Enhancing Clinical Decision Support: A Deep Learning Approach for Automated Diagnosis of Eye Diseases from Fundus Images

Authors

  • Ismael Abdulkareem Ali Computer Department, College of Science, University of Sulaimani, Sulaymaniyah 46001, Kurdistan, Iraq
  • Sozan Abdulla Mahmood Computer Department, College of Science, University of Sulaimani, Sulaymaniyah 46001, Kurdistan, Iraq

DOI:

https://doi.org/10.21928/uhdjst.v9n2y2025.pp61-76

Keywords:

healthcare, fundoscopy, retinal fundus images, multi-class classification, hybrid deep learning

Abstract

Background and Objective: One of the most crucial sensory organs that helps the human brain receive information about the outside world is the eye. Due to its structural features, the back surface of the eye (retina) provides valuable insights about various disorders. It is essential to protect the eyes from diseases that could lead to vision impairment. If diseases affecting the retina are not identified and treated promptly, vision loss cannot be reversed. Therefore, effective automatic detection systems are necessary, as manual diagnosis is not only time-consuming, expensive, and labor-intensive but also requires a high level of expertise. To address this issue, many deep learning (DL)-based solutions have been proposed for screening retinal conditions. This study aimed to develop an effective system for the automated classification of four major eye conditions to support clinical decision-making. Methods: In this research, various convolutional neural network (CNN) architectures were applied to the dataset, and their performance was recorded. The CNN models are the common transfer learning pre-trained models on the ImageNet dataset. Finally, we developed a hybrid DL model combining DenseNet169 and MobileNetV1 to extract deep features from fundus images and perform multiclass classification into four categories: diabetic retinopathy, cataract, glaucoma, and normal fundus. Results: This hybrid approach yielded impressive results, attaining 92.99%, 93.02%, 92.85%, 92.90%, and 98.77% for accuracy, precision, recall, F1-score, and area under the curve (AUC) on a publicly available Kaggle dataset, i.e., eye disease classification. These results indicate that the hybrid approach enhances classification accuracy compared to other individual pre-trained CNN models. Conclusion: In summary, this study evaluated a substantial number of pre-trained models and developed a framework based on the top two optimal-performing models. Given that retinal image detection and diagnosis are critical for patient eye therapy and rehabilitation, our study offers an innovative framework that can function as a diagnostic aid for eye-related diseases.

References

WHO. “Eye Care, Vision Impairment and Blindness”. Available from: https://www.who.int/health-topics/blindness-and-vision-loss#tab=tab_1 [Last accessed on 2024 Dec 07].

S. Panchal, A. Naik, M. Kokare, S. Pachade, R. Naigaonkar, P. Phadnis and A. Bhange. “Retinal fundus multi-disease image dataset (RFMiD) 2.0: A dataset of frequently and rarely identified diseases”. Data, vol. 8, no. 2, p. 29, 2023.

X. Xia, Y. Li, G. Xiao, K. Zhan, J. Yan, C. Cai, Y. Fang and G. Huang. “Benchmarking deep models on retinal fundus disease diagnosis and a large-scale dataset”. Signal Processing: Image Communication, vol. 127, p. 117151, 2024.

F. Du, H. Luo, Q. Xing, J. Wu, Y. Zhu, W. Xu, W. He and J. Wu. “Recognition of eye diseases based on deep neural networks for transfer learning and improved D-S evidence theory”. BMC Medical Imaging, vol. 24, no. 1, p. 19, 2024.

N. Gour and P. Khanna. “Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network”. Biomedical Signal Processing and Control, vol. 66, p. 102329, 2021.

M. J. Burton, J. Ramke, A. P. Marques, R. R. A. Bourne, N. Congdon, I. Jones, B. A. M. Tong, S. Arunga, D. Bachani, C. Bascaran,… & A. Bastawrous. “The lancet global health commission on global eye health: Vision beyond 2020”. The Lancet Global Health, vol. 9, no. 4, pp. e489-e551, 2021.

National Institutes of Health. “Diabetic Retinopathy”. Available from: https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/diabetic-retinopathy [Last accessed on 2024 Dec 07].

T. Y. Wong, J. Sun, R. Kawasaki, P. Ruamviboonsuk, N. Gupta, V. C. Lansingh and M. Maia. “Guidelines on diabetic eye care: The international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings”. Ophthalmology, vol. 125, no. 10, pp. 1608-1622, 2018.

