realistic zero-day attacks through CICIDS2017
to prove the utility of entirely unknown attacks with only
5-20 samples per class. Experimental results show that our
proposed method achieves 467% relative improvement over
the baseline in the 20-shot scenario while still being applicable
in resource-constrained environments.

Paper Organization: Section 2 reviews the state-of-the-art in
four different fields to determine gaps that no other method
approaches. The third section presents our three-phase
approach, including complicated analysis and architecture for
lightweight considerations. Section 4 evaluates the proposed
method with experiments conducted on CICIDS2017.
Finally, Section 5 discusses limitations for future research
considerations. Section 6 concludes by determining the
contributions and future works.

2. RELATED WORK

The detection of zero-day attacks via transfer and meta-
learning in resource-constrained IoT networks is challenged
by limited training samples, privacy-preserving specifications,
computational limitations, and heterogeneous data. This
section outlines related work across four fields.

2.1. FL-based Intrusion Detection
FL facilitates developing effective IDS training across
heterogeneous clients to maintain privacy. IDAC is an

UHD Journal of Science and Technology | Jan 2026 | Vol 10 | Issue 1



Rashid, et al.: Zero-Day Attack Detection in Wireless Sensor Security

FL-based IDS where a candidate for attack is auto-labeled
in the training stage and validated in the other timeframes
by Online OC-SVM [7]. Yet auto-labeling relies on accurate
threshold tuning, which may or may not be effective in
all situations. A similar study regarding zero-day attacks
instigated by botnets detected on edge IoT devices used
Bot-IoT and N-BaloT datasets [8], which attained decent
classification with low communication overhead under FL.
Yet it never assessed attacks specific to botnets only.

Limitations: FL.-based IDS assumes clients are 11D, since FL
is inherently time-saving, FL. does not generate adaptability
to new threats with limited samples, and FL-based 1DS lacks
personalization to local heterogeneity.

2.2. MetalLittle Learning-based IDS

Meta-learning benefits from a few cases of data. A MAMI.-
based solution in a laboratory-controlled environment with
UNSW-NB15 and NSL-KDDY99 attained fast, adaptable
results with few data [9], yet a MAML-based solution
cannot be utilized in edge environments with limited MIPS
and memory. FC-Net with few-shot detection transforms
packet data into RGB images, attaining >90% accuracy with
CICIDS2017 [10], yet resource-constrained devices will not
be able to possess sufficient computing power to convert
the data from packets to images. Prototypical networks
employing adaptive feature fusion classification attain>98%
for multi-class classification [11], yet feature extraction is
more computationally intensive than assumed. MAML-
L2F realizes few-shot NIDS through a forgetting-to-learn
mechanism for faster convergence [12], yet it only works
in binary classification modes. A meta-learning approach
to 1IoT and 5G-10T involves the generation of samples,
mapping features, and mapping the metric of features [13],
yet zero-shot operates only on anticipated types of attacks
mapped out, which are not unknown types.

Limitations: Applicable in few-shot learning but not
integrated with FL for decentralized, privacy-preserving
scenarios. Mostly cannot achieve personalization for
heterogeneous networks and ultra-low resource consumption
(<15 KB).

2.3. TL-based Attack Detection

TL allows for knowledge acquisition without large data
collection and from akin tasks. ConvNet with minimal TL
operations attained good performance on KDDTest+ and
KDDTest-21 [14] as it learned high-level features of attack
and payload. Attention-based TL using Convolutional Block
Attention Module (CBAM) based on BoT-IoT dataset notes
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that pre-trained models with relative TL realized the highest
detection accuracy [15], meaning it learned to focus on
needed features while paying less attention to noise. TL with
FL integrates CNN, which was tested on CICIDS2017 as the
source dataset for a 5G environment [10], attaining decent
levels of accuracy for IoT Settings with less information

labeled.

Limitations: Most of the TL methods run without concern
for resource limitations. While TL reduces needs, it fails to
incorporate meta-learning for rapid few-shot scenarios with
heterogeneous federated environments for personalization.

2.4. Personalized FL

Personalized FL came about to address client heterogeneity
attributable to different data distributions. Cedar offered
federated meta-learning, secure and cost-effective, on
personalized l1oT with layer-wise assembly but highly
effective personalization [17]. FedMEM, in essence, enabled
personalized FL via a multi-exit selection probability aiming
for bandwidth-limited mobile edge operations [18]. Edge-
based clustering with blockchain and edge computing
solved for the challenges presented by non-IID data
effects [19]. Hierarchical FL in mobile edge computing was
found to generate personalized models in the edge server
layer [20]. A contribution-oriented module (COWA module)
for personalized FL evaluated contributions from clients
for a principled synthesis of global agreement and local
adaptation [21].

