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1. INTRODUCTION

Hematology is the branch of  medicine concerned with the 
study of  blood and blood-forming organs, including the 
diagnosis, treatment, and prevention of  illnesses of  the 
blood, bone marrow cells, an immune-mediated disease, 
hemostatic, and vascular systems. Hematologists conduct and 
analyze a wide range of  laboratory tests to assist clinicians in 
the diagnosis and treatment of  disease. They deal with the 
blood and bone marrow to provide patients with immediate 
clinical care [1]. The amount and type of  cells produced at 
any given time is controlled by your body’s requirements. In 

some cases, estimating how bone marrow cells contribute to 
a clinical disease may be more essential than determining the 
patient’s hematologic status. Hematologists typically receive 
blood smear samples and study them for abnormality; if  
they identify the presence of  diseases, they perform a bone 
marrow biopsy and provide a diagnosis in a short period 
of  time.

The bone marrow’s primary function is to produce red blood 
cells (RBCs or erythrocytes), platelets (or thrombocytes), and 
white blood cells (WBCs or leukocytes) [2], as shown in Fig. 1. 
Complete Blood Count (CBC) is a laboratory hematology 
analyzer medical test that provides information that can be 
used to diagnose a disease. The CBC measures the production 
of  all the cellular components, identifies the patient’s oxygen-
carrying capacity by evaluating RBC counts, and allows for 
the estimation of  the immune system by evaluating WBC 
counts with differential. This test supports in the diagnosis 
of  anemia, certain cancers, infections, and a variety of  other 
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A B S T R A C T
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conditions, as well as monitoring the side effects of  certain 
medications [3].

The absolute or relative count of  WBCs, as well as their 
appearance on a blood smear, can be influenced by a variety 
of  disorders. This is the case with parasite infections that 
cause an increase in WBCs, while the most severe cases 
are certainly leukemias [1]. Leukemia also known as Acute 
Lymphoblastic Leukemia (ALL), is a form of  cancer of  
the blood or bone marrow that causes the body to produce 
cancerous WBCs called lymphocytes. These uncontrolled 
blood cells divisions harm the blood, lymphatic system, and 
bone marrow, throwing the immune system at risk [4]. They 
can also inhibit bone marrow’s ability to produce RBCs and 
platelets. In addition, these cancerous WBCs can enter the 
bloodstream and cause harm to other regions of  the human 
body, including as the liver, kidney, spleen, brain, and other 
organs, leading to the development of  other deadly cancers.

In terms of  how quickly it develops or gets worse, leukemia 
is characterized as either acute (which appears suddenly and 
grows quickly) or chronic (which develops more slowly). 
Acute leukemia can also be classified as lymphoblastic (ALL) 
or myelogenous depending on the cell type that is affected. 
Chronic lymphocytic leukemia (CLL) and chronic myeloid 
leukemia are two types of  chronic leukemia [5-7]. ALL is 
the primary target of  this research since it is predicted to 
have a superior survival rate than other categories. Only 
a suspicious and meticulous microscopic investigation of  
stained blood smears can accurately identify leukemia. Manual 
examination, due to the complicated nature of  WBCs, 
results in inconsistencies in slide processing, resulting in 
non-standardized, unreliable, and subjective observations. 
Consequently, a cost-effective and robust automated system 

is crucial to satisfy the demand for accurate diagnosis and 
classification without being impacted by experts. For this 
reason, several Computer-Aided Diagnosis (CAD) systems 
have been developed for identifying blast cells from 
microscopic blood images.

This paper proposes a new technique for detecting ALL-
leukemia cells from microscopic blood images using a 
publicly available and widely used dataset (ALL-IDB). The 
rest of  the paper is organized as follows. Section 2 puts 
forward a literature survey. Section 3 presents a complete 
CAD system for the detection of  ALL, including sections 
such as an overview of  system architecture, ALL-IDB 
dataset description, data preprocessing, feature extraction, 
feature fusion, classification, and performance metrics. 
Section 4 discusses the experimental results achieved after 
applying different feature extractors and comparing them 
with the existing approaches. Finally, Section 5 provides the 
conclusion of  the work.

2. LITERATURE SURVEY

In biomedical image analysis and processing, machine learning 
and image processing methods have produced outstanding 
consequences, particularly in the field of  ALL [8]. These 
methods are frequently performed in the classification on 
microscopic blood smear for ALL detection. For automatic 
classification of  these disease-causing infections, a number of  
approaches have been effectively applied. Various procedures 
include convolutional neural networks (CNNs), ensemble 
learning, feature extraction, and feature selection, among 
others [9]. Recently, a number of  works were executed with 
the help of  numerous machines learning based procedures 
to detect and classify of  leukemia microscopic blood smear 
images. Several transfer learning approaches, different system 
designs, and ensemble solutions were optimized to increase 
system performance in classifying acute leukemias, normal, 
and other disorders of  the bone marrow and blood cells. 
A short review of  some substantial contributions from the 
existing literature is provided.