M. R. K. Mookiah, U. R. Acharya, C. K. Chua, C. M. Lim, E. Y. K. Ng and A. Laude. “Computer-aided diagnosis of diabetic retinopathy: A review”. Computers in Biology and Medicine, vol. 43, no. 12, pp. 2136-2155, 2013.

M. Z. Atwany, A. H. Sahyoun and M. Yaqub. “Deep learning techniques for diabetic retinopathy classification: A survey”. IEEE Access, vol. 10, pp. 28642-28655, 2022.

NCCDPHP. “Vision ans Eye Health”. Available from: https://www. cdc.gov/vision-health/about-eye-disorders/glaucoma.html [Last accessed on 2024 Dec 08].

K. Boyd. “Understanding Glaucoma: Symptoms, causes, Diagnosis, Treatment”. Available from: https://www.aao.org/eye-health/ diseases/what-is-glaucoma [Last accessed on 2024 Dec 08].

P. Blindness. “New Study Finds Higher Prevalence of Glaucoma Than Previously Estimated”. Available from: https:// preventblindness.org/new-glaucoma-prevalence-study [Last accessed on 2024 Dec 08].

M. S. M. Khan, M. Ahmed, R. Z. Rasel and M. M. Khan. “Cataract Detection Using Convolutional Neural Network with VGG-19 Model”. In: 2021 IEEE World AI IoT Congress (AIIoT), pp. 209-212, 2021.

M. R. Hossain, S. Afroze, N. Siddique and M. M. Hoque. “Automatic Detection of Eye Cataract using Deep Convolution Neural Networks (DCNNs)”. In: 2020 IEEE Region 10 Symposium (TENSYMP), pp. 1333-1338, 2020.

M. S. Khan, N. Tafshir, K. N. Alam, A. R. Dhruba, M. M. Khan, A. A. Albraikan and F. A. Almalki. “Retracted: Deep learning for ocular disease recognition: An inner-class balance”. Computational Intelligence and Neuroscience, vol. 2023, no. 1, p. 9838475, 2023.

R. Thanki. “A deep neural network and machine learning approach for retinal fundus image classification”. Healthcare Analytics, vol. 3, p. 100140.

M. ur-Rehman, S. H. Khan, Z. Abbas and S. M. D. Rizvi. “Classification of Diabetic Retinopathy Images Based on Customised CNN Architecture”. In: 2019 Amity International Conference on Artificial Intelligence (AICAI), pp. 244-248, 2019.

M. A. Syarifah, A. Bustamam and P. P. Tampubolon. “Cataract classification based on fundus image using an optimized convolution neural network with lookahead optimizer”. In: AIP Conference Proceedings, vol. 2296, no. 1, 2020, p. 020034.

M. M. Butt, D. A. Iskandar, S. E. Abdelhamid, G. Latif and R. Alghazo. “Diabetic retinopathy detection from fundus images of the eye using hybrid deep learning features”. Diagnostics, vol. 12, no. 7, p. 1607, 2022.

M. H. Mahmoud, S. Alamery, H. Fouad, A. Altinawi and A. E. Youssef. “An automatic detection system of diabetic retinopathy using a hybrid inductive machine learning algorithm”. Personal and Ubiquitous Computing, vol. 27, no. 3, pp. 751-765, 2023.

A. Aljohani and R. Y. Aburasain. “A hybrid framework for glaucoma detection through federated machine learning and deep learning models”. BMC Medical Informatics and Decision Making, vol. 24, no. 1, p. 115, 2024.

A. Nawaz, T. Ali, G. Mustafa, M. Babar and B. Qureshi. “Multi-class retinal diseases detection using deep CNN with minimal memory consumption”. IEEE Access, vol. 11, pp. 56170-56180, 2023.

S. Nawaldgi and Y. S. Lalitha. “Automated glaucoma assessment from color fundus images using structural and texture features”. Biomedical Signal Processing and Control, vol. 77, p. 103875, 2022.

J. Verma, I. Kansal, R. Popli, V. Khullar, D. Singh, M. Snehi, and R. Kumar,“A hybrid images deep trained feature extraction and ensemble learning models for classification of multi-disease in fundus images,” in Proc. Nordic Conf. on Digital Health and Wireless Solutions, Oulu, Finland, May 7–8, 2024, pp. 203–221. Cham, Switzerland: Springer Nature, 2024.

M. Vadduri and P. Kuppusamy. “Enhancing ocular healthcare: Deep learning-based multi-class diabetic eye disease segmentation and classification”. IEEE Access, vol. 11, pp. 137881-137898, 2023.