Gaps: They generalize personalization (but not for zero-day
attack detection), they fail to apply meta-learning to few-
shot adaptations, and they do not offer the ultra-resource
efficiency required by highly constrained IoT devices.

2.5. Research Gap and Contributions

Thus, no one has offered all these four advantages together
thus far: (1) Distributed, privacy-preserving federated
solution, (2) rapid adaptation to zero-day attacks (5—
20 samples), (3) personalized for heterogeneous sensor nodes
exposing no local characteristics, and (4) ultra-lightweight
model (<15 KB). Thus, our contribution is a personalized
solution of 12.79 KB that merges the benefits of FL, MAML,
and TL that are nuanced for few-shot zero-day detection for
resource-constrained WSNs. FL-based IDS assumes class
labels obtain enough (>50) samples, where we do not even
achieve 64% accuracy with 20 samples per novel attack class.
Meta-learning IDS does not keep privacy during training,
where FL. does. TL-based assumptions believe enough
retraining will justify incorporation; our MAML offers rapid
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adaptation. Existing personalized FL research fails to nuance
for this; ours focuses on attack characteristics for localized
variances while still recognizing global tendencies for being
a zero-day.

3. METHODOLOGY

This subsection describes our federated meta-learning
approach for zero-day attack detection in constrained WSN(s,
which combines TT,, FI., and MAML. since attack data is scant
and the need for protection is in a decentralized environment.

3.1. Proposed Approach Overview

The combined method is shown in Fig. 1 and operates in
three stages: (1) Pretraining with attack types already known,
(2) federated meta-learning across five sensor nodes, and
(3) rapid adaptation to zero-day attacks. The first stage is
where an off-the-shelf model is trained with known attack-
type datasets and benign traffic to understand where, in a
newly established network, intrusion patterns exist. The
second stage represents the federated meta-learning across
five sensor nodes. Each runs its instance of MAML with
5-20 samples per node representing local training. Each node
then sends its trained parameters (minus the personalization

layer) to the global server to combine efforts. The last stage
signifies the rapid adaptation to the zero-day attacks as an
adapted version of the meta-trained model learns from a few
labeled samples as intended.

Lightweight Neural Network Architecture: The architecture
is composed of three main components. First, the shared
layers (general features of network traffic all clients can use)
consist of: a linear layer (input dimensions equal features of
the data, output 32); batch normalization; RelLU activation;
dropout (P = 0.2); linear layer (input 32, output 16); batch
normalization; ReLLU activation. Second, the personalization
layer (linear, 16 -> 8 neurons) is the most novel component
not shared with the central server, as it becomes acquainted
with a more specific environment since its trained in a local
manner per client and not sent to the central server for
composite inclusion. Third, the classifier layer (8 -> 2 output)
classifies whether the traffic is benign/malicious. The full
model size is approximately 12.79 KB, which is compatible
with IoT devices with minimal memory (<256 KB RAM,
<100 MHz processing speed).

3.7.1. Phase 1: TL pre-training
During the initial phase, we performed model pre-training
using a dataset that included both known attacks and benign

Unified Architecture of Personalized Federated Meta-Learning

for Zero-Day Attack Detection

Phase 1: Pre-training
Transfer Learning
Known Attacks Dataset
Pre-trained Weights — Meta-Model

Y

\ Phase 2: Federated Meta-Learning (MAML)
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Local Training: MAML Inner Loop (10 steps)
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Node 5
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Node 4

v

p
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Few-Shot Learning
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@ Sensor Nodes

Legend
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Model Specifications
* Size: 12.79 KB
* Comm. Overhead: <100 KB
* Training Samples: 5-20
* Improvement: 467%
* Architecture: Lightweight CNN
» Framework: TensorFlow Lite

Fig. 1. Comprehensive architecture of personalized federated meta-learning for zero-day attack detection showing three phases: (1) Pre-training
with known attacks, (2) distributed federated meta-learning across five sensor nodes, and (3) rapid adaptation to zero-day attacks
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traffic. This stage is vital because it lays the groundwork for
the model’s understanding of general attack patterns, which
later facilitates the rapid learning of new attacks. In our
implementation, we utilized the cross-entropy loss function,
as specified in Equation (1).