Based on peripheral blood smear images, Al-Tahhan [10] 
intended to develop an improved classification model that 
is capable to categorize the ALL subtypes. In that article, 
the cytoplasmic vacuoles and the regularity of  the nucleus 
membrane of  ALL cells are the only geometric features that 
this approach relied on. Support Vector Machine (SVM) with 
multiple kernels, K-Nearest Neighbors (KNN) with various 
metric functions, and Artificial Neural Network (ANN) 

Fig. 1. Blood smear components (©Alila Medical Media, used with 
permission).
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were chosen and fine-tuned to identify automatically the 
subtypes of  ALL utilizing ALL-IDB2 dataset. The authors 
in Shafique and Tehsin [4] developed a deep CNN (DCNN) 
model, trained on ALL-IDB dataset augmented with 50 
private images, for the classification of  ALL and its subtypes 
using pre-trained AlexNet and fine-tuning. Sharif  et al. [11] 
recommended a YOLOv2-Nucleus-cytoplasm based scheme 
for WBCs localization using blood smear images. In that 
article, the Bag-of-Features were extracted from blood 
smear images of  WBCs and optimized by using Particle 
Swarm Optimization for the classification task. On two 
challenging datasets, Leukocyte-Images for-Segmentation-
Classification (LISC) and ALL-IDB, the classification results 
were computed. The experimental results reveal that the 
Optimized Naïve Bayes (O-NB) classifier outperformed 
the Optimized Discriminant Analysis (O-DA) classifier on 
ALL-IDB1, and ALL-IDB2 datasets. On the LISC dataset, 
however, the O-DA classifier outperformed the O-NB 
classifier.

Jha and Dutta [12] introduced the Sine Cosine Algorithm–
based actor-critic neural network technique for leukemia 
classification. In that article, the developed entropy-based 
hybrid approach was used to segment the blood smear 
images, and the image-level features and statistical features 
were extracted from the segments. The relevant features 
were then fed into the designed classifier, which diagnoses 
leukemia using the ALL-IDB2 database. In another work [13], 
the authors proposed a new approach for detecting leukemia 
in blood images using transfer learning in CNNs and SVM 
for classification task. The procedure used pre-trained CNN 
methods (AlexNet, CaffeNet, and VGG-F) to extract images 
features directly without any prior preprocessing using three 
heterogeneous datasets. The authors of  Di Ruberto et al. [1] 
developed a novel approach for leukocyte counting and 
classification of  WBCs as healthy or affected by leukemia 
from microscopic blood images. The System, Man and 
Cybernetics-Image Data Base, Iran University of  Medical 
Science-Image Data Base, and ALL-IDB public datasets for 
leukemia identification were utilized to evaluate the proposed 
approach. In Muthumayil et al. [14], the authors addressed a 
computer-based application technique based on Enhanced 
Virtual Neural Network classification for identifying and 
classifying CLL utilizing microscopic images of  WBCs. The 
proposed technique attained the optimum accuracy in terms 
of  detecting and classifying leukemia using WBCs images. In 
terms of  sensitivity, specificity, accuracy, and misclassification 
error, the presented approach reached 97.8%, 89.9%, 76.6%, 
and 2.2%, respectively.

The authors in Singhal and Singh [15] proposed a new method 
for distinguishing ALL lymphoblast cells from healthy 
lymphocytes. Leukocytes were isolated from other blood cells 
first, and then lymphocytes were extracted. In this context, 
a novel CAD based on Gray Level Co-occurrence Matrices 
(GLCM) and shape-based features was developed for the 
diagnosis of  hematological disorders such as leukemia (blood 
cancer). The auto SVM binary classifier was used to classify 
the retrieved features to determine the existence of  leukemic 
cells. A new technique for segmenting and classifying ALL 
using the input blood smear images was proposed in Praveena 
and Singh [16]. In that article, the DCNN was trained using 
an optimization technique called Grey wolf-based Jaya 
Optimization Algorithm, which was built using the Grey 
Wolf  Optimizer and Jaya Optimization Algorithm. Using 
the ALL-IDB2 dataset, the investigation was conducted by 
means of  performance measures. The maximum accuracy, 
sensitivity, and specificity of  the recommended approach 
were 0.9350, 0.9528, and 0.9389, respectively. The authors 
of  Singhal and Singh [15] addressed an automatic leukemia 
detection system that used two texture descriptors, namely, 
Local Binary pattern (LBP) and GLCM generated from 
the nucleus image to detect ALL. The ALL-IDB2 dataset 
with 260 blood smear images (130 normal and 130 blast) 
was used as training data for a two-class classification. The 
experimental results from this paper demonstrated that LBP 
performed better than GLCM texture features with the 
classification accuracies of  93.84% and 87.30%, respectively.