A. Albelaihi and D. M. Ibrahim. “DeepDiabetic: An identification system of diabetic eye diseases using deep neural networks”. IEEE Access, vol. 12, pp. 10769-10789, 2024.

A. Vanita Sharon and G. Saranya. “Classification of multi-retinal disease based on retinal fundus image using convolutional neural network”. In: S. Smys, A. M. Iliyasu, R. Bestak and F. Shi, Eds. New Trends in Computational Vision and Bio-inspired Computing: Selected Works Presented at the ICCVBIC 2018, Coimbatore, India. Springer International Publishing, Cham, pp. 1009-1016, 2020.

N. Chea and Y. Nam. “Classification of fundus images based on deep learning for detecting eye diseases”. Computers, Materials and Continua, vol. 67, no. 1, pp. 411-426, 2020.

T. Babaqi, M. Jaradat, A. E. Yildirim, S. H. Al-Nimer and D. Won. “Eye Disease Classification using Deep Learning Techniques”. [arXiv Preprint], 2023.

A. Shamsan, E. M. Senan and H. S. Shatnawi. “Automatic classification of colour fundus images for prediction eye disease types based on hybrid features”. Diagnostics, vol. 13, no. 10, p. 1706, 2023.

S. A. Kadum, F. H. Najjar, H. M. Al-Jawahry and F. Mohamed. “Eye Diseases Classification Based on Hybrid Feature Extraction Methods”. In: 2023 6th International Conference on Engineering Technology and its Applications (IICETA), pp. 402-407, 2023.

C. Guo, M. Yu and J. Li. “Prediction of different eye diseases based on fundus photography via deep transfer learning”. Journal of Clinical Medicine, vol. 10, no. 23, p. 5481, 2021.

R. Sarki, K. Ahmed, H. Wang, Y. Zhang and K. N. Wang. “Convolutional neural network for multi-class classification of diabetic eye disease”. EAI Endorsed Transactions on Scalable Information Systems, vol. 9, p. 5, 2018.

H. Xu, X. Shao, D. Fang and F. Huang. “A hybrid neural network approach for classifying diabetic retinopathy subtypes”. Frontiers in Medicine (Lausanne), vol. 10, p. 1293019, 2023.

U. Ishtiaq, E. R. Abdullah and Z. Ishtiaque. “A hybrid technique for diabetic retinopathy detection based on ensemble-optimized CNN and texture features”. Diagnostics, vol. 13, no. 10, p. 1816.

A. Ali Tabtaba and O. Ata. “Diabetic retinopathy detection using developed hybrid cascaded multi-scale DCNN with hybrid heuristic strategy”. Biomedical Signal Processing and Control, vol. 89, p. 105718, 2024.

B. Menaouer, Z. Dermane, N. El Houda Kebir and N. Matta. “Diabetic retinopathy classification using hybrid deep learning approach”. SN Computer Science, vol. 3, no. 5, p. 357, 2022.

J. Wang, L. Yang, Z. Huo, W. He and J. Luo. “Multi-label classification of fundus images with efficientNet”. IEEE Access, vol. 8, pp. 212499-212508, 2020.

M. A. Rodriguez, H. AlMarzouqi and P. Liatsis. “Multi-label retinal disease classification using transformers”. IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 6, pp. 2739-2750.

N. M. Dipu, S. A. Shohan and K. Salam. “Ocular disease detection using advanced neural network based classification algorithms”. Asian Journal For Convergence in Technology (AJCT), vol. 7, no. 2, pp. 91-99, 2021.

O. Ouda, E. AbdelMaksoud, A. A. Abd El-Aziz, and M. Elmogy. “Multiple ocular disease diagnosis using fundus images based on multi-label deep learning classification”. Electronics, vol. 11, no. 13, pp. 1966.

S. Moccia, E. De Momi, S. El Hadji and L. S. Mattos. “Blood vessel segmentation algorithms - Review of methods, datasets and evaluation metrics”. Computer Methods and Programs in Biomedicine, vol. 158, pp. 71-91, 2018.

A. Almazroa, R. Burman, K. Raahemifar and V. Lakshminarayanan. “Optic disc and optic cup segmentation methodologies for glaucoma image detection: A survey”. Journal of Ophthalmology, vol. 2015, p. 180972, 2015.

V. Doddi. “Kaggle”. Available from: https://www.kaggle.com/ datasets/gunavenkatdoddi/eye-diseases-classification [Last accessed on 2024 Dec12].