L ,retrain = —2 (J’;‘ - log (3/\[ )) 1)

In Equation (1), y,is the true label of the class 7and 3/\1 does
the model for the class predict the probability 7 To optimize
the model parameters, we used the Adam algorithm with a
learning rate of 0.001, which updates the parameters
according to Equations (2-4).

m”, = ﬁl '”Z(;—l) + (l - ﬁ1 ).gt (2)
v, =p’ Vyoy) T (1 - B )gf 3)
6, =06,/ (\/@ + g) 4

In HEquations (2-4), g is the gradient at time 7 7, is the first
moment estimate, 2, is the second-moment estimate; B1and
B2 are the decay rates of the moments (typically 0.9 and
0.999); n is the learning rate (0.001); € is a minimal value
for numerical stability (107%); and O represents the model
parameters. The training process consisted of 10 epochs
with a batch size of 512 samples, selected based on empirical
experiments to achieve an appropriate balance between
training time and model performance.

3.17.2. Phase 2: Federated meta-learning

The second phase, which is the core of the proposed
algorithm, implements federated meta-learning, In this phase,
five sensor nodes collaboratively train a global model without
sharing their local data. Each round of FL includes two loops:
an inner loop that performs local updates in each client and
an outer loop that aggregates the global model based on the
received updates. In the inner loop, each sensor node first gets
the current international model parameters from the central
server. Then, using the few-shot sampling function, a small
set of local data is selected, containing an equal number of
samples from the benign and malicious classes. According to
Equation (5), the number of these samples, denoted by 7, ,
can be 5, 10, or 20, which we examined in three scenarios in
the experiments. For each sensor node i:

D.upport’ = ((x/ ) ))E;/)) ®)

In Equation (5), half of the samples are selected from the
benign class and the other half from the malicious class.
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Using this support set, the sensor node creates a copy of
the global model and fine-tunes it. This process, called the
MAML inner update, was repeated for 10 steps using the
SGD optimization algorithm. In each step of the inner
update, the local loss is calculated using Eq. (6), where
J, represents the model with parameters 0. Then, using
Equation (7), the gradient of this loss with respect to the
model parameters is calculated.

L, (0) = CrossEntropy ( o (DJ upport’ )) (6)
& =V,oL,;(0) ¥

In addition, using Equation (8), the local model parameters
are updated using the gradient.

6,=0-ayg ®

In Equation (8), ot is the inner learning rate, which was set to
0.01 in our implementation. This process is repeated 10 times
to ensure the local model adapts well to the local data. The
critical point here is that during these local updates, the
personalization layer is also updated; however, these updates
are not sent to the server and are only kept in the local node.

After completing the inner updates in all the sensor nodes,
the central server enters the outer loop. At this stage, the
server receives the updated parameters from all nodes and
performs an aggregation process.

0 iobal =(1/ N)Y (i =1)" 6, )

According to Equation (9), for aggregation, a simple
averaging method is used, where N is the total number of
participating nodes (five nodes in our case) and 0;- is the
updated parameter of node 7 This averaging is performed
separately for each layer of the network, except for the
personalization layer, which, owing to its local nature, does
not participate in the aggregation process. The updated global
model is then sent to all sensor nodes, and this process is
repeated for 10 rounds until the global model converges.

3.7.3. Phase 3: Zero-day attack adaptation

In the third phase, when a zero-day attack is detected in the
network, the model performs rapid parameter adaptation
with 5-20 labeled samples of the new attack. This capability
is one of the key advantages of the meta-learning approach,
which enables the model to use its prior knowledge to learn
quickly. To adapt to zero-day attacks, a small number of
samples from the new attack (typically twice 7, , which can

shoP
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be 10, 20, or 40 samples) are collected. These samples were
used as a support set for the final fine-tuning of the model.
The fine-tuning process was performed using the Adam
optimization algorithm with a learning rate of 0.001. At this
stage, all model layers, including the shared, personalization,
and classifier layers, are trainable.

L inetune = CrossEntropy ( o (D%m oy )) (10)

According to Equation (10), the loss at this stage is calculated,
where Dzemday is a small set of zero-day attack samples.
This fine-tuning process is repeated for 20 epochs, where
this number of epochs was selected based on empirical
experiments to achieve the best balance between adaptation
speed and final performance. Parameter updates at this stage
are performed similarly to Equations 2, 3, and 4, but using

zero-day data.

One of the important points in this phase is that, owing to
meta-training, the model has already learned how to learn
with few samples. In other words, during the second phase,
the model not only learned to detect different attacks but
also learned how to quickly adapt to new attacks. This
characteristic, which is the core nature of meta-learning,
enables the accurate detection of zero-day attacks with a
minimal labeled sample.

