A Boundary Integral Equation Method for Computing Numerical Conformal Mappings onto the Disk with Rectilinear Slit and Spiral Slits Regions

Authors

  • Ali W. K. Sangawi Department of General Sciences, College of Education, Charmo University, 46023 Chamchamal, Sulaimani, Kurdistan, Iraq.

DOI:

https://doi.org/10.21928/uhdjst.v7n1y2023.pp92-99

Keywords:

Numerical conformal mapping, Boundary integral equations, multiply connected regions, Generalized Neumann kernel

Abstract

This article proposes a boundary integral equation method for computing numerical conformal mappings of bounded multiply connected region Ω onto the disk with rectilinear slit and spiral slits regions, Ω1 and Ω2 Initially, the process involves calculating the boundary value of the canonical region. Cauchy’s integral formula can then be used to compute the mapping of the interior values. The effectiveness of the proposed method is demonstrated using several numerical examples.

References

P. Koebe. Abhandlungen zur Theorie der konfermen Abbildung. IV. Abbildung mehrfach zusammenhängender schlicter Bereiche auf Schlitzcereiche (in German), Acta Mathematica, vol. 41, no. 1916, pp. 305-344.

M. M. S. Nasser and A. A. Al-Shihri Fayzah. “A fast boundary integral equation method for conformal mapping of multiply connected regions”. SIAM Journal on Scientific Computing, vol. 35, no. 3, pp. A1736-A1760, 2013.

M. M. S. Nasser. “A boundary integral equation for conformal mapping of bounded multiply connected regions”. Computational Methods and Function Theory, vol. 9, no. 1, pp. 127-143, 2009.

M. M. S. Nasser. “Numerical conformal mapping via boundary integral equation with the generalized Neumann kernel”. SIAM Journal on Scientific Computing, vol. 31, pp. 1695-1715, 2009.

M. M. S. Nasser. “Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebe’s canonical slit domains”. Journal of Mathematical Analysis and Applications, vol. 382, pp. 47-56, 2011.

M. M. S. Nasser, A. H. M. Murid and A. W. K. Sangawi. “Numerical conformal mapping via a boundary integral equation with the adjoint generalized Neumann kernel”. TWMS Journal of Pure and Applied Mathematics, vol. 5, no. 1, pp. 96-117, 2014.

Z. Nehari. “Conformal Mapping”. Dover Publication, New York, 1952.

A. W. K. Sangawi, A. H. M. Murid and M. M. S. Nasser. “Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits”. Applied Mathematics and Computation, vol. 218, no. 5, pp. 2055-2068, 2011.

A. W. K. Sangawi and A. H. M. Murid. “Annulus with spiral slits map and its inverse of bounded multiply connected regions”. International Journal of Scientific Engineering and Research, vol. 4, no. 10, pp. 1447-1454, 2013.

A. W. K. Sangawi. “Spiral slits map and its inverse of bounded multiply connected regions”. Applied Mathematics and Computation, vol. 228, pp. 520-530, 2014.

A. W. K. Sangawi. “Straight slits map and its inverse of bounded multiply connected regions”. Advances in Computational Mathematics, vol. 41, pp. 439-455, 2015.

A. W. K. Sangawi, A. H. M. Murid and L. Khiy. “Fast computing of conformal mapping and its inverse of bounded multiply connected regions onto second, third and fourth categories of Koebe’s canonical slit regions”. Journal of Scientific Computing, vol. 68, pp. 1124-1141, 2016.

G. C. Wen. “Conformal Mapping and Boundary Value Problems. English Translation of Chinese Edition, 1984. American mathematical Society, Providence, 1992.

M. M. S. Nasser. “Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe’s canonical slit regions”. Journal of Mathematical Analysis and Applications, vol. 398, pp. 729-743, 2013.

T. K. DeLillo, T. A. Driscoll, A. R. Elcrat and J. A. Pfaltzgraff. “Radial and circular slit maps of unbounded multiply connected circle domains”. Proceedings: Mathematical, Physical and Engineering Sciences, vol. 464, no. 2095, pp. 1719-1737, 2008.

R. Wegmann and M. M. S. Nasser. “The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions”. Journal of Computational and Applied Mathematics, vol. 214, pp. 36-57, 2008.

K. E. Atkinson. “The Numerical Solution of Integral Equations of the Second Kind”. Cambridge University Press, Cambridge, 1997.

P. J. Davis and P. Rabinowitz. “Methods of Numerical Integration”. 2nd ed. Academic Press, Orlando, 1984.

A. H. M. Murid and H. Laey-Nee. “Numerical experiment on conformal mapping of doubly connected regions onto a disk with a slit”. International Journal of Pure and Applied Mathematics, vol. 51, no. 4, pp. 589-608, 2009.

A. H. M. Murid and H. Laey-Nee. “Numerical conformal mapping of bounded multiply connected regions by an integral equation method”. International Journal of Contemporary Mathematical Sciences, vol. 4, no. 23, pp. 1121-1147, 2009.

Published

2023-06-10

How to Cite

Sangawi, A. W. K. (2023). A Boundary Integral Equation Method for Computing Numerical Conformal Mappings onto the Disk with Rectilinear Slit and Spiral Slits Regions. UHD Journal of Science and Technology, 7(1), 92–99. https://doi.org/10.21928/uhdjst.v7n1y2023.pp92-99

Issue

Section

Articles