L. P. Cen, J. Ji, J. W. Lin, S. T. Ju, H. J. Lin, T. P. Li, Y. Wang,… & J. Feng. “Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks”. Nature Communications, vol. 12, no. 1, p. 4828, 2021.

M. S. Junayed, M. B. Islam, A. Sadeghzadeh and S. Rahman. “CataractNet: An automated cataract detection system using deep learning for fundus images”. IEEE Access, vol. 9, pp. 128799- 128808, 2021.

B. Venkaiahppalaswamy, P. Prasad Reddy and S. Batha. “Hybrid deep learning approaches for the detection of diabetic retinopathy using optimized wavelet based model”. Biomedical Signal Processing and Control, vol. 79, p. 104146, 2023.

Yang. “EyeNet”. Available from: https://github.com/huckiyang/ eyenet [Last accessed on 2024 Dec 14].

A. R. Wahab Sait. “Artificial intelligence-driven eye disease classification model”. Applied Sciences, vol. 13, no. 20, p. 11437.

S. Prasher, L. Nelson and S. Gomathi. “Automated Eye Disease Classification using MobileNetV3 and Efficientnetb0 Models using Transfer Learning”. In: 2023 World Conference on Communication and Computing (WCONF), pp. 1-5, 2023.

C. Desai. “Image classification using transfer learning and deep learning”. International Journal of Engineering and Computer Science, vol. 10, no. 9, pp. 25394-25398.

B. Şener and E. Sümer. “Classification of Eye Disease from Retinal Images Using Deep Learning”. In: 2023 14th International Conference on Electrical and Electronics Engineering (ELECO), 2023, pp. 1-4.

K. B. Vardhan, M. Nidhish, C. S. Kiran, N. S. Dudekula, S. C. Varanasi and R. M. Bhavadharini. “Eye disease detection using deep learning models with transfer learning techniques”. EAI Endorsed Transactions on Scalable Information Systems, vol. 12, pp, 1-13, 2024.

K. Maharana, S. Mondal and B. Nemade. “A review: Data pre-processing and data augmentation techniques”. Global Transitions Proceedings, vol. 3, no. 1, pp. 91-99, 2022.

S. M. A. S. Hassanein, M. Sameer and M. E. Ragab. “A survey on hough transform, theory, techniques and applications”. International Journal of Computer Science Issues, vol. 12, no. 1, pp. 139-156, 2015.

G. Cheng and J. Han. “A survey on object detection in optical remote sensing images”. Journal of Photogrammetry and Remote Sensing, vol. 117, pp. 11-28, 2016.

N. S. Ashish Vaswani, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and I. Polosukhin. “Attention is All you Need”. In: Advances in Neural Information Processing Systems Conferences (NeurIPS), pp. 5998-6008, 2023.

T. Zhou, X. Ye, H. Lu, X. Zheng, S. Qiu and Y. Liu. “Dense convolutional network and its application in medical image analysis”. BioMed Research International, vol. 2022, no. 1, p. 2384830, 2022.

G. Huang, Z. Liu, L. V. D. Maaten and K. Q. Weinberger. “Densely Connected Convolutional Networks”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261- 2269, 2017.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam. “Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications”. [arXiv Preprint], 2017.

X. Luo, W. Wang, Y. Xu, Z. Lai, X. Jin, B. Zhang and D. Zhang. “A deep convolutional neural network for diabetic retinopathy detection via mining local and long-range dependence”. CAAI Transactions on Intelligence Technology, vol. 9, no. 1, pp. 153- 166, 2024.

S. Majumder and N. Kehtarnavaz. “Multitasking deep learning model for detection of five stages of diabetic retinopathy”. IEEE Access, vol. 9, pp. 123220-123230, 2021.

S. Liu, A. Schulz, M. Kalloniatis, B. Zangerl, W. Cai, Y. Gao, B. Chua, H. Arvind, J. Grigg, D. Chu, A. Klistorner and Y. You. “A deep learning-based algorithm identifies glaucomatous discs using monoscopic fundus photographs”. Ophthalmology Glaucoma, vol. 1, no. 1, pp. 15-22, 2018.

Published

2025-08-24

How to Cite

Ali, I. A., & Mahmood, S. A. (2025). Enhancing Clinical Decision Support: A Deep Learning Approach for Automated Diagnosis of Eye Diseases from Fundus Images. UHD Journal of Science and Technology, 9(2), 61–76. https://doi.org/10.21928/uhdjst.v9n2y2025.pp61-76

Issue

Section

Articles