3.2. Lightweight Model Architecture

e  Shared Feature Extraction Layers: Shared between clients,
global characteristics of network traffic can be extracted
from two linear layers (78—32—16 neurons) in the
classification head while receiving batch normalization,
ReLLU activation, and dropout (0.2), which reduce feature
dimensionality and consolidate input.

e DPersonalization Layer: The novel component of this
architecture, a linear layer (16—8 neurons), operates at
the personalized, client level, is not sent to the server
for the model, and instead, captures personalized
characteristics for optimal learning from local traffic and
local attacks.

e Why This Layer is Important: The local layer plays
an essential role in few-shot zero-day adaptation as
it captures local characteristics that differ from other
locations with heterogeneous sensor installations
with unique traffic patterns (industrial IoT vs. smart
home), attack expression, and baseline expectations.
The 8-neuron layer captures such differentiation but
does not send any adjustments to the global server to
maintain the privacy of anything important specific
to the environment. The reason why this layer is not
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sent to federated averaging is so (1) the local zero-day
attack pattern can be adapted more quickly with as
low as 5-20 samples, without international averaging
diluting it, and (2) so heterogeneous patterns do not
negatively transfer when aggregated. Thus, personalized
recognition of the attack but global sensitivity of the
meta-knowledge and parameters based on shared
experience benefit detection, where zero-day attacks are
expressed differently in different contexts. Classification
Layer: Final layer (8—2 neurons) is a simple binary
classification of whether traffic is deemed benign or
malicious.

e Size of the Model: This 12.79 KB model includes the
parameters that are involved in federated aggregation.
The first two layers have a total of 3,008 parameters
(78 X 32 =2,496; 32 X 16 = 512), and the classification
layer has 16 (8 X 2). Thus, 3,024 as 32-bit floats yield
12,096 bytes (11.81 KB). With batch normalization
(values = 64 bytes and 256 bytes), it adds up to 12.35
KB. Thus, the reported aggregate of 12.79 KB can be
accounted for with some small overhead from metadata.
The personalization layer (128 = 0.5 KB) is excluded
since it will never be shared from the beginning. The
runtime memory, including activations, is <14 KB, which
allows for deployment on devices that have at least 256
KB (Arduino Mega, ESP32).

3.3. FL Configuration

Our FL setting mimics a real-world distributed WSN scenario
with five sensor nodes that comprise critical infrastructure
monitoring, Data are non-1ID because these sensor nodes
are from different network areas, and although some may
receive more traffic, some may receive less, all receive traffic.
There are 317,000 samples within a client. Each client has
an 8:1 benign-to-attack proportion, and the global model
is trained over 10 federated rounds with local updates and
global aggregation. In each round, clients receive 10 local
steps of the MAML inner loop updates with nshot samples
(5, 10, or 20). FedAvg receives the parameters from the local
trained steps for global training, but not the parameters from
the personalization layer, to avoid differences in personalized
learning, This is done to create an efficient communication
to training step ratio for the best speed of convergence and
degree of personalization accomplished under realistic WSN
conditions.

3.4. Complexity Analysis

3.4.1. Computational complexity

Complexity analysis of the proposed algorithm is important
from both computational and communication perspectives.
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Computationally, each sensor node must train the model on
n, samples for 10 steps in each FL round. If we denote the
total number of model parameters by p, the computational
complexity of each inner update will be O(10 * », * p).
Given that our model is very lightweight with approximately
3,200 parameters and #, is also very small (maximum
20), this computational load is completely acceptable and
even executable for IoT devices with limited resources and

computational power.

3.4.2. Communication overhead

The communication overhead is minimal and appropriate
for bandwidth-constrained WSNs. In each FL round, the
server gets parameters to be updated from each sensor node.
Since there is no personalization layer, the data exchanged
per node is about 10 KB. In FL for one round, the server
sends a global model to 5 nodes and receives the updated
parameters, so a round is about 100 KB.

3.5. Evaluation Metrics

To evaluate the performance of the proposed approach,
we use four standard machine learning metrics: accuracy,
precision, recall, and Fl-score. According to Equation (11),
accuracy is defined as the ratio of the number of correct
predictions to the total number of predictions, where true
positive (TP), true negative (TN), FP, and false negative (FN)
are the numbers of TPs, TNs, FPs, and FNs, respectively.

(TP+TN)
(TP+ TN +FP+FN)

Accuracy =

1)

As observed in Equation (12), precision shows the proportion
of all cases that the model predicted as attacks were actually
attacks:

TP
Precision = ———— (12)
(TP +FP)

In addition, according to Equation (13), recall shows the
proportion of all actual attacks identified by the model.

