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1. INTRODUCTION

Groundwater is a valuable freshwater resource and constitutes 
about two-third of  the fresh water reserves of  the world [1]. 
Buchanan (1983) estimated that the groundwater volume is 

2000 times higher than the volume of  waters in all the world’s 
rivers and 30 times more than the volume contained in all the 
fresh water of  the world lakes. The almost is 5.0 L × 1024 L 
in the world of  groundwater reservoir [2]. Groundwater is 
used in many fields for industrial, domestic, and agricultural 
purposes. However, due to the population growth and 
economic development, the groundwater environment is 
becoming more and more important and extensive [3], and 
the heavy groundwater extraction has caused many problems 
such as groundwater level drop, saltwater intrusion, and 
ground surface depression, which need to be improved. 
Therefore, the identification, assessment, and remediation 
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of  groundwater problems have become quite a crucial and 
useful topic in the current time. For the above reasons, the 
analysis of  groundwater requires implementing scientific and 
academic methods, from which one of  the verified models 
is the RK that is used for this purpose [2]. Regression-
kriging (RK) is a spatial prediction technique that combines 
regression of  the dependent variable on auxiliary variables 
with kriging of  the regression residuals. It is mathematically 
a consideration of  interpolation method variously called 
universal kriging and kriging with external drift, where 
auxiliary predictors are used to solve the kriging weights 
directly [4]. RK is an application of  the best linear unbiased 
predictor for spatial data, which is the best linear interpolator 
assuming the universal model of  spatial variation [5]. RK is 
used in many fields, such as soil mapping, geological mapping, 
climatology, meteorology, species distribution modeling, 
and some other similar fields [6]. Regression kriging (RK) 
is one of  the most widely used methods, which uses hybrid 
techniques and combines ordinary kriging with regression 
using ancillary information. Since the correlation between 
primary and secondary variables is significant [7], so, the 
aim of  this study is to analyze and predicting groundwater 
depending on depth and capacity of  wells in Sulaimani 
Governorate; using RK.

1.1. Objective of the Study
The main objective of  this research is to analyze and predict 
groundwater wells at the un-sampled locations in Sulaimani 
Governorate according to depth and capacity of  existing 
groundwater wells using RK and to assess the accuracy of  
these predictions.

2. MATERIALS AND METHODS

2.1. Interpolation
Spatial interpolation deals with predicting values of  the 
locations that have got unknown values. Measured values 
can be used to interpolate, or predict the values at locations 
which were not sampled. In general, there are two accepted 
approaches to spatial interpolation. The first method uses 
deterministic techniques in which only information from the 
observation point is used. Examples of  direct interpolation 
techniques are such as inverse distance weighting or trend 
surface estimation. The other method depends on regression 
of  addition information, or covariates, gathered about the 
target variable (such as regression analysis combined with 
kriging). These are geostatistical interpolation techniques, 
better suited to count for spatial variation, and capable 
of  quantifying the interpolation errors. Hengl et al. (2007) 

advocate the combination of  these two into so-called hybrid 
interpolation. This is known as RK [8]. In another paper, 
Hengl et al. (2004) explain a structure for RK, which forms 
the basis for the research in this study [7]. Limitation of  RK 
is the greater complexity than other more straightforward 
techniques like ordinary kriging, which in some cases might 
lead to worse results [9].

2.2. RK
The most basic form of  kriging is called ordinary kriging. 
When we add the relationship between the target and covariate 
variables at the sampled locations and apply this to predicting 
values using kriging at unsampled locations, we get RK. In 
this way, the spatial process is decomposed into a mean and 
residual process. Thus, the first step of  RK analysis is to 
build a regression model using the explanatory grid maps [8]. 
The kriging residuals are found using the residuals of  the 
regression model as input for the kriging process. Adding up 
the mean and residual components finally results in the RK 
prediction [8]. RK is a combination of  the traditional multiple 
linear regression (MLR) and kriging, which means that an 
unvisited location s0 is estimated by summing the predicted 
drift and residuals. This procedure has been found preferable 
for solving the linear model coefficients [10] and has been 
applied in several studies. The residuals generated from MLR 
were kriged and then added to the predicted drift, obtaining 
the RK prediction. The models are expressed as:
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When .
ˆ