The study Umamaheswari and Geetha [17] developed a 
scheme for optimized identification and detection of  ALL 
using a novel customized-KNN classification model. During 
the preprocessing stage of  this work, the medical image 
was prepared for segmentation through changing its size, 
brightness, and contrast. The nucleus portion was segmented 
using mathematical operators and Otsu’s thresholding 
during the segmentation phase. Afterward, in the post-
processing phase, mathematical morphological operators 
were used to make the nucleus portion appropriate for feature 
extraction task. Finally, using the developed customized 
KNN classification technique, the segmented portions were 
categorized into ALL affected and normal cells. This work 
was tested on over 80 images from the ALL-IDB2 dataset and 
achieved an average accuracy of  96.25%, sensitivity of  95%, 
and specificity of  97%. The authors in Tuba and Tuba [18] 
introduced Generative Adversarial Optimization (GAO)-
based scheme for detecting acute lymphocytic leukemia as 
normal cells or blasts in microscopic digital blood images. 
In this study, the ALL-IDB2 image dataset was employed, 
and each blood image was characterized by 11 features 
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for classification tasks, along with 5 shape and 6 texture 
features. As a classifier, the SVM was used, and its criteria 
were tuned using an innovative optimization technique: The 
GAO technique.

Hariprasath et al. proposed a methodology for detection of  
acute lymphocytic leukemia from largest publicly accessible 
standard ALL-IDB dataset using statistical features. To 
differentiate between benign and leukemic cells, morphological 
and statistical features of  blast cells were examined. SVM-R, 
SVM-L, and KNN classifiers were utilized and compared for 
classification process [19]. A unique strategy to automatically 
identify and classify ALL from peripheral blood smear 
images based on traditional image processing and machine 
learning approaches was proposed in Bodzas et al. [20]. In 
this work, to achieve the best segmentation results, substantial 
pre-processing and a three-phase filtration procedure were 
performed. Furthermore, sixteen robust features were 
extracted from microscopic images to discriminate between 
cancerous and noncancerous blood cells. Two popular machine 
learning classifiers, the ANN and the SVM, were computed 
to perform the classification task. A dataset of  31 peripheral 
blood smear images from a local dataset was utilized to test 
this approach, and they achieved a sensitivity of  100% and an 
average accuracy of  97.52%. The research paper [21] addresses 
a strategy for automatically detecting WBCs in complicated 
blood smear images based on Watershed Transform and circle 
fitting method. For the separation of  overlapped WBCs, the 
presented technique employed segmentation and edge map 
extraction in preprocessing steps, in addition to parametric 
circle approximation, which identified both separated and 
overlapped WBCs. A dataset of  384 WBC images, including 
some overlapping cases, from ALL-IDB and ASH image bank 
was utilized to test this method.

This paper discusses and presents a micro-pattern descriptor, 
called Local Directional Number Pattern (LDNP) along 
with MWDT for feature extraction task. A balanced dataset 
with 260 blood smear images from the ALL-IDB2 dataset 
was used as training data. Consequently, a proposed model 
was constructed by applying different individual and 
combined feature extraction methods to overcome the most 
challenging parts of  the detection of  ALL-leukemia cells 
from microscopic blood images.

3. PROPOSED METHODOLOGY

3.1. System Architecture
To classify ALL-leukemia cells, the proposed approach 
used microscopic blood images as input data. To begin, 

this method transformed RGB color images to gray scale 
and defined the areas of  interest of  healthy and blast cells 
by removing unwanted areas. Moreover, the system studied 
two feature descriptors: LDNP and MDWT. First, a feature 
vector was extracted from microscopic blood images of  the 
ALL IDB2 database using the LDNP descriptor. Then the 
MDWT descriptor was performed to extract another feature 
vector from the same microscopic blood images. Various 
individual and combined feature extraction methods were 
constructed and fed into the classification model as input 
data. The number of  features extracted by one method 
was insufficient to accurately classify ALL-leukemia cells. 
Nevertheless, using two distinct strategies to extract features 
could lead to a large number of  features for classification task. 
In this circumstance, fusion was considered as a combination 
of  the distinct feature vectors. Finally, the fused features 
were then classified microscopic blood images to determine 
cancerous and noncancerous blood cells using five well-
known classifiers (Decision Tree [DT], Ensemble, KNN, 
Naïve Bayes [NB], and Random Forest [RF]). The significant 
stages of  the proposed system design are shown in Fig. 2.