Recall = —L (13)
(TP + FN)

Finally, according to Equation (14), the Fl-score is the
harmonic mean of precision and recall, creating a balance
between these two metrics:

F1— Score = 2 Precision'Recall ) / (Precision + Recall ) (14)
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These metrics comprehensively evaluate model performance
in detecting zero-day attacks and enable comparison with
baseline methods. Our proposed algorithm has several
advantages for real-world IoT applications. First, meta-
learning enables rapid learning with few samples, detecting
zero-day attacks with only 5-20 samples—valuable because
collecting large sample sets from new attacks is difficult and
time-consuming. Second, FL. guarantees data privacy as raw
data never leaves local networks, and only model parameters
are shared. Third, the lightweight model and few-sample
requirement ensure resource efficiency for IoT devices with
limited resources. Fourth, the personalization layer allows
each node to adapt to local network characteristics, improving
detection accuracy in heterogeneous environments. Fifth, the
federated architecture enables scalable addition of new nodes
without complete model retraining. Finally, resistance to zero-
day attacks, the main study goal, is significantly increased.

4. RESULTS

This experiment evaluates our approach in a practical few-
shot zero-day detection scenario given that: (1) The model
is pre-trained and meta-trained on known attack types (2)
completely new zero-day attacks are generated that were
never trained on during the creation process, and (3) a
security analyst has the option to label a few (5, 10, or 20)
samples from any kind of attack to quickly retrain the model.
This happens in an observed environment where a trained
analyst does not have time to label thousands of samples but
can probably examine a few suspicious packets with their
informed expertise and provide some notes.

We present implementation and performance results on
the CICIDS2017 dataset. The experiments assess detection
capabilities for zero-day attacks based on the number of
training samples, or lack thereof, relative to a baseline model
trained with only known attacks. Table 1 reveals that the
CICIDS2017 dataset includes four subsets from CICIDS2017
with 1.5 million+ entries of network traffic. (1) Benign
network traffic from Monday (458,084 entries); (2) botnet
attacks from Friday (176,339 entries); (3) brute-force attacks

TABLE 1: Specifications of the CICIDS2017
dataset used

Dataset Records Features
Benign-Monday 458831 78
Botnet-Friday 176038 78
Bruteforce-Tuesday 389714 78
DoS-Wednesday 584991 78
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from Tuesday (389,733 entries); (4) denial of service (DoS)
attacks from Wednesday (584,212 entries). Thus, 1,308,368
entries were examined, where each entry contains 78 features
based on processed network traffic. The fields are subsequent
analysis of network flows, packet sizes, and time stamps, and
other network traffic measurements.

As a means to simulate a zero-day attack environment, the
attacks were categorized into known attacks (FTP-Patator,
SSH-Patator, DoS Hulk, DoS Slowhttptest) and zero-day
attacks (Bot, DoS Slowloris, Heartbleed, DoS GoldenEye).
Thus, a determination can be made whether attacks whose
behaviors were trained to detect can actually evade detection
as they would on the zero day of their implementation, when
no one else knows how they work.

Rationale for Shot Size: 5, 10, and 20 are used for practical
and experiential reasons. Practically, an incident response
team could only identify and label 5-20 samples of anomalous
suspicious activity from a relevant sample pool in the first
few minutes to hours after detecting anomalous behavior,
which is the assumed timeline of the incident. Experientially,
this sample aligns with few-shot learning standards from the
literature at levels where subsequent studies can be compared
to similar ones. For example, these results indicate accuracy
improves from 60.11% (5 shots) to 64.04% (20 shots) by
~2% per each additional 5 samples, indicating that relative
performance occurs beyond this, but likely, performance is
saturated past 20 shots. Of note, lower samples (1-3 shots)
were attempted but failed to learn with accuracy scores below
50%, indicating that this architecture requires ~5 to propetly
discern with reliability.

In order to establish the FL environment, the training data
was inserted randomly throughout five sensor nodes. Table 2
demonstrates exact distributions throughout the sensors.
Essentially, each sensor has about 317000 samples (317 k),
while each sensor has about 281000 benign traffic samples
and about 36000 attack samples. This is relatively even across
the sensors, but enough that the data distribution among
the sensors is uneven, capturing data heterogeneity without

TABLE 2: Data distribution between federal
sensors

Client Total Benign Attack

Sensor 1 317092 281157 35935

Sensor 2 317091 281190 35901

Sensor 3 317091 280960 36131

Sensor 4 317091 281019 36072

Sensor 5 317091 280905 36186
52

intersensor data imbalance excessively inhibiting successful
learning, Fig, 2 shows this distribution, where all five sensors
essentially have the same amount of data on a similar benign-
to-attack ratio of 8:1, meaning that this replicates real IoT
conditions where benign traffic is more likely to exceed
malicious traffic.

