Hybrid U-Net Architectures with ResNet50 and VGG19 for Accurate CT-Based Kidney Disease and Stone Segmentation

Authors

  • Dlshad Abdalrahman Mahmood Department of Computer Science, Faculty of Science, Soran University, Kurdistan Region, Iraq
  • Muhammad Amin Muhammadali Department of Computer Science, Faculty of Science, Soran University, Kurdistan Region, Iraq

DOI:

https://doi.org/10.21928/uhdjst.v9n2y2025.pp231-250

Keywords:

Kidney stone, Renal disorders, DL, U-Net, VGG19, ResNet50

Abstract

Kidney illness is a major worldwide health issue requiring prompt and precise diagnosis for optimal management. This paper presents a comprehensive evaluation of hybrid deep learning (DL) architectures that integrate U-Net with ResNet50 and VGG19 for the automatic segmentation of kidney stones and renal disorders from computed tomography (CT) images. We assembled a dataset of 118 individuals from a private hospital, comprising 13,035 kidney-specific CT scans, while also using the publicly accessible Kaggle Kidney Stone Segmentation Dataset. Three experimental situations were established: (1) Concurrent segmentation of kidney disease and stones, (2) segmentation of kidney stones alone, and (3) segmentation of kidney disease exclusively. The hybrid U-Net+ResNet50 model attained superior performance in stone-only segmentation, with an F1-score of 0.8653, an IoU of 0.7626, and an accuracy of 0.9998 at a resolution of 256 × 256. The U-Net+VGG19 model exhibited strong performance in all situations, attaining an F1-score and DC of 0.8663 for stone segmentation. Both models demonstrated exceptional generalization ability when evaluated on external datasets. The findings indicate that hybrid architectures markedly improve segmentation accuracy compared to conventional methods, providing dependable automated tools for clinical kidney pathology evaluation while ensuring computational efficiency with average processing durations below 0.05 s per scan.

References

N. A. Almansour, H. F. Syed, N. R. Khayat, R. K. Altheeb, R. E. Juri, J. Alhiyafi, S. Alrashed and S. O. Olatunji. “Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study”. Computers in Biology and Medicine, vol. 109, pp. 101-111, 2019.

F. Ahmed, S. Abbas, A. Athar, T. Shahzad, W. A. Khan, M. Alharbi, M. A. Khan and A. Ahmed. “Identification of kidney stones in KUB X-ray images using VGG16 empowered with explainable artificial intelligence”. Scientific Reports, vol. 14, no. 1, p. 6173, 2024.

M. Akram, V. Jahrreiss, A. Skolarikos, R. Geraghty, L. Tzelves, E. Emilliani, N. F. Davis and B. K. Somani. “Urological guidelines for kidney stones: Overview and comprehensive update”. Journal of Clinical Medicine, vol. 13, no. 4, p. 1114, 2024.

R. Magherini, E. Mussi, Y. Volpe, R. Furferi, F. Buonamici and M. Servi. “Machine learning for renal pathologies: An updated survey”. Sensors (Basel), vol. 22, no. 13, pp. 4989, 2022.

M. H. Hesamian, W. Jia, X. He and P. Kennedy. “Deep learning techniques for medical image segmentation: Achievements and challenges”. Journal of Imaging Informatics in Medicine, vol. 32, no. 4, pp. 582-596, 2019.

Y. Wu and Z. Yi. “Automated detection of kidney abnormalities using multi-feature fusion convolutional neural networks”. Knowledge- Based Systems, vol. 200, p. 105873, 2020.

T. A. Rashid, J. Majidpour, R. Thinakaran, M. Batumalay, D. A. Dewi, B. A. Hassan, H. Dadgar and H. Arabi. “NSGA-II-DL: Metaheuristic optimal feature selection with deep learning framework for HER2 classification in breast cancer”. IEEE Access, vol. 12, pp. 38885- 38898, 2024.

K. K. Patro, A. Jayaprakash, U. Rajendra Achary, M. Hammad, O. Yildirim and P. Pławiak. “Application of kronecker convolutions in deep learning technique for automated detection of kidney stones with coronal CT images”. Information Sciences, vol. 640, p. 119005, 2023.

W. Brisbane, M. R. Bailey and M. D. Sorensen. “An overview of kidney stone imaging techniques”. Nature Reviews Urology, vol. 13, no. 11, pp. 654-662, 2016.