3.2. Dataset Description
The proposed model was trained as well as tested on a the 
ALL-IDB dataset containing images of  leukemic blood 
smears along with images of  non-leukemic blood smears. 
ALL-IDB [22] is a public image dataset which divided into 
two distinct versions: ALL-IDB1 and ALL-IDB2, and its 
images are in JPG format with a color depth of  24 bits. ALL-
IDB was rated more accurate since professional oncologists 
classified/positioned ALL lymphoblasts for each image in 
the dataset. ALL-IDB1 is composed of  108 original RGB 
images taken with an optical laboratory microscope and either 
an Olympus Optical C2500L camera or a Canon PowerShot 
G5 camera. The first 33 images of  the ALL-IDB1 are 1368 
× 1712 pixels in size, while the rest of  the images are 1944 × 
2592 pixels in size; additionally, the images of  these two image 
sets were collected under various magnifications, brightness, 
and hue staining. ALL-IDB1 depicts entire images comprising 
both cells or agglomerates; thus, it can be used to analyze 
the segmentation performance of  techniques, image pre-
processing methodologies, or classification approaches. ALL-
IDB2 is a collection of  cropped areas of  interest derived from 
the ALL-IDB1 dataset of  healthy and blast cells; furthermore, 
the gray level characteristics of  ALL-IDB2 images are similar 
to those of  ALL-IDB1 images. This dataset contains 260 
microscopic images, 50% of  these represent non-cancerous 
lymphocyte cells, and 50% cancerous (lymphoblast) cells. 
In this study, as a benchmark for evaluating the intelligence 
system’s performance, the second version was considered. 
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In Fig. 3, representative example images from ALL-IDB2 
dataset: Images of  healthy lymphocyte and probable blast 
cells are given, respectively.

3.3. Preprocessing
Image preprocessing is a substantial step to improve the 
visualization of  leukocytes in a blood image and accurate 
classification by removing noisy or unwanted pixels from 
each image. To eliminate superfluous text and machine 
annotation around images, the area of  interest was localized 
(Fig. 4), cropped and resized images to a standard size 128 
× 128 pixels after the raw images were converted from RGB 
to gray scale (Fig. 5). The area of  interest on the microscopic 
blood images was determined by an area covering mostly 
WBC nuclei region to attain valuable information. As the 
raw images were captured in real life with a large variance 

in exposure and contrast, image enhancement was required 
for superior classification performance. Consequently, the 
contrast enhancement of  gray scale images was employed 
using Contrast Limited Adaptive Histogram Equalization 
technique and the median filter for a proper brightness and 
enhancement. Before importing the input images into a 
feature extraction stage, image adjustment was applied to 
improve the quality of  microscopic blood smear images as 
shown in Fig. 6.

3.4. Feature Extraction
Feature extraction is the process of  converting the raw 
pixel values from an image into a set of  features; normally, 
this step comprises obtaining important features extracted 
from input patterns that can be used in the classification 
tasks [23]. In this study, two groups of  features, including 

Fig. 2. Workflow of proposed system.

Fig. 3. Example images contained in the ALL-IDB2: healthy lymphocyte (first row) and lymphoblast cells (second row).
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LDNP and MDWT are designed and proposed to 
distinguish noncancerous and cancerous blood cells from 
microscopic blood smear images.

3.4.1. LDNP
LDNP descriptor, introduced by Rivera et al. [24], is a six-
bit binary code assigned to each pixel of  an input image to 

Fig. 4. Samples of blood smear images dataset used for proposed scheme; (a) localized ROI area of non-leukemic blood smears (first row), 
and (b) localized ROI area of leukemic blood smear cases (second row). 

b

a

Fig. 5. Samples of blood smear images dataset used for proposed scheme; (a) cropped ROI area of healthy individuals (first row), and  
(b) cropped ROI area of leukemic blood smear cases (second row).

b

a

Fig. 6. Samples of blood smear images dataset used for proposed scheme; (a) original blood smear images, (b) localized ROI area,  
(c) denoised blood smear images, (d) contrast enhancement of blood smear images, and (e) adjusted blood smear images. 

d ecba
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encode the structure information and intensity variations 
of  a local texture pattern. The patterns are constructed 
using a compass mask to obtain the edge response value 
of  the neighborhoods, as well as the direction of  the top 
most positive and top most negative responses [25,26]. The 
positive and negative responses are critical in identifying 
the gradient direction of  the neighborhood’s prominent 
bright and dark areas. LDNP decreases the bit size per pixel 
from eight to a 6-bit binary code, where the first three bits 
represent the top positive directional number and the next 
three bits represent the top negative directional number. To 
generate the LDNP code, Kirsch compass mask (M0, M1., 
M7) was experimented to calculate the edge response values 
and produce eight directional edge images or eight directional 
numbers for each pixel in microscopic blood smear images. 
Fig. 7 explains the working process of  calculating bit for each 
pixel, and the Kirsch compass masks for eight directions [27] 
are revealed in Fig. 8.