ML RZ  (s0) is the predicted value of the target variable 
z at location s0 using MLR model, ˆ

RKZ  (s0) is the predicted 
value of the target variable at location s0 using RK model, 
ˆ

k  is the regression coefficiency for the kth explanatory 
variable Xk, p is the total number of explanatory variables, 
wi (s0) are weights determined by the covariance function 
and e (si) are the regression residuals. In a simple form, this 
can be written as:

( ) ( ) ( )z s m s s= + ′  (3)

When z(s) is the value of a phenomenon at location s, m(s) is 
the mean component at s, and ε′ (s) stands for the residual 
component including the spatial noise. The mean component 
is also known as the regression component.
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The process of  refining the prediction in two steps (trend 
estimation and kriging) is shown in Fig. 1, where the result 
of  the mean component, only regression sm( )ˆ , is visible 
as a dashed line , and the sum of  trend + kriging is the 
curving thick line ( )ˆ sz . This should approach the actual 
distribution better than either just a trend surface or a simple 
interpolation. The linear modeling of  the relationship 
between the dependent and explanatory variables is quite 
empirical. The model selection determines which covariable 
is important, and which one is not. It is not necessary to 
know all these relations, as long as there is a significant 
correlation. Once the covariates have been selected, their 
explanatory strength is determined using (stepwise) MLR 
analysis. For each covariate this, leads to a coefficient value, 
describing its predictive strength, and whether this is a 
positive or negative relationship. With the combination of  
values for all covariate maps, a trend surface is constructed. 
This regression prediction is, in fact, the calculation for each 
target cell from each input cell from all covariates times the 
coefficient value. The amount of  correlation is expressed by 
R2 in the regression equation. To enable this, the covariate 
data first need to be processed by overlaying the sample 
locations with the covariate data layers. In this way, a matrix 
of  covariate values for each sample point is constructed. 
This matrix may still hold several “NA” or missing values 
due to the fact that some maps do not have coverage, 
while some others do. An example of  this is the absence 
of  information on the organic matter in urban areas. Since 
the linear models cannot be constructed properly when 
some covariate data are missing, these sample points are 
discarded altogether. The resulting data matrix is therefore 
complete for all remaining measurement data points. The 
second step in which the covariate data are needed is the 
model prediction phase of  the mean surface values. First, 
a prediction mask is made, which is the selection of  grid 
cells for which covariate data are available and only contains 

the coordinates of  valid cells. Next, the regression mean 
values are calculated by predicting the regression model 
for every grid cell in the prediction mask. In the residual 
kriging phase, this prediction grid is used again as a mask 
for the kriging prediction [7].

2.3. Variogram and Semivariogram
Semivariogram analysis is used for the descriptive analysis. 
The spatial structure of  the data is investigated using 
semivariogram. This structure is also used for predictive 
applications, in which the semivariogram is used to fit 
a theoretical model, parameterized, and also used to 
predict a regionalized variable at other unmeasured 
points. Estimating the mean function X(s)Tβ and the 
covariance structure of  ε(s) for each s in the area of  
interest is the first step in both the analysis of  the spatial 
variation and the prediction. Semivariogram is commonly 
used as a measure of  spatial dependency. The estimated 
semivariogram explains a description of  how the data 
is correlated with the distance. The factor 1/2 that ϒ(h) 
indicates is a semivariogram, and 2ϒ(h) is the variogram. 
Thus, the semivariogram function measures half  the 
average squared difference between pairs of  data values 
separated by a given distance, h, which is known as the 
lag [11], [5]. The experimental variogram is a plot of  
the semivariance against the distance between sampling 
points. The variogram is the fitted line that best describes 
the function connecting the dots from the experimental 
variogram [12]. Assuming that the process is stationary, 
the semivariogram is defined in equation (4):

( ) ( ) ( ) 2

( )

1
  [ ]

2 i j
h N h

h z s z s
N

 = −∑  (4)

Here, N(h) is the set of  all pairwise Euclidean distances 
i–j = h, Nh is the number of  distinct pairs in N(h). Z(si) and 
z(sj) are the values at spatial location i and j, respectively, and 
ϒ(h) is the estimated semivariogram value at distance h.