D. A. Mahmood and S. A. Aminfar. “Efficient machine learning and deep learning techniques for detection of breast cancer tumor”. BioMed Target Journal, vol. 2, no. 1, pp. 1-13, 2024.

S. Asif, M. Awais and S. U. R. Khan. “IR-CNN: Inception residual network for detecting kidney abnormalities from CT images”. Network Modeling Analysis in Health Informatics and Bioinformatics, vol. 12, no. 1, p. 35, 2023.

A. Parakh, H. Lee, J. H. Lee, B. H. Eisner, D. V. Sahani and S. Do. “Urinary stone detection on CT images using deep convolutional neural networks: Evaluation of model performance and generalization”. Radiology: Artificial Intelligence, vol. 1, no. 4, p. e180066, 2019.

M. Kaur and D. Singh. “Fusion of medical images using deep belief networks”. Cluster Computing, vol. 23, no. 2, pp. 1439-1453, 2020.

Z. H. Huang, Y. Y. Liu, W. J. Wu and K. W. Huang. “Design and validation of a deep learning model for renal stone detection and segmentation on kidney-ureter-bladder images”. Bioengineering, vol. 10, no. 8, 970.

K. Yildirim, P. G. Bozdag, M. Talo, O. Yildirim, M. Karabatak and U. R. Acharya. “Deep learning model for automated kidney stone detection using coronal CT images”. Computers in Biology and Medicine, vol. 135, p. 104569, 2021.

L. A. Fitri, A. Koudonas, G. Langas, S. Tsiakaras, D. Memmos, I. Mykoniatis, E. N. Symeonidis, D. Tsiptsios, E. Savvides, I. Vakalopoulos, G. Dimitriadis and J. De la Rosette. “Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network”. Physical Medicine, vol. 78, pp. 201-208, 2020.

W. Zhao, D. Jiang, J. Peña Queralta and T. Westerlund. “MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net”. Informatics in Medicine Unlocked, vol. 19, p. 100357, 2020.

A. Alqahtani, S. Alsubai, A. Binbusayyis, M. Sha, A. Gumaei and Y. D. Zhang. “Optimizing kidney stone prediction through urinary analysis with improved binary particle Swarm optimization and extreme gradient boosting”. Mathematics, vol. 11, no. 7, p. 1717.

S. W. Yang, Y. K. Hyon, H. S. Na, L. Jin, J. G. Lee, J. M. Park, J. Y. Lee, J. H. Shin, J. S. Lim, Y. G. Na, K. Jeon, T. Ha, J. Kim and K. H. Song. “Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy”. BMC Urology, vol. 20, no. 1, p. 88, 2020.

A. J. Daniel, C. E. Buchanan, T. Allcock, D. Scerri, E. F. Cox, B. L. Prestwich and S. T. Francis. “Automated renal segmentation in healthy and chronic kidney disease subjects using a convolutional neural network”. Magnetic Resonance in Medicine, vol. 86, no. 2, pp. 1125-1136, 2021.

L. Ma, Y. Qiao, R. Wang, H. Chen, G. Liu, H. Xiao and R. Dai. “Machine learning models decoding the association between urinary stone diseases and metabolic urinary profiles”. Metabolites, vol. 14, no. 12, p. 674.

I. Aksakallı, S. Kaçdıoğlu and Y. S. Hanay. “Kidney x-ray images classification using machine learning and deep learning methods”. Balkan Journal of Electrical and Computer Engineering, vol. 9, no. 2, pp. 144-151, 2021.

D. C. Elton, E. B. Turkbey, P. J. Pickhardt and R. M. Summers. “A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans”. Med Phys, vol. 49, no. 4, pp. 2545-2554, 2022.

N. Blau, E. Klang, N. Kiryati, M. Amitai, O. Portnoy and A. Mayer. “Fully automatic detection of renal cysts in abdominal CT scans”. International Journal of Computer Assisted Radiology and Surgery, vol. 13, pp. 957-966, 2018.

X. Xiong, Y. Guo, Y. Wang, D. Zhang, Z. Ye, S. Zhang and X. Xin. “Kidney tumor segmentation in ultrasound images using adaptive sub-regional evolution level set models”. Sheng Wu yi Xue Gong Cheng Xue Za Zhi = Journal of Biomedical Engineering = Shengwu Yixue Gongchengxue Zazhi, vol. 36, no. 6, pp. 945-956, 2019.