To determine the meaningful descriptor for each region, 
LDNP is encoded using the maximum positive and maximum 
negative position values. The sign information is being used 
to determine the prominent values: The most significant bit 
is allocated to positive direction and the least significant bit 
is allocated to negative direction. Therefore, for the 3 × 3 
neighborhood pixel window, the decimal LDNP coding is 
defined as:

LDN x y i jx y x y, �( ,� ) ,� �( ) = + ( )8 � (1)

Where(x, y) is the central pixel value of  the region, i(x,y) is 
the direction index number of  the maximum edge response, 
and j(x,y) is the top most negative direction. These directional 
numbers can be defined by equations 2 and 3, respectively.

i
x y arg x y ii

i, � , | �� � max� � � � � �( ) = ( ) ≤ ≤{ }0 7 � (2)

j
x y arg x y jj

j, � , | ��� � � �max � � � � �( ) = ( ) ≤ ≤{ }0 7 � (3)

Where is the convolution of  the original image, I and the ith 
mask, Mi, characterized by:

       i iI * M= � (4)

In this work, LDNP descriptor was performed to extract 
a set of  56 features for each image was extracted from the 
dataset of  microscopic blood images.

3.4.2. Multi-scale weber local descriptors
WLD is a powerful local descriptor that is based on 
Weber’s Law and consists of  two differential excitation and 

orientation component [29,30]. WLD has a number of  unique 
features, including edge detection and resistance to changes in 
illumination and noise. The differential excitation component 
is being used to extract the most important information from 
an image. For each pixel, the gradient orientation component 
of  WLD is calculated. The differential excitation D (pc) of  a 
current pixel pc is computed as:

D p
p p
pc

i

N
i c

c
( ) = 















=

−
−∑arctan ���

0

1

� (5)

Where pc represents the center pixel value, pi denotes the 
value of  ith pixel in the neighborhood, N is the total number 
of  pixels in the neighborhood. If  D (pc) is positive, then 
center pixel is darker respect to the neighbor pixels and if  
D (pc) is negative, then current pixel is lighter respect to 
the neighbor pixels. The orientation component of  WLD 
is the gradient orientation that determines the directional 
property of  the pixels. For pixel pc, it is calculated as follows: 
in Equation 6.

∅( ) = 





p
k
kc
s

s
�arctan

11

10 � (6)

Where, Ks
11 and Ks

10 are the outputs of  the filters f11 and 
f10 (Fig. 9), respectively.

After calculating differential excitation and gradient 
orientation, a concatenated two-dimensional WLD histogram 
using D and ∅ is created to produce the multi-WLD that 
forms the representation of  the image. In this work, multi-
WLD was computed to extract a set of  32 features for each 
image was extracted from the dataset of  microscopic blood 
images.

3.5. Feature Fusion and Classification
Data fusion has been applied in several applications for 
machine learning and computer vision. Feature fusion 
strategy, in particular, can concatenate multiple feature 
vectors. The multi-feature fusion can improve the robustness 
of  the model predictions [32]. This work proposed a fusion 
of  feature vectors attained by a combination of  LDNP 
(1 × 56) and MWLD (1 × 32) approaches. Equations 7 
and 8 represent features extracted by LDNP and MWLD, 
respectively. The extracted feature vectors were combined by 
concatenation and represented by Equation 9.

FLDNP x n x x x� � � � � �.� .���� � � � � � � �1 1 1 1 2 1 3= + + ………LDNP� LDNP� LDNP� LLDNP�1� � �����x n{ } � (7)

F
x m x x xMWLD MWLD MWLD MWLD MWLD1 1 1 1 2 1 3� � � � � � � �� � � � �.� .���= + + ……… 11� � �x m{ } � (8)
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Fused Features vector F Fx p
cat

x n x
�( � ) ��{ ,�� � � �� � � �1 1 1

= LDNP MWLD mm �} � (9)

Then the features extracted by LDNP and MWLD were fused 
with 88 features. This fusion vector, which considered as the 

final input for the training and testing dataset, was fed to the 
classifiers to validate the proposed approach and identify blast 
cells from microscopic blood images. In the proposed workflow, 
machine learning models were used to identify patients affected 
by leukemia. To achieve the objective of  identifying leukemia 
patients among normal healthy individuals,’ five pattern 
recognition classifiers, namely, DT, Ensemble, KNN, NB, and 
RF classifiers were separately executed.

3.6. Model Evaluation
Model evaluation is used to estimate the parameter space 
and feature extraction results from various models. For the 
classification of  ALL images, five widely used performance 
metrics were applied to assess the proposed model’s performance: 
accuracy, recall, precision, F-measure, and MCC metrics. To 
calculate the metrics specified by Equations 10-14, four distinct 
performance parameters were used: True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative (FN).

Accuracy TP TN
TP TN FP FN

   = +
+ + +

� (10)

Recall TN
TN FP

=
+

     � (11)

Precision TP
TP FP

=
+

  � (12)

F measure Precision Recall
Precision Recall

− =
+

�
* *2

� (13)

MCC TP TN FP FN
TP FP TP FN TN FP TN FN

� �
* *

( )( )( )( )
= −

+ + + +
(14)

4. RESULTS AND DISCUSSION

The performance of  the proposed system was evaluated 
based on extracted features derived from LDNP and 

Fig. 7.  The procedure of calculating LDNP code.