The semivariogram has three important parameters: The 
nugget, sill, and range. The nugget is a scale of  sub-grid 
variation or measurement error, and it is indicated by the 
intercept graphically. The sill is the semivariant value as the 
lag (h) goes to infinity, and it is equal to the total variance 
of  the data set. The range is a scalar which controls 
the degree of  correlation between data points (i.e., the 
distance at which the semivariogram reaches its sill). As 
shown in Fig. 2, it is then necessary to select a type of  
theoretical semivariogram model based on that estimate. 

Fig. 1. A schematic representation of regression kriging using a cross-
section [8].
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Commonly used theoretical semivariogram shapes increase 
monotonically as a function of  distance, by comparing the 
plot of  empirical semivariogram with various theoretical 
models that can choose the semivariogram model. Three are 
some parametric semivariogram models for testing, such as: 
Exponential, gaussian, and spherical. These models are given 
by the following equations:

Exponential: ( ) exp0 1
2
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1 ,
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h  
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When h is a spatial lag, θ0 is the nugget, θ1 is the spatial 
variance (also referred to as the sill), and θ2 is the spatial 
range. The nugget, sill, and range parameters of  the 
theoretical semivariogram model can fit the empirical 
semivariogram ϒ(h) by minimizing the nonlinear function. 
When fitting a semivariogram model, if  we consider the 
empirical semivariogram values and try to fit a model to 
them as a function of  the lag distance h, the ordinary least 
squares’ function is as given by ( ) 2

( :ˆ )
h

h h   −  ∑ , 
where ϒ(h: θ) denotes the theoretical semivariogram model 
and θ = (θ0, θ1, θ2) is a vector of  parameters. RK computes 
the parameters θ and β separately. The parameters β in the 
mean function are estimated by the least squares method. 
Then, it computes the residuals, and their parameters in the 

semivariogram are estimated by various estimation methods, 
such as least squares or a likelihood function. Prediction of  
RK at a new location s0 can be performed separately using 
a regression model to predict the mean function, a kriging 
model of  prediction residuals and then adding them back 
together as in Equation (8):

( ) ( ) ( ) ( )0 0 0
0 0

 
n n

k k i i
k i

Z s X s s s  
= =

= +∑ ∑
 (8)

Here, si = (xi, yi) is the known location of  the ith sample, 
xi and yi are the coordinates, βk is the estimated regression 
model coefficient, λi represents the weight applied to the 
ith sample (determined by the variogram analysis), ε(si) 
represents the regression residuals, and X1(s0)… Xn(s0) are 
the values of  the explanatory variables at a new location 
s0. The weight λi is chosen such that the prediction error 
variance is minimized, yielding weights that depend on the 
semivariogram [13]. More details about the kriging weight 
λi follow immediately [14].

The main objective is to predict Z(s) at a location known 
as s0, given the observations {Z(s1), Z(s2),…, Z(s3)}′. For 
simplicity we assume E{Z(s)} = 0 for alls. We briefly outline 
the derivation of  the widely used kriging predictor. Let 
the predictor be in the form of  ( ) '

0 ( )Ẑ s Z s=  , where 
λ = {λ1, λ2,…, λn}′. The objective is to find weights λ, which 
is a minimum.

