Innovative Machine Learning Strategies for DDoS Detection: A Review

Authors

  • Omar Mohammed Amin Ali Department of IT, Chamchamal Technical Institute, Sulaimani Polytechnic University, KRG, Iraq.
  • Rebin Abdulkareem Hamaamin Computer Science, College of Sciences, Charmo University, Chamchamal, Sulaimani, KRG, Iraq.
  • Barzan Jalal Youns Department of Technical Information Systems Engineering, Technical Engineering College, Erbil Polytechnic University, KRG, Iraq.
  • Shahab Wahhab Kareem Department of Technical Information Systems Engineering, Technical Engineering College, Erbil Polytechnic University, KRG, Iraq.

DOI:

https://doi.org/10.21928/uhdjst.v8n2y2024.pp38-49

Keywords:

Distributed Denial of Service Attacks, Machine Learning Algorithm, Internet of Things, Deep Learning, Anomaly

Abstract

This is a broad survey that investigates the use of machine learning (ML) methods for detecting distributed denial of service (DDoS) attacks. Traditional intrusion detection systems face difficulties in application-layer DDoS attacks because they target legal web traffic forms using standard transmission control protocol connections. This paper reviews different ML methods used in recent studies to tackle these issues. These studies use various data sets, such as UNSW-np-15, CICDDoS2019, and the novel dataset LATAM-DDoS-Internet of Things., which prove the efficacy of the proposed models in terms of accuracy and performance metrics. The second group of studies shows more advanced designs, such as protocol-based deep intrusion detection and autoencoder-multi-layer perceptron. These use deep learning to find features and group attacks. All of these approaches present favorable outcomes when it comes to distinguishing normal, DoS, and DDoS traffic with a high level of accuracy. Furthermore, the review discusses works that emphasize the early detection of noise-robust models and distributed frameworks. Different techniques, such as snake optimizer with ensemble learning, metastability theory, and spark-based anomaly detection, highlight the trend of predicting DDoS attacks, whereas hyperband-tuned deep neural networks and evolutionary support vector machine models show higher accuracy in cloud systems as well as software-defined networking environments. Hence, this review gives a general observation of how DDoS attacks develop on their way and proves that ML techniques help to strengthen network security.

References

K. S. Sahoo, B. K. Tripathy, K. Naik, S. Ramasubbareddy, B. Balusamy, M. Khari and D. Burgos. “An evolutionary SVM model for DDoS attack detection in software defined networks”. IEEE Access, vol. 8, pp. 132502-132513, 2020.

S. Naiem, A. E. Khedr, M. I. Marie and A. M. Idrees. “Enhancing the efficiency of gaussian naive bayes machine learning classifier in the detection of DDoS in cloud computing”. IEEE Access, vol. 11, pp. 124597-124608, 2023.

A. Alomari and S. A. Kumar. “Deqsvc: Dimensionality reduction and encoding technique for quantum support vector classifier approach to detect DDoS attacks”. IEEE Access, vol. 11, pp. 110570-110581, 2023.

J. G. Almaraz-Rivera, J. A. Perez-Diaz, J. A. Cantoral-Ceballos, J. F. Botero and L. A. Trejo. “Toward the protection of iot networks: Introducing the latam-DDoS-iot dataset”. IEEE Access, vol. 10, pp. 106909-106920, 2022.

Y. Al-Dunainawi, B. R. Al-Kaseem and H. S. Al-Raweshidy. “Optimized artificial intelligence model for DDoS detection in sdn environment”. IEEE Access, vol. 1, pp. 106733-106748, 2023.

M. Aljebreen, F. S. Alrayes, M. Maray, S. S. Aljameel, A. S. Salama and A. Motwakel. “Modified equilibrium optimization algorithm with deep learning-based DDoS attack classification in 5g networks”. IEEE Access, vol. 11, pp. 108561-108570, 2023.

M. Aljebreen, H. A. Mengash, M. A. Arasi, S. S. Aljameel, A. S. Salama and M. A. Hamza. “Enhancing DDoS attack detection using snake optimizer with ensemble learning on internet of things environment”. IEEE Access, vol. 11, pp. 104745, 2023.

D. M. Sharif, H. Beitollahi and M. Fazeli. “Detection of application-layer DDoS attacks produced by various freely accessible toolkits using machine learning”. IEEE Access, vol. 11, pp. 51810-51819, 2023.

M. S. El Sayed, N. A. Le-Khac, M. A. Azer and A. D. Jurcut. “A flow-based anomaly detection approach with feature selection method against DDoS attacks in sdns”. IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 4, pp. 1862-1880, 2022.

H. Beitollahi, D. M. Sharif and M. Fazeli. “Application layer DDoS attack detection using cuckoo search algorithm-trained radial basis function”. IEEE Access, vol. 10, pp. 63844-63854, 2022.

Ismail, M. I. Mohmand, H. Hussain, A. A. Khan, U. Ullah, M. Zakarya, A. Ahmed, M. Raza, I. U. Rahman and M. Haleem. “A machine learning-based classification and prediction technique for DDoS attacks”. IEEE Access, vol. 10, pp. 21443-21454, 2022.