Fig. 8. Kirsch compass masks for eight directions [28].

Fig. 9. Filters used in simple WLD calculation [31].
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MWLD coefficients to identify automatically the class of  
the ALL images. The evaluation was performed using a 
dataset of  260 blood smear images, comprising 130 blasts 
and 130 non-blast cells. All experiments were conducted in 
MATLAB (R2021b) environment using microscopic blood 
images described in Section 3.2. Different scenarios using 
different features individually and combination of  (LDNP 
+ MWLD) features have been suggested. For each scenario, 
these extracted features were classified using five pattern 
recognition classifiers (i.e., DT, Ensemble, KNN, NB, and 
RF) to see which scenario could perform better classification 
performance. Furthermore, the entire dataset was divided 
into two groups: About 80% for training the model and 
20% for evaluation of  the classification performance using 
holdout cross-validation method. Performances of  the 
suggested scenarios were analyzed through a number of  
different measures including accuracy, recall, precision, 
F-measure, MCC, and misclassification error rate computed 
from confusion matrix.

From the experiments performed on ALL-IDB2 dataset, 
the detailed category/class wise analysis of  each scenario 
was estimated in terms of  accuracy and average accuracy 
as (mean ± SD) with DT (Table  1), Ensemble (Table  2), 
KNN (Table 3), NB (Table 4), and RF (Table 5) classifiers 
respectively. According to the results in Tables  1-5, it is 
concluded that combining the LDNP and MWLD features 

(scenario 3) together attain the highest average accuracy 
of  97.69 ± 1.83% followed by LDNP features (scenario 1) 
with 97.11 ± 1.44% along with Ensemble classifier, while 
the classification average accuracy of  features derived from 
MWDT method had the lowest scoring (79.42 ± 4.8%) with 
NB classifier.

Based on the experimental outcomes for all three scenarios 
depicted in Fig. 10, it can be concluded that the fusion of  
features extracted from LDNP and MWLD methods has a 
positive impact on the performance and outperformed the 
other two scenarios with all classifiers. The consequences 
revealed that the fusion LDNP and MWLD techniques 
attained the highest average accuracy of  97.69 ± 1.83%, 
96.92 ± 1.15%, 95.19 ± 1.63%, 93.84 ± 3.11%, and 89.03 ± 

TABLE 2: Performance analysis on average 
accuracy with Ensemble classifier
Descriptors Features Per Class Accuracy (%) Average 

accuracy 
(%)Normal 

cells
Abnormal 

cells
LDNP 56 97.3±1.07 96.92±1.03 97.11±1.44
MWDT 32 94.99±2.07 95.76±2.13 95.38±2.59
LDNP+ 
MWDT

88 99.23±0.02 96.15±1.73 97.69±1.83

The highlighted accuracy in bold indicates the best classification result. LDNP: Local 
directional number pattern

TABLE 1: Performance analysis on average 
accuracy with Decision Tree classifier
Descriptors Features Per Class Accuracy (%) Average 

accuracy 
(%)Normal 

cells
Abnormal 

cells
LDNP 56 82.3±8.54 83.46±7.03 82.88±5.62
MWDT 32 89.61±6.02 85.38±8.06 87.50±5.96
LDNP+ 
MWDT

88 91.92±5.57 86.15±6.58 89.03±3.63

The highlighted accuracy in bold indicates the best classification result. LDNP: Local 
directional number pattern

TABLE 5: Performance analysis on average 
accuracy with RF classifier
Descriptors Features Per Class Accuracy (%) Average 

accuracy 
(%)Normal 

cells
Abnormal 

cells
LDNP 56 96.92±1.05 90.38±6.34 93.65±3.39
MWDT 32 93.84±3.19 92.69±2.23 93.26±2.60
LDNP+ 
MWDT

88 97.69±1.68 92.69±2.36 95.19±1.63

The highlighted accuracy in bold indicates the best classification result. RF: Random 
forest, LDNP: Local directional number pattern

TABLE 3: Performance analysis on average 
accuracy with KNN classifier
Descriptors Features Per class accuracy (%) Average 

accuracy 
(%)Normal 

cells
Abnormal 

cells
LDNP 56 99.23±0.12 92.69±3.27 95.96±1.78
MWDT 32 96.15±1.14 84.99±4.39 90.57±3.89
LDNP+ 
MWDT

88 96.15±1.24 97.69±1.34 96.92±1.15

The highlighted accuracy in bold indicates the best classification result. KNN: K‑Nearest 
Neighbors, LDNP: Local directional number pattern

TABLE 4: Performance analysis on average 
accuracy with NB classifier
Descriptors Features Per class accuracy (%) Average 

accuracy 
(%)Normal 

cells
Abnormal 

cells
LDNP 56 91.15±3.45 93.07±4.22 92.11±4.29
MWDT 32 75.38±7.51 83.46±5.74 79.42±4.80
LDNP+ 
MWDT

88 94.23±2.88 93.46±4.02 93.84±3.11

The highlighted accuracy in bold indicates the best classification result. NB: Naïve 
Bayes, LDNP: Local directional number pattern
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3.63% using Ensemble, KNN, RF, NB, and DT classifiers, 
respectively. On the other hand, the fusion of  fusion LDNP 
and MWLD techniques with Ensemble classifier was 
sufficient to record maximal average accuracy performance 
of  97.69 ± 1.83% among the remaining classifiers for all 
scenarios.