( ) [ ]20 0  ( ) ( )Q s E Z s Z s= −′  (9)

By minimizing Q(s0) with respect to λ, it can be shown that;

( ) ( ) ( )1'
0 0 ,Ẑ s s s Z s

−
= ∑  (10)

When σ′(s0, s) = E(Z(s0) Z(s)), and ∑= E[Z(s) Z (s)] are 
the covariance matrix. The minimum of  Q(s0) is min 

( ) 12 '
0 0( , ) ( )Q s s s Z s 

−
= − ∑ . Note that, Q(s0) can be 

rewritten in terms of  the variogram by applying;

( ) ( )2
0 0

1
,  1 , 

2
s s s s = − Γ  (11)

When Γ(s0, s) is the corresponding matrix of  variograms. We 
can thus rewrite Q(s0) given in Equation (9) as;

Fig. 2. Illustration of semivariogram parameters.
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( ) ( )0 0
1

      , 
2

Q s s s  ′ ′= − Γ + Γ  (12)

Q(s0) is now minimized with respect to λ, subject to the 
constraint λ′ 1 = 1 (accounting for the unbiasedness of  the 
predictor ( )0Ẑ s ) [11].

2.4. Advantages of RK
Geostatistical techniques such as multiple regression, 
inverse distance weight, simple kriging, and ordinary kriging 
uses either the concept of  regression analysis with auxiliary 
variables or kriging for prediction of  target variable, whereas 
RK is a mixed interpolation technique; it uses both the 
concepts of  regression analysis with auxiliary variables 
and kriging (variogram analysis of  the residuals) in the 
prediction of  target variable. It considers both the situations, 
i.e., long-term variation (trend) as well as local variations. 
This property of  RK makes it superior (more accurate 
prediction) over the above-mentioned techniques [15]. 
Among the Hybrid interpolation techniques, RK has 
an advantage that there is no danger of  instability as in 
the kriging with the external drift [9]. Moreover, the RK 
procedure explicitly separates the estimated trend from 
the residuals and easily combined with the general additive 
modeling and regression trees [16,17].

2.5. Cross-Validation of RK Results
To assess which spatial prediction method provides the 
most accurate interpolation method, cross-validation 
is used to compare the estimated values with their true 
values. Cross-validation is accomplished by removing each 
data point and then using the remaining measurements to 
estimate the data value. This procedure is repeated for all 
observations in the dataset. The true values are subtracted 
from the estimated values. The residuals resulting from this 
procedure are then evaluated to assess the performance of  
the methods. One particular method is called k-fold cross-
validation, where “k” stands for the number of  folds one 
wants to apply. Each fold is a set of  data kept apart from the 
analysis, repeated for the number of  folds. A special type of  
k-fold cross validation is where the repetition of  analyses 
(k) is equal to the number of  data. This is called “leave 
one out” cross-validation, for the analysis is repeated once 
for every sample in the dataset, omitting the sample value 
itself. Resulting is a prediction for every observation, made 
using the same variogram model settings as for the normal 
RK prediction. The degree in which the cross-validation 
predictions resemble the observations is then a measure 
for the goodness of  the prediction method. This can be 

calculated using the mean squared normalized error or “z 
score” [18]. To aid further in the assessment of  prediction 
results, additional parameters can be calculated from the 
cross-validation output, such as the mean prediction error 
(MPE), root mean square prediction error (RMSPE), and 
average kriging standard error (AKSE).

´
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When N stands for the number of  pairs of  observed and 
predicted values, Z(x) is the observed value at location x, and 
z’(x) is the predicted value by ordinary kriging at location z.
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
=
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Here, x is a location, and σ(x) is the prediction standard 
error for location x. MPE indicates whether a prediction is 
biased and should be close to zero. RMSPE and AKSE are 
measures of  precision and have to be more or less equal. 
The cv-procedure only accounts for the kriging part, since 
the input is the residuals from the linear modeling phase [4].