R. Gaikar, F. Zabihollahy, M. W. Elfaal, A. Azad, N. Schieda and E. Ukwatta. “Transfer learning-based approach for automated kidney segmentation on multiparametric MRI sequences”. Journal of Medical Imaging, vol. 9, no. 3, p. 036001, 2022.

X. Fu, H. Liu, X. Bi and X. Gong. “Deep-learning-based CT imaging in the quantitative evaluation of chronic kidney diseases”. Journal of Healthcare Engineering, vol. 2021, p. 3774423, 2021.

M. Goyal, J. Guo, L. Hinojosa, K. Hulsey and I. Pedrosa. “Automated kidney segmentation by mask R-CNN in T2-weighted magnetic resonance imaging”. In: Medical Imaging 2022: Computer-Aided Diagnosis, vol. 12033. Springer, Berlin, pp. 803-808, 2022.

G. Sharma, V. Anand, R. Chauhan, H. S. Pokhariya, S. Gupta and G. Sunil. “Transfer Learning Empowered Multi-Class Classification of Kidney Diseases: A Deep Learning Approach”. In: 2024 2nd International Conference on Advancement in Computation and Computer Technologies (InCACCT), pp. 240-245, 2024.

H. Göker. “Transfer Learning-Based Classification of Kidney Stone From Computed Tomography Images”. In: 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 1-7, 2024.

M. N. Islam, M. Hasan, M. K. Hossain, M. G. R. Alam, M. Z. Uddin and A. Soylu. “Vision transformer and explainable transfer learning models for auto detection of kidney cyst, stone and tumor from CT-radiography”. Scientific Reports, vol. 12, no. 1, p. 11440, 2022.

F. J. N. Mactina and S. Neduncheliyan. “Multi-classification of kidney abnormalities in sonography using the LOA-MFO and long-term recurrent convolutional network”. Multimedia Tools and Applications, vol. 83, no. 5, pp. 13577-13612, 2024.

A. Odenrick, N. Kartalis, N. Voulgarakis, F. Morsbach and L. Loizou. “The role of contrast-enhanced computed tomography to detect renal stones”. Abdominal Radiology, vol. 44, pp. 652-660, 2019.

M. S. B. Islam, M. S. I. Sumon, R. Sarmun, E. H. Bhuiyan and M. E. H. Chowdhury. “Classification and segmentation of kidney MRI images for chronic kidney disease detection”. Computers and Electrical Engineering, vol. 119, p. 109613, 2024.

U. Kilic, I. Karabey Aksakalli, G. Tumuklu Ozyer, T. Aksakalli, B. Ozyer and S. Adanur. “Exploring the effect of image enhancement techniques with deep neural networks on direct urinary system X‐Ray (DUSX) images for automated kidney stone detection”. International Journal of Intelligent Systems, vol. 2023, no. 1, p. 3801485, 2023.

G. Chartrand, P. M. Cheng, E. Vorontsov, M. Drozdzal, S. Turcotte, C. J. Pal and S. Kadoury, A. Tang. “Deep learning: A primer for radiologists”. Radiographics, vol. 37, no. 7, pp. 2113-2131, 2017.

H. P. Chan, R. K. Samala, L. M. Hadjiiski and C. Zhou. “Deep learning in medical image analysis”. Deep learning in Medical Image Analysis: Challenges and Applications. Berlin: Springer, pp. 3-21, 2020.

A. Abdelrahman and S. Viriri. “FPN-SE-ResNet model for accurate diagnosis of kidney tumors using CT images”. Applied Sciences, vol. 13, no. 17, p. 9802, 2023.

O. Ronneberger, P. Fischer and T. Brox. “U-net: Convolutional Networks for Biomedical Image Segmentation. In: Medical Image Computing and Computer-Assisted Intervention- MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18”. Springer, pp. 234-241, 2015.

Published

2025-10-13

How to Cite

Mahmood, D. A., & Muhammadali, M. A. (2025). Hybrid U-Net Architectures with ResNet50 and VGG19 for Accurate CT-Based Kidney Disease and Stone Segmentation. UHD Journal of Science and Technology, 9(2), 231–250. https://doi.org/10.21928/uhdjst.v9n2y2025.pp231-250

Issue

Section

Articles