The same fact has been concluded by examining other 
performance measures (precision, recall, F-measure, and 
MCC) to estimate the proposed framework. For all classifiers, 
the best precision rate was achieved with a set of  features 
fusion LDNP and MWLD methods (scenario 3) and 
outperformed the other scenarios. The results of  scenario 3 
provided that all five classifiers reached the highest precision 
of  98.05 ± 1.74%, 97.77 ± 1.09%, 93.85 ± 5.21%, 93.15 ± 
2.90%, and 87.25 ± 5.33% using Ensemble, KNN, NB, RF, 
and DT classifiers, respectively; however, the lowest precision 
rate of  82.14 ± 5.39% was recorded using MWDT method 
with NB classifier. Furthermore, the experiment verified 
maximum precision performance of  98.05 ± 1.74% with 
Ensemble classifier among the remaining classifiers for all 
scenarios. Comparison results of  precision rates of  all system 
scenarios with all classifiers are displayed in Table 6.

Furthermore, the fusion of  features from LDNP and 
MWDT methods also performed the best in terms of  recall 
rates as 97.69 ± 1.68%, 97.30 ± 1.14%, 96.15 ± 1.14%, and 
94.23 ± 1.88% was attained using RF, Ensemble, KNN, 
and NB classifiers, respectively (Table  7); furthermore, 

MWDT performed the best recall rate of  93.46 ± 2.81% 
with DT classifier; conversely, the lowest recall rate of  
75.38 ± 7.51% has been recorded when MWDT method 
was utilized with NB classifier. Based on the experimental 
results for all five classifiers depicted in Table 7, it can be 
verified that the value of  recall rate with RF classifier was 
overall superior and outperformed the other classifiers. With 
regard to the F-measure rates, the results presented in Table 8 
demonstrate the superiority of  the fusion of  LDNP and 
MWDT scenario and it was undoubtedly yielded excellent 
results which defiantly go beyond the other scenarios. The 
best performance with F-measure rate of  97.63 ± 1.62% 
was achieved using fusion of  LDNP and MWDT features 
with Ensemble classifier, which surpassed other classifiers 
with F-measure rates of  96.89 ± 1.86%, 95.31 ± 1.56%, and 
93.88 ± 3.11% for KNN, RF, and NB classifiers, respectively; 
however, the F-measure rate of  MWDT method using NB 
classifier had the lowermost recording of  78.45 ± 5.43%.

With respects to the MCC rates, the outcomes depicted 
in Table  9 prove the superiority of  the fusion of  LDNP 
and MWDT scenario and it was unquestionably returned 
outstanding outcomes which defiantly go beyond the other 
scenarios. The finest performance with F-measure rate of  
95.46 ± 2.85% was achieved using fusion of  LDNP and 
MWDT features with Ensemble classifier, followed by 
F-measure rate of  93.97 ± 3.67% along with KNN classifier, 
while the classification F-measure rate of  features derived 
from MWDT method had the lowest scoring (59.26 ± 9.59%) 
with NB classifier.

The experimentations from Fig.  11 besides obviously 
confirmed that the features derived by fusion of  LDNP and 
MWDT scenario outperformed other scenarios and recorded 
the highest precision, recall, F-measure, and MCC rates with 
Ensemble classifier. Considering the obtained outcomes, the 
highest precision, recall, F-measure, and MCC scores of  the 
features extracted using fused LDNP and MWDT methods 
were 98.05 %, 97.30%, 97.63%, and 95.46% respectively, and 
were achieved using 88 effective features. While, the lowest 
precision, recall, F-measure, and MCC rates were achieved 

TABLE 6: The average classification precision in % over 10 runs for each scenario scenarios using 
different classification algorithms
Methods DT Ensemble KNN NB RF
LDNP 83.51±5.90 97.01±1.89 93.33±4.41 93.25±5.96 91.24±5.02
MWDT 87.03±6.30 96.24±1.99 86.30±5.93 82.14±5.39 92.96±3.71
LDNP+MWDT 87.25±5.33 98.05±1.74 97.77±1.09 93.85±5.21 93.15±2.90

The best result per row is highlighted in bold. DT: Decision tree, KNN: K‑Nearest Neighbors, NB: Naïve Bayes, RF: Random forest, LDNP: Local directional number pattern

Fig. 10. Comparison of average accuracies for modeling the various 
scenarios using different classification methods.
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using MWDT method with a score of  96.24 %, 96.53%, 
96.34%, and 92.78%, respectively, and were achieved with 
32 extracted features.