3. DATA ANALYSIS AND RESULTS

3.1. Data Description
Data were obtained from a (groundwater directorate/well 
license department) in Sulaimani, Kurdistan-Region. 451 
observations (wells) were used in the study, only records 
containing valid x, y – locations are used in the statistical 
modeling process. One check is to print all measurement 
locations to check whether they are located within the defined 
regions. If  not, they are removed. The RK method is suitable 
for predicting the groundwater wells, due to nature of  data 
(there are coordinates for each wells). For kriging purposes, 
duplicate x,y-locations need to be checked, to prevent 
singularity issues, as shown by Yang et al. [4]. Duplicated 
locations share the same coordinates (based on one decimal 
digit), making it impossible to apply interpolation. Therefore, 
the choice is made to delete each second record that has 
duplicated coordinates. The research area is limited to the 
Sulaimani Governorate of  the Kurdistan region, only depth 
and capacity of  wells are available at the individual point 
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locations. Therefore, this research is targeted at depth and 
capacity of  wells. The data were presented in Fig. 3. The 
dataset used for the analysis contains six variables and deals 
with properties of  well for the year 2018, which are (depth, 
capacity, state well level, dynamic well level, latitude-X, and 
longitude-Y).

3.2. Experimental Variogram
Once the regression prediction has been performed, the 
variogram for the resulting residuals from the sample data 
can be modeled, as shown in Fig. 4.

The model of  depth with partial sill C0 = 5328, nugget 
= 371.95, and range = 0.078 was used for the residual 
variogram. The result has indicated that with an increase in 
distance, the semivariance value increases. Semivariograms 
are used to fit the residuals of  the recharge estimates to enable 
the residuals then to be spatially interpolated by kriging. Fig. 4 
shows simple kriging of  the modeled residuals using the 
same locations from the first prediction surface; the kriging 
is provided over the surface to obtain the results, which are 
not interpolated over geological boundaries, which are not 
necessary to have any spatial correlation with the residuals. 
These semivariograms explain the nugget that is high in 

each group. When the nugget value is high, it indicates low 
spatial correlation in the residuals and has an effect that 
interpolation is not trying to match each point value of  the 
residuals. Although the range shows the extent of  the spatial 
correlation of  recharge residuals, it ensures that the residuals’ 
spatial surface is only using the local information.

The model for capacity of  wells has partial sill C0 = 3805.4, 
nugget = 11222.3, and range = 0.429. The result has 
indicated that with an increase in distance, the semivariance 
value increases. Fig. 5 shows simple kriging of  the modeled 
residuals using the same locations from the first prediction 
surface for the capacity of  wells. From the semivariograms, 
the nugget also is high in each group, which indicates low 
spatial correlation in the residuals. The range shows the 
extent of  the spatial correlation of  recharge residuals and 
ensures that the residuals’ spatial surface is only using the 
local information.

From Fig. 6, the variance has some artifacts. It can be 
expected that values close to the locations, where point 
samples were taken, have lower variances. However, the 
blue colored regions in the depth of  wells appear very 
strange here, especially when other sparsely sampled 

Fig. 3. Sample distribution.

Fig. 4. Variogram for the depth of the wells.

Fig. 5. Variogram for the capacity of wells.
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regions do not have this blue color, but yellow and orange 
colors, indicating a lower variance value. The kriging 
variance is produced together with the kriging operation 
and is shown in the left part of  Fig. 6. Although in the 
prediction map, the blue areas correspond somewhat 
to higher predictions for depth wells (red, 432–482 m 
Fig. 6 - left), this is not reversely so for the other regions. 
There are some points located at the blue area, each having 
a high depth of  wells (ranged between 432 and 482 m). In 
the blue area, this phenomenon is enlarged, showing the 
scale at which the variance is increasing in the depth of  
wells, just around a cluster of  sample points at the blue 
area. It is observed from the predicted depth of  wells that 
the values are higher in the Kalar, Kifri, and Khanaqin 
(lower portion of  the study area), followed by Sulaimani 
Governorate, while low values are found in the upper of  
Sulaimani Governorate (upper portion of  the study area). 
This fact can be seen from the RK variance (Fig. 6 - left). 
Higher variance values (482) for the depth of  wells are 
found in the plain areas whereas the mountainous areas 
have relatively lower values (29.7).