M. Zeeshan, Q. Riaz, M. A. Bilal, M. K. Shahzad, H. Jabeen, S. A. Haider and A. Rahim. “Protocol based deep intrusion detection for dos and DDoS attacks using unsw-nb15 and bot-iot data-sets”. IEEE Access, vol. 10, pp. 2269-2283, 2021.

Y. Wei, J. Jang-Jaccard, F. Sabrina, A. Singh, W. Xu and S. Camtepe. “Ae-mlp: A hybrid deep learning approach for DDoS detection and classification”. IEEE Access, vol. 9, pp. 146810- 146821, 2021.

M. A. Al-Naeem. “Prediction of re-occurrences of spoofed ack packets sent to deflate a target wireless sensor network node by DDoS”. IEEE Access, vol. 9, pp. 87070-87078, 2021.

J. P. A. Maranhão, J. P. C. da Costa, E. P. de Freitas, E. Javidi and R. T. de Sousa. “Noise-robust multilayer perceptron architecture for distributed denial of service attack detection”. IEEE Communications Letters, vol. 25, no. 2, pp. 402-406, 2020.

A. Ahmed, S. Hameed, M. Rafi and Q. K. A. Mirza. “An intelligent and time-efficient DDoS identification framework for real-time enterprise networks: SAD-F: Spark based anomaly detection framework”. IEEE Access, vol. 8, pp. 219483-219502, 2020.

A. Bhardwaj, V. Mangat and R. Vig. “Hyperband tuned deep neural network with well posed stacked sparse autoencoder for detection of DDoS attacks in cloud”. IEEE Access, vol. 8, pp. 181916- 181929, 2020.

M. Rahal, A. Santos and M. Nogueira. “A distributed architecture for DDoS prediction and bot detection”. IEEE Access, vol. 8, pp. 159756-159772, 2020.

K. S. Sahoo, B. K. Tripathy, K. Naik, S. Ramasubbareddy, B. Balusamy, M. Khari and D. Burgos. “An evolutionary SVM model for DDoS attack detection in software defined networks”. IEEE access, vol. 8, pp. 132502-132513, 2020.

Y. Gu, K. Li, Z. Guo and Y. Wang. “Semi-supervised k-means DDoS detection method using hybrid feature selection algorithm”. IEEE Access, vol. 7, pp. 64351-64365, 2019.

R. A. Hamaamin, S. H. Wady and A. W. Kareem Sangawi. “The effect of feature extraction on Covid-19 classification”. Science Journal of University of Zakho, vol. 12, no. 2, pp. 227-236, 2024.

O. M. Amin Ali, S. Wahhab Kareem and A. S. Mohammed. “Evaluation of Electrocardiogram Signals Classification using CNN, SVM, and LSTM Algorithm: A Review”. 2022 8th International Engineering Conference on Sustainable Technology and

Development (IEC), Erbil, Iraq, 2022, pp. 185-191.

R. A. Hamaamin, O. M. A. Ali and S. W. Kareem. “Biometric systems: A comprehensive review”. Basrah Journal of Science, vol. 24, no. 2, pp. 146-167, 2024.

A. Saeed and N. G. M. Jameel. “Intelligent feature selection using particle swarm optimization algorithm with a decision tree for DDoS attack detection”. International Journal of Advances in Intelligent Informatics, vol. 7, no. 1, pp. 37-48, 2021.

C. M. Nalayini and J. Katiravan. “Detection of DDoS attack using machine learning algorithms”. SSRN Journal, vol. 9, no. 7, p. 4173187, 2022.

D. Lunkad and S. Govind. “DDOS attack detection using machine learning for network performance improvement.” International Journal of Creative Research Thoughts, vol. 8, pp. 2320-2882, 2020.

K. Kumari and M. Mrunalini. “Detecting denial of service attacks using machine learning algorithms”. Journal of Big Data, vol. 9, no. 1, p. 56, 2022.

J. Pei, Y. Chen and W. Ji. “A DDoS attack detection method based on machine learning”. Journal of Physics: Conference Series, vol. 1237, p. 032040, 2019.

P. S. Saini, S. Behal, and S. Bhatia. "Detection machine learning algorithms." In 2020 7th International Conference Sustainable Global Development (INDIACom), pp. 16-21. IEEE, 2020.

Q. Li, M. Linhai, Z. Yuan and Y. Jinyao. DDoS attacks detection using machine learning algorithms. In: “Digital TV and Multimedia Communication: 15th International Forum, IFTC 2018, Shanghai, China, September 20-21, 2018, Revised Selected Papers 15”. Springer, Singapore, pp. 205-216, 2019.

Z. H. Sahosh, A. Faheem, M. B. Tuba, Md. I. Ahmed, and S. A. Tasnim. "A comparative review on DDoS attack detection using machine learning techniques." Malaysian Journal of Science and Advanced Technology, Vol. 4 no. 2, pp. 75-83, 2024.

B. Fakiha. “Detecting distributed denial of services using machine language learning techniques”. Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, vol. 57, no. 5, pp. 675-688, 2022.

Published

2024-10-02

How to Cite

Ali, O. M. A., Hamaamin, R. A., Youns, B. J., & Kareem, S. W. (2024). Innovative Machine Learning Strategies for DDoS Detection: A Review. UHD Journal of Science and Technology, 8(2), 38–49. https://doi.org/10.21928/uhdjst.v8n2y2024.pp38-49

Issue

Section

Articles

Most read articles by the same author(s)