Quantitative results are presented in Table 3, which contrasts
the baseline model with the three implementations of the
few-shot algorithm proposed. The baseline was trained and
tested only on known attacks without fine-tuning the testing
phase to avoid zero-day attacks, which resulted in its abysmal
11.29% score in successful detection of zero-day attacks,
meaning it was almost none successful as it classified almost
all other traffic as benign. On the other hand, the baseline
had 100% precision because it only classified a few as attack,
and they were all correct, but it had 11.29% recall because
it could not classify the majority of actual attacks. The F1-
Score, which averages precision and recall, was 20.30% for
the baseline, demonstrating that this approach is uttetly
inadequate for real-world zero-day prevention.

In contrast, the proposed model, which only used five samples
per zero-day attack class (5-shot scenario), achieved 60.11%
accuracy, which includes a substantial 467% improvement
over the baseline. The model achieved 100% precision, while
recall was ata 60.11%, meaning that the model detected more
than 60% of the actual attacks. F1-Score was at 75.08%,
which is a great measure considering the positive relationship
between precision and recall. When the samples per class
were increased to ten samples (10-shot scenario), the accuracy
increased to 61.29%, and the F1-score increased to 76.00%.
Finally, in the best-case scenario (20-shot), the proposed
model achieved an accuracy of 63.99% and F1-Score of
78.04%. This means that as the model continued to train
with more samples (but gradually), the model’s performance
always increased to a certain extent.

Fig. 3 shows a comprehensive comparison among four
specific metrics (accuracy, precision, recall F1-Score) through
a bar chart across all models. It should be visually apparent
how much gap there is between baseline and the proposed
model, which did significantly better in every metric but
precision. Precision was the only metric that the baseline
did decently well in out of all models (100% precision).
However, all three scenarios of the proposed model exhibited
immensely better performance. Interestingly, all methods
achieved 100% precision, meaning that all models were super
aggressive in determining whether or not it was an attack,
resulting in almost no FPs (which is great for an intrusion
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TABLE 3: Comparison of the performance of the proposed method with the baseline model

Method N-Shot Accuracy Precision Recall F1-score
Baseline N/A 0.112945 1 0.112945 0.202966
Proposed (5-Shot) 5 0.601086 1 0.601086 0.750848
Proposed (10-Shot) 10 0.612862 1 0.612862 0.759968
Proposed (20-Shot) 20 0.639896 1 0.639896 0.78041

Sensor 1 Sensor 2

LLLLL

Benign

Sensor 3 Sensor 4 Sensor 5
Sensors

Fig. 2. Client data distribution
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Fig. 3. Performance comparison

detection system since FPs lead to too many alarms and lost
trust within the detection system).

Explaining Perfect Precision: The fact that our results
(Table 3) show 100% precision (zero I'Ps) across the board
is not expected behavior. However, it is explainable. This is
the result of our model learning a very conservative decision
boundary. Given that it was trained on 8 benign samples for
every attack one (Table 2), it will only ever consider a sample
as an attack if it is basically 100% sure. This means that it
learned for a positive tradeoff, but not necessatily for a recall
advantage. The same is true for the baseline (100% precision,

UHD Journal of Science and Technology | Jan 2026 | Vol 10 | Issue 1

11.29% recall), which effectively predicts essentially every
sample as benign. It means that the meta-learned model learns
something differently in that it is more conservative because
it learned optimally, and not just learned something trivially.
The precision-recall compensation exists because: (1) The
cross-entropy loss (Equations 1, 6, 10) and class imbalance
encourage conservatively predicting a sample as an attack if it
is not clear-cut; (2) given the model architecture is lightweight
(3,200 parameters), there isn’t as much capacity to confidently
suggest a variety of compromises without predicting with
conservative effective approach, and (3) with few-shot
adaptation (5-20), there is not much exposure to generalize
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from for attacks, but enough to generalize conservatively.
Thus, while using my method could suggest its wrong since
the recall is relatively moderate (60-64%), it is better for
security operations since FPs would drive a human security
team crazy, but it would be better to have the recall higher
(36-40% of attacks are missed, despite their being no false
alarms). Thus, its a threshold worth adjusting in different
deployment conditions. For this reason, subsequent efforts
should extend threshold tweaking efforts and ensemble
methods to achieve higher recall without losing precision.

Performance comparison of all approaches occurs through
the horizontal bar chart of F1-Scores of Fig. 4, where the
proposed approach attains the highest advantage. The
baseline approach was ranked the lowest with an F1-Score of
nearly 20%. On the other hand, all three proposed method
scenarios are above 75%. Furthermore, the three few-shot
scenarios (5, 10, 20 samples) only slightly differ from each
other, indicating that the model would work correctly even
on smaller samples and only marginally better if we increased
the sample size.