Fig. 7 explains the variance. It can be expected that values 
have lower variances, close to the locations, where point 

samples were taken. Although the blue colored regions in 
the capacity of  wells’ appear have very high variance value, 
yellow and orange colors are indicating a lower variance value. 
The kriging variance is produced together with the kriging 
operation and is shown in the left part of  Fig. 7. Although 
in the prediction map, the blue areas correspond with higher 
predictions for capacity wells (372–415 G/m Fig. 7 - right). 
There are some points located at the blue area, each having 
high capacity of  wells (range 372–415 G/m). In the blue 
area, this phenomenon is enlarged, showing the scale at 
which the variance is increasing in the capacity of  wells. It 
is observed from the predicted capacity of  wells that the 
values are higher in Kalar, Kifri, and Khanaqin, followed by 
Sulaimani Governorate, while low values are found in the 
upper of  Sulaimani Governorate. This fact can be seen from 
the RK variance (Fig. 7 - left). Higher variance values (415) 
are found in the plain areas, whereas the mountainous areas 
have relatively lower values (29.8).

3.3. Cross-validation of Kriging
Cross-validation was used to obtain the goodness of  fit for 
the model. In addition, for each cross-validation result, the 
MPE, or mean prediction error, was calculated. The MPE-
value should be close to zero. RMSPE (root mean square 

Fig. 6. Regression kriging results (left) and variance (right) of the residuals from the depth of wells’ model.



Aras Jalal Mhamad: Using R.K. to Analyze Groundwater

46 UHD Journal of Science and Technology | Jan 2019 | Vol 3 | Issue 1

prediction error) and AKSE are given as well. The latter 
two error values should be close to each other, indicating 
prediction stability. The validation points were collected 
from all data in the study area so as to have an unbiased 
estimated accuracy. In this study, MPE, RMSPE, and AKSE 
are the three statistical parameters used for validation. The 
smaller the RMSPE, means the closer the predicted values 
to the observed values. Similarly, the MPE gives the mean 
of  residuals and the unbiased prediction gives a value of  
zero. The results of  the validation analysis are summarized 
in Table 1.

The MPE is quite low in both depth and capacity of  wells and 
is a low bias value of  0.019 and 0.021, respectively. The value 
of  MPE is a result of  a slight over-estimation of  predicted 
depth and capacity of  wells in the model. The RMSPE value 

is only 0.844 and 1.31, indicating the closeness of  predicted 
value with the observed value. The results indicate the utility 
of  RK in spatially predicting depth and capacity of  wells even 
in the varying landscape.

4. RESULTS AND CONCLUSIONS

The results of  the study show that the cross-validation 
measurement of  the models was achieved. Looking at the 
quantitative results from the cross-validation, there are no 
obvious indications that the kriging model prediction is worse 
in the models of  depth and capacity of  wells. One important 
result of  the study is the region model predictions in the 
dataset with sample values. The samples from the high depth 
of  wells are almost absent in north and middle of  Sulaimani 
Governorate, while in the south they are present, although 
the capacity of  wells gave the same result depth of  the wells. 
The samples from the high capacity of  wells are almost 
absent in the north and middle of  Sulaimani Governorate, 
while in the south they are present. In the map results after 
the kriging in Figs. 4 and 5, the areas within class (230–482m) 
of  depth are almost, this result was close to the master 
thesis from Iraq – Sulaimani University by Renas Abubaker 

TABLE 1: Cross‑validation results
Measurements Depth of wells Capacity of wells
MPE 0.019 0.021
RMSPE 0.844 0.720
AKSE 0.661 1.316

MPE: Mean prediction error, RMSPE: Root mean square prediction error, 
AKSE: Average kriging standard error

Fig. 7. Regression kriging results (left) and variance (right) of the residuals from the capacity of wells’ model.
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Ahmed, 2014, in which resulted that the depth of  wells was 
between 20 m and more the 170 m for the same areas, which 
was used multivariate adaptive regression spline model to 
predicting groundwater wells [19], while the areas within 
class (29–158 G/s) of  capacity are almost in the study, also 
it was close to Miss. Rena’s results, which is reported that the 
capacity of  wells between 10 and 140 gallon [19].
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