In this work, the performance of  the proposed scenarios 
was also evaluated through misclassification error rate metric 
used the same dataset and computing environment. As 
confirmed by Fig. 12, the misclassification error rates for the 
proposed scenarios were measured. The results prove that 
the fusion of  LDNP and MWDT scenario with Ensemble 

TABLE 9: The average classification MCC in % over 10 runs for each scenario scenarios using different 
classification algorithms
Methods DT Ensemble KNN NB RF
LDNP 66.11±11.17 94.34±4.78 92.22±5.21 84.49±8.61 87.67±6.37
MWDT 79.62±10.19 92.78±4.57 81.27±7.68 59.26±9.59 86.78±5.17
LDNP+MWDT 78.55±7.27 95.46±2.85 93.97±3.67 88.00±6.04 90.60±3.18

The best result per row is highlighted in bold. DT: Decision tree, KNN: K‑Nearest Neighbors, NB: Naïve Bayes, RF: Random forest, LDNP: Local directional number pattern

TABLE 7: The average classification recall in % over 10 runs for each scenario scenarios using different 
classification algorithms
Methods DT Ensemble KNN NB RF
LDNP 82.30±8.54 97.20±1.07 96.13±1.02 91.15±5.45 96.92±2.03
MWDT 93.46±2.81 96.53±2.36 96.15±1.44 75.38±7.51 93.84±3.19
LDNP+MWDT 91.92±5.57 97.30±1.14 96.15±1.14 94.23±1.88 97.69±1.68

The best result per row is highlighted in bold. DT: Decision tree, KNN: K‑Nearest Neighbors, NB: Naïve Bayes, RF: Random forest, LDNP: Local directional number pattern

TABLE 8: The average classification MCC in % over 10 runs for each scenario scenarios using different 
classification algorithms
Methods DT Ensemble KNN NB RF
LDNP 66.11±11.17 94.34±4.78 92.22±5.21 84.49±8.61 87.67±6.37
MWDT 79.62±10.19 92.78±4.57 81.27±7.68 59.26±9.59 86.78±5.17
LDNP+MWDT 78.55±7.27 95.46±2.85 93.97±3.67 88.00±6.04 90.60±3.18

The best result per row is highlighted in bold. DT: Decision tree, KNN: K‑Nearest Neighbors, NB: Naïve Bayes, RF: Random forest, LDNP: Local directional number pattern

classifier outcomes in a lower misclassification error of  2.31% 
rate which confirms that the proposed scenario performs 
considerably much better than other suggesting scenarios. 
Thus, this scenario was chosen as a proposed technique for 
the classification of  ALL images.

Finally, the performance of  the proposed fusion scheme 
was also compared with some existing state-of-the-art 
methods as revealed in Table  10. The proposed scheme 
provides a promising outcome particularly in terms of  
average classification accuracy when comparing with the 
existing approaches. This is due to the combination carried 
out between LDNP and MWDT approaches which led to 
gaining their advantages. Nevertheless, the other researchers 
used some huge number of  features, whereas in the proposed 
scheme, 88 features were utilized with the best performance 
results attained.

From the above experimental outcomes, it is obviously 
noticeable that the proposed system can effectively applied 
discriminates the normal cell cases from blasts in microscopic 
blood images more precisely, which might support the 
clinicians to made up a clear diagnosis based on their clinical 
specialists as well as the proposed tool as a second opinion.

Fig. 11. Comparison of system performance for a different scenario 
using Ensemble classifier.
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5. CONCLUSION

Early diagnosis of  leukemia especially acute leukemia in patients, 
gives the chance to cure cancer with the right treatment. Image 
processing-based technologies can be used to automatically and 
effectively analyze microscopic smear images in order to detect 
the incidence of  leukemia. The main objective of  this paper is 
to use feature fusion and a machine learning model to perform 
leukemia classification using input blood smear images. Each 
trained model was evaluated using benchmark performance 
metrics, for example, accuracy, precision, recall, F-measure, MCC, 
and misclassification error rate under three different scenarios 
concerned with balanced learning and classification method. 
The proposed method was tested on images of  microscopic 
thin blood smears obtained from the publicly available leukemia 
benchmark dataset, that is, ALL-IDB2. The proposed feature 
fusion pipeline presented a higher average classification accuracy 
(97.69 ± 1.83%) compared to the accuracies attained using 
features achieved by individual feature extraction approaches, 
such as LDNP and MWDT. Furthermore, experimental 
outcomes revealed that the proposed model is more effective 
than previous works carried out for the classification of  ALL.
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