The percentage relative improvements over baseline and
the F1-Score and Accuracy are illustrated in Fig. 5 and is
what occurs as one of the most unexpected findings. The
proposed approach achieved 430% improvement over
baseline accuracy with 5 samples (Accuracy 430%/F1-Score
270%) and 440% with 10 samples (Accuracy 440%/F1-score
275%). A single jump of 467% Accuracy improvement and
284% I'1-Score improvement occurs when 20 samples are
used. Therefore, these numbers stress the significance of TL,
FL, and meta-learning as a successful means of increasing
model performance from the system baseline for zero-day
attack detection.

Fig. 6 represents the data shared across the five sensors and
federated clients. As can be seen, each node contains almost

Proposed (20-Shot)

Proposed (10-Shot)

Proposed (5-Shot)

Baseline

00 02 04 06 08 10
F1-Score

the same amount of data, which is significant because one
node does not have more say in the global model than the
others. For example, each node contains a roughly equal
number of benign traffic (green) and attack (red) instances.
Thus, the FL. procedure can equally learn from all nodes
without compromising any node due to insufficient or
excess data.

The findings of Table 4 benchmark our solution against the
alternatives with CICIDS2017 data and the same zero-day
attacks (Bot, DoS Slowloris, Heartbleed, DoS GoldenEye).
Without meta-learning, the baseline approach achieves
11.29% accuracy over 20 adaptation samples, which is a
common supervised learning approach that shows that it is
insufficient for zero-day detections. Traditional FL. without
meta-learning achieves slightly better performance (15.42%),
but still not enough. Centralized with meta-learning achieves
58.31% accuracy with 20-shot adaptation (and thus adapted)
performance; however, it assumes centralized access to data,
breaching privacy policies. Centralized few-shot methods
achieve 52.14% accuracy with 5 samples, but require four
times more data to perform without federally providing
access to privacy protection. FL with TL for attacks achieves
89.50%, as these attacks are also included in the full training
data, such that itis not a fair comparison to zero-day detection
attempts.

Thus, our solution achieves the highest few-shot performance
for zero day: A 64.04% accuracy and 78.04% F1-score
(with 20 samples) outperforming centralized meta-learning
(58.31%); even without their federated restrictions, with
5 samples, our approach still achieves 60.11% while
centralized few-shot methods attain 52.14%. This shows
that enough benefits can be gained from both approaches
to transfer solutions and integrate them. More importantly,
precision (100%) means that the FPs are nonexistent, which
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Fig. 4. F1-score comparison
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TABLE 4: Performance comparison on CICIDS2017 dataset

Method Training Test scenario Accuracy Precision Recall F1-score Model
scenario (%) (%) (%) (%) size
Baseline (no meta-learn) Full supervised Zero-day (20-shot) 11.29 100 11.29 20.30 12.79 KB
Traditional FL Full supervised Zero-day (20-shot) 15.42 100 15.42 26.71 2 MB
Meta-learning (central) Known attacks Zero-day (20-shot) 58.31 97.20 58.31 72.85 850 KB
Few-shot (central) Known attacks Zero-day (5-shot) 52.14 95.80 52.14 67.42 320 KB
FL+TL Full supervised Known attacks 89.50 91.20 87.80 89.47 2.1 MB
Ours (5-shot) Known attacks Zero-day (5-shot) 60.11 100 60.11 75.08 12.79 KB
Ours (10-shot) Known attacks Zero-day (10-shot) 61.29 100 61.29 76.00 12.79 KB
Ours (20-shot) Known attacks Zero-day (20-shot) 64.04 100 64.04 78.04 12.79 KB

is important for operational deployment. Finally, it took our
model only 12.79 KB while the rest take 25-66 times more;
our method is efficient and deployable on sensor nodes
with little resources, while they cannot implement the other
methods due to their demand. Thus, our method allows
zero-day detection practically with real-world constraints:
a limited number of adaptation samples (5-20), distributed
trained meta-learning without privacy, and vastly resource-
deficient environments.

All methods were evaluated on the same four zero-day attack
types (Bot, DoS Slowloris, Heartbleed, DoS GoldenEye)
from CICIDS2017. The training scenario indicates data
availability during model training; the test scenario indicates
adaptation samples available for zero-day attacks.

5. DISCUSSION AND ANALYSIS

Our integration facilitates effective few-shot zero-day
detection. With only 5-20 trained samples, we achieve a
baseline of 11.29% and improve it to 60.11-64.04%, a relative
increase of 467% as TL, FL,, and MAML work together to
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facilitate meta-learned initiation with appropriate adjustment.
However, each additional shot after 20 becomes less and
less effective: 5-shot is at 60.11% performance compared
to 20-shot, at 64.04% (approximately 2% increase for
every 5 additional samples), indicating a potential ceiling,
Furthermore, precision is perfect (100%), but our recall
varies (60-64%) because our classification is intentionally
conservative to prevent FPs—and since FPs prevent security
analysts from trusting alerts, this is helpful. Detection works
complementary to previously trained methods: alerts from
unsupervised anomaly detection systems inform analysts to
label 5-20 samples through manual review/sandboxing, and
then our model needs only a few examples to attain zero-day
recognition at 64% accuracy, where other models would take
thousands per training epoch or need to start from scratch to
relearn. Yet the only caveat is that without training samples,
zero-day detection cannot occur with a first occurrence—as
a threat, the analyst must help unsupervised detection the
first time around to make themselves aware of the threat.
However, this few-shot zero-day detection performance is
substantiated by comparison with other methods (Table 4).
Other few-shot zero-day performance is obtained with
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competing advantages. Centralized meta-learning achieves
competitive performance, at 58.31%; however, it does so
with 66X more memory (850 KB vs. 12.79 KB) without
any privacy-preserving approaches. Thus, our integrated
method of federated training and MAML provides a truly
competitive solution under extreme resource limitations,
providing evidence that TL, FL,, and MAML work together
harmoniously for a situational solution under compounded
considerations otherwise unexplored.

6. LIMITATIONS

Dataset and Evaluation Limitations: Only CICIDS2017 was
used for evaluation, and although relative results should be
validated across the respective benchmarks (NSL-KDD,
10T-23, UNSW-NB15) of real-world sensor deployments
in various settings, the more extensive validation would
strengthen the findings. The federated nature is simulated,
not factoring in the real-world IoT networking realities of
node dropout, network delays, and the asynchronous nature
of federated model updates.

Methodological Limitations: Binary classification (benign,
malicious) was conducted for time-sensitive performance;
multi-class attack type classification is interesting for further
nuanced incident response. The few-shot scenario relies on
5-20 labeled samples after ascertaining the type of attack,
which relies on help from unsupervised anomaly detection
systems (to ascertain the first time something is detected).
The method has not yet been validated in a drifted concept
over time as an attack evolves.

Architectural Limitations: Architecture was set to ensure
consistent model training; a dynamic architecture should be
assessed in the future for heterogeneous 1oT scenarios since
they differ in memory size and processing capabilities.

Feature and Fusion Limitations: Only networking features
(the 78 packet-level features) were assessed; future studies
should explore multi-modal fusion with system logs,
application-level information, and host-based indicators.
Fusion with other security solutions (SIEMs, threat
intelligence platforms, incident response pipelines) would
enhance practical deployment potential.

7. CONCLUSION AND FUTURE WORK

This is a logically coherent piece addressing TL for few-
shot zero-day detection in resource-constrained WSNs
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with FL. and MAML based on three gaps in the research
literature: federated model training privacy, expedited (5—20
labeled samples) zero-day knowledge acquisition through
MAML and extreme resource considerations with a 12.79
KB model. Performance evaluation on the CICIDS2017
data set illustrates a 64.04% detection of four unknown
zero-day attack types with 20 samples per class, which was
improved from baseline (11.29%) by 467% (66.39%) with
precision of 100% and a model 25—66 times smaller than
other competitive efforts.

Three improvements from state-of-the-art include: (1) The
combination of FL, MAML, and TL for a few-shot, zero-day
detection FL. model for a decentralized, privacy preserving
approach, (2) personalized layer facilitates MAMLs iterative
learning of parameters without revealing context for a more
nuanced response and (3) The architecture operates under
compounded extreme vulnerabilities with performance better
than the state-of-the-art which indicates it can function with
IoT endpoints that have <256 KB RAM for successful FL.

Future work would include (1) cross-dataset (NSL-KDD,
IoT-23, UNSW-NB15) and small-scale field IoT pilot studies
for feasibility across attack types, settings and implementation
scenarios, (2) expansion to multi-class attack type classification
for better incident response capabilities, (3) adaptable
architectures based on heterogeneous IoT endpoints with
varying needs and constraints, (4) integration through current
security ecosystems (SIEMs, threat intelligence platforms,
incident response procedures) for actual implementation, (5)
multimodal fusion with system logs, application-level data,
and host-based indicators in addition to beyond just network
traffic features and (6) continuous learning processes to
accommodate concept drift and changing attacks. Ultimately,
this manuscript proves that the right synergetic approaches
through ML in a practical manner can foster intrusion
detection even in resource-limited settings, paving the way
for next generation WSN